
Impedance.

An electric circuit may consist of other network elements than resistors and
sources, that we have considered until now. Such other elements does not
in general have a simple proportional, time-independent relationship between
current and voltage like in Ohm’s law, U(t) = RI(t). One basic element we
are going to consider is the capacitor. It is characterised by its capacitance C
and fulfil

I = C
dU

dt
. (1)

Another basic element is the coil of self inductance L, which fulfil

U = L
dI

dt
. (2)

However in the case of a harmonic varying voltage (or current) signal the
corresponding current (or voltage) signal must be harmonic too. This opens up
a generalisation of the concept of resistance in the case of alternating currents
if phase shifts are taken into due account. For the capacitor we have that

U(t) = U0 cos(ωt+ φU) (3)

implies

I(t) = −ωCU0 sin(ωt+ φU) = ωCU0 cos(ωt+ φU +
π

2
). (4)

This shows - as anticipated - that the current is harmonic varying like the
voltage. However current is heading by 1/4 of a period. This is reasonable
from a physical point of view since current has to flow for some time before
building up an amount of charge in the capacitor creating a voltage difference
between its conducting plates. If we want to write the current in the form of

I(t) = I0 cos(ωt+ φI) (5)



we should put
I0 = ωCU0 (6)

and
φI = φU +

π

2
(7)

Although Ohm’s law is not valid for the instantaneous values of U and I, we
recognise from (6) that it holds for the amplitudes with a “resistance” being
1/ωC.

Figur 1 The phasor diagram of a capacitor.

Using g complex numbers we may include the phase shift π

2
in a simple

way. We know that cosine can be expressed by the real part of the complex
exponential function. Thus

U(t) = U0 cos(ωt+ φU) = Re{U0 exp(i(ωt+ φU))} = Re{Û exp(iωt)} (8)

where the complex amplitude Û is defined in terms of the real amplitude U0

and the phase shift φU as
Û = U0 exp(iφU) (9)

In the same manner we have

I(t) = I0 cos(ωt+ φI) = Re{Î exp(iωt)} (10)

with
Î = I0 exp(iφI) (11)
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Furthermore if we define the complex impedance as

Ẑ =
1

iωC
=

1

ωC
exp(−i

π

2
) (12)

we can put together the equations (6) and (7) into the generalised Ohm’s law

Û = ẐÎ. (13)

Complex multiplication is exactly what we need since it consists in multipli-
cation of moduli (amplitudes) and addition of arguments. Impedance has the
unit (Ω) like ordinary resistance. The phasor diagram of figure 1 illustrates the
amplitude- and phase relations between current and voltage of a capacitor.

For an ordinary Ohmic resistor,R is Ẑ = R, there is no phase shift between
current and voltage. This is illustrated in figure 2.

Figur 2 The phasor diagram of a resistor.

Now - with the complex tool in hand - we are able to deduce the impedance
of a self inductance along another line. We assume that currents and voltages
are complex knowing that in the physical world they are only given bye the
real part of these quantities. This works because we only deal with linear
equations containing real coefficients. Thus the current is I(t) = Î exp(iωt).
Inserting this into (2) we get

U(t) = iωLÎ exp(iωt) (14)
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If this is supposed to have the form U(t) = Û exp(iωt), we must have Û = iωLÎ
and consequently

Ẑ = iωL = ωL exp(i
π

2
) (15)

Since | exp(iφU)| = 1 we have |Û | = |U0 exp(iφU)| = U0| exp(iφU)| = U0.
Likewise |Î| = I0 and |Ẑ| = |iωL| = |i|ωL = ωL. The modulus of equation
(13) gives

U0 = |Û | = |ẐÎ| = |Ẑ||Î| = ωLI0 (16)

Furthermore we have arg(Û) = arg(U0 exp(iφU)) = arg(U0)+arg(exp(iφU)) =
0 + φU = φU . The argument of (13) thus gives

φU = φI +
π

2
(17)

We recognise that for the self inductance the voltage is 1/4 of a period ahead
of the current. This is probably most easy to remember if we think in the
mechanical analogy where self inductance corresponds with mass, voltage with
force and current with velocity. A force has to be applied for some time before
momentum and thereby velocity has been builded up. The phasor diagram of
a self inductance is found in figure 3.

