
Ohms Law and its Analogues.

We are going to collect a number of building blocks that can be used in the
modeling of physical systems. The first were a source that came in two forms,
the effort (or voltage) source and the flow (or current) source. These elements
are active and may deliver energy into a system. The third element consumes
always energy and is called a sink.

Electric currents. Sinks are recognized in an electrical circuit as resistors.
A resistor, R has according to Ohms law a time-independent proportionality
between current, I and voltage drop, U .

U = RI

We will dwelve a bit on the quantities entering Ohms law. Electric current
is motion of charged particles. This was already speculated upon before one
had a more detailed insight to the nature of these particles. Thus one imagined
that the current passed from plus to minus in a wire connected to a galvanic
element, believing that the moving particles were positive. However in a solid
it is usually a current of negative elektrons, that moves in the opposite di-
rection. This holds for metals. Nevertheless one sticks to the convention that
the current flows from plus to minus since in most cases one can’t tell the diffe-
rence of having positive particles moving in one direction or negative particles
moving in the opposite direction. Electric charge has the unit Coulomb. This
is a huge amount of electrons since the electron charge is e = 1.602 · 10−19C.
Electric current has the unit Ampere, which is one Coulomb per second.

The electric potential is associated with the concept of potential energy.
A (test) charge, q placed at r in a space where other charges resides feels the
forces of these other charges. It is thus able to conduct work. The work it is
able to do is called the potential energy Epot(r). Since the magnitude of this
potential energy is proportional to the magnitude of the (test) charge it is
meaningfull to introduce the potential, φ(r), which is the potential energy pr.



charge. Thus one has
Epot(r) = qφ(r)

The unit of the potential is thus Joule per Coulomb,J/C. This unit is better
known as Volt, V .

In order to get the wright sign in Ohms law one has to introduce an ori-
entation rule (see Figure 1). Draw an arrow besides the resistor. This arrow
indicates the direction of a positive current. If the actual current flows in the
opposite direction this is just reflected in a negative I. The potential drop
U = φ1 − φ2 is the difference between the potential φ1 at the tail of the arrow
and the potential φ2 at the head of the arrow. Notice that the potential drop
is minus the potential increment, ∆φ = φ2 − φ1,

U = −∆φ

Figur 1 The relation between potential, φ og voltage drop, U : U = −∆φ = φ1 −φ2.

The resistance R is specified in Ohm, Ω. The resistance is both dependent
on the material of the conductor but also on geometrical factors. For a wire of
lenght l and a constant cross section A the resistance becomes,

R = ρ l
A

where ρ, the resistivity is the material parameter to be found in a data sheet.
Often its reciprocal, the specific conductivity, σ = 1/ρ is found.

Exercise: A material of specific resistance ρ lies between two cylinders
of radii r1 og r2 and lenght l. The cylindrical surfaces are highly con-
ducting electrodes. What is the resistance of the material between the
two electrodes?
Exercise: As above; but now between two spherical surfaces?

Introducing the specific resistance Ohm’s law can be written,
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U = ρ l
A
I

or,

−∆φ
l

= ρ I
A

The potential drop per length,−∆φ
l

is called the electric field, denoted E. It
has the unit V/m. The current per area, I

A
is called the current density, deno-

ted j. It has the unit A/m2. Both quantities have a direction in space; they
are vectors. Thus we can reformulate Ohm’s law,

E = ρj eller j = σE

The advantage of this formulation is that none of the quantities entering the
equation refers to the geometry of the conductor.

Exercise: Explain that the force F on a charge q is qE. (Hint: What is
the relationship between force and potential energy?)

Thermal currents. Conduction of heat can be described by the heat current
density jh expressed in W/m2. This current is proportional to the temperature
gradient ∇T by Fourier’s lov

jh = −λ∇T

λ is called the specific heat conductivity. One sees that Fourier’s law is com-
pletely analogous with Ohm’s lov, since −∇T tells how much temperature
drops per length in the direction of the heat current, whereas the electric field
denoted the potential drop per length.

Exercise: An outer wall is covered by insulating material in order to
reduce heat losses. Across which layer the temperature drop is the lar-
gest?
Exercise: Find the heat current density as a function of radius trough
the insulation around a central heating tube. Find also the temperature
profile.
Exercise: A spherical heat source of radius r is placed in an infinite
medium of specific heat conductivity λ. The source produces a constant
power P . How large is the temperature at the source compared to the
temperature in the far distance from the source?
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Fluid flow. A flowing liquid looses energy by friction between parts of the
liquid having different velocities. Kinetic energy is by this process converted
into heat; but pressure gradients supplies new energy allowing a stationary
flow.

The friction is quantified by a liquid property called the viscosity η. Imag-
ine a stationary flow between two large parallel plates a little distance apart.
The plates are normal to the z-axis, the lower plate at rest while the upper
plate is moved at a constant velocity in the x-direction. This creates a linear
velocity-profile vx(z). It turns out that for many liquids (so-called) Newtoni-
an) it takes a constant force Fx to maintain the flow. Furthermore the force
is proportional to the area A and inversely proportional to the plate distance.
The force per area is called the tangential stress σzx. (The index z indicates
the surface being perpendicular to the z-axis, and the x indicates the force
along the x-axis.) One has thus,

σzx = η ∂vx

∂z

This is once more an analogue with Ohm’s law.

Figur 2 Laminar flow of a Newtonian liquid.The tangential stress, σzx is proportio-
nal to the velocity gradient ∂vx

∂z .

The velocity-profile becomes different of the liquid flows through a cylin-
der tube. We expect the volume current V̇ to be proportional to the driving
pressure drop −∆p, and inversely proportional to the length l of the tube and
the viscosity, η. Dimensional reasoning hence give that V̇ is proportional to
the 4th power of the radius r.

4



Exercise: Carry out the dimensional argument.

A detail calculation shows that the velocity profile becomes parabolic, the
speed being at maximum in the middle of the tube. The mean velocity thus
grows proportional to the radius r, and since V̇ is the product of the mean
velocity and the cross section area the physics of the 4th power can be under-
stood. The detailed calculation determines the proportionality factor and the
result is called the Poiseuille’s law,

V̇ = −∆pπr4

8ηl

If we define the fluid resistance, Rf = −∆p/V̇ we have,

Rf = 8ηl
πr4

Exercise: Let the velocity-profile be vz(r). Find the forces acting on a
thin cylindrical shell between radii r and r + dr. Use this in formulat-
ing a differential equation for vz(r). Solve this equation. What are the
boundary conditions? Find the volume flow and thus Poiseuille’s law.

The viscosity we also meet in the formular for the frictional force, F on a
sphere with radius r that is driven through a liquid at velocity v. That is the
so-called Stoke’s formular

F = 6πηrv

Thus the mechanical resistance Rm = F/v is 6πηr.

Exercise: A sphere immersed in a liquid is dropped and it begins to
fall. Explain why the velocity grows to a maximum velocity v∞, and
determine this. Find a characteristic time scale for the growth of the
velocity from zero to v∞. Find the velocity as a function of time, v(t).
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