Figur 3 The phasor diagram of a self inductance.

The concept of impedance can also be applied to circuits composed of
simple elements. Kirchhoff’s laws are linear and the artifice of using complex
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currents and voltages during calculations taking the real part at the end is
thus feasible. Since Kirchhoff’s laws still applies we conclude that impedances

in series are additive. However for impedances in parallel its the reciprocal im-
pedances that should be added. It is thus convenient to introduce the concept
of admittance by

Ŷ =
1

Ẑ
(18)

The we may say that admittances in parallel are additive.
There is a certain mental threshold to be overcome in order to be familiar

with this formalism; but the advantage of it can’t be overrated. The equations
describing a linear electric (or physical) network are in general a coupled set
of integro-differential equations (in the time domain). If one only consider
harmonic functions the equations becomes algebraic instead (in the frequency
domain). This is no restriction in the study of the general dynamic behaviour
of a physical system since any input-signal can be expressed as a weighed sum
(or integral) of harmonic inputs of different frequencies. The linearity ensures
that the total output is the sum harmonic outputs with the same weights.

C

R

U

Figur 4 Sine wave generator in series with a resistor and a capacitor.

Example 1: A resistor R and a capacitor C is connected in series as
shown in figure (4) with a voltage source U = U0 cos(ωt). The starting
point of time is chosen such that φU = 0.
1) Determine the current amplitude I0 and the phase shift φI of the
current I = I0 cos(ωt+ φI).
The current may also be decomposed into a component IA in phase and
a component IB out of phase with the the voltage in this way,

I(t) = IA cos(ωt) + IB sin(ωt) (19)

2) Determine IA and IB.
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3) Draw the phasor diagram.
Re 1) The impedance of the series connection becomes

Ẑ =
1

iωC
+R

resulting in the admittance

Ŷ =
1

Ẑ
=

1
1

iωC
+R

=
iωC

1 + iωRC

In general we have I0 = |Ŷ |U0 and φI = φY + φU . Proof:

I(t) = I0 cos(ωt+ φI) = Re{I0 exp(i(ωt+ φI))}

= Re{I0 exp(iφI)) exp(iωt)} = Re{Î exp(iωt)}

= Re{Ŷ Û exp(iωt)} = Re{|Ŷ | exp(iφY )U0 exp(iφU ) exp(iωt)}

= Re{|Ŷ |U0 exp(i(ωt+ φY + φU ))} = |Ŷ |U0 Re{exp(i(ωt+ φY + φU ))}

= |Ŷ |U0 cos(ωt+ φY + φU )).

Now

|Ŷ | = |
iωC

1 + iωRC
| =

|iωC|

|1 + iωRC|
=

ωC
√

1 + (ωRC)2

and thus

I0 =
ωC

√

1 + (ωRC)2
U0

Furthermore

φI = φY =
π

2
− arg(1 + iωRC) =

π

2
− arctan(ωRC)

One deduces that the resistance determines the current at high frequen-
cies:

|Ŷ | →
1

R
og φI → 0 for ω → ∞

and that the capacitor determines the current at low frequencies:

|Ŷ | → ωC og φI →
π

2
for ω → 0

Re 2) From the expression I(t) = Re{Ŷ U0 exp(iωt)} another approach
is to split Ŷ into real and imaginary parts instead of using modulus and
argument - the polar form - we did above,

I(t) = U0 Re{(Y
′ + iY ′′)(cos(ωt) + i sin(ωt))}

= U0 Re{(Y
′ cos(ωt)− Y ′′ sin(ωt)) + i(Y ′ sin(ωt) + Y ′′ cos(ωt))}

= U0(Y
′ cos(ωt)− Y ′′ sin(ωt))
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Hereby
IA = U0Y

′ og IB = −U0Y
′′

Y ′ and Y ′′ are found in this way:

Ŷ =
iωC

1 + iωRC
=

iωC(1− iωRC)

1 + (ωRC)2
=

ω2RC2

1 + (ωRC)2
+ i

ωC

1 + (ωRC)2

That is

Y ′ =
ω2RC2

1 + (ωRC)2
og Y ′′ =

ωC

1 + (ωRC)2
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