
Linear Response Theory.

The response theory deals with the general relationship between input φ(t)
and output γ(t) to a physical system.

Selection of variables.

The energetic interactions of a physical system with its surroundings are called
energy bonds. Every energy bond is associated with two so-called conjugated
variables, the generalised voltage, effort, e and the generalised current, flow,
f . The product e · f should be some kind of transferred energy per time.
The flow-variable is recognised by the feature that it changes sign under time
reversal whereas the effort variable is invariant. In addition one defines two
supplementary variables: the displacement q, which is the flow integrated over
time, and the momentum p, which is the effort integrated over time.

Describing systems in this framework makes it easy to see analogies be-
tween different physical systems. We mention here a number of examples. In
particle mechanics force, F and velocity, v are conjugated variables. In con-
tinuum physics (fluids or solids) they may be taken as the normal stress, σ
and the volume flow, JV . In electric energy bonds e corresponds to voltage,
U , f to current, I, q to charge, Q and p to magnetic flux, ΦB. The conjugated
variables in a thermal energybond can be chosen as the Carnotfactor, 1−T0/T
1 and the heat current, JQ. In this case the product is the free energy. One
may alternatively chose e as temperature, T and f as entropy current, JS.

Linear systems with memory.

In linear response theory it is assumed that for sufficiently small actions there
will be a linear relationship between input, φ and output, γ; but there may be
an “after effect”. The change dφ(t′) in φ at time t′ gives thus a contribution to
the change dγ(t) in γ at time t:

dγ(t) = R(t, t′)dφ(t′) = R(t− t′)dφ(t′). (1)

Here it has been assumed that this change is only dependent on the time
difference (homogeneity of time). Since response follows stimuli we have that

1 Which amounts to the relative temperature variation (T −T0)/T0 for small temperature

changes
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R is 0 for t < t′, that is

R(t) = 0, for t < 0 (causality) (2)

Summing up all contributions from t′ = −∞ to t′ = t gives

γ(t) =

∫ t

−∞

R(t− t′)dφ(t′) =

∫ t

−∞

R(t− t′)φ̇(t′)dt′

=

∫

∞

0

R(t′′)φ̇(t− t′′)dt′′. (3)

Here φ̇ is the time derivative of φ. Introducing the composition ◦ as a shorthand
notation for the linear operation “convolution with the time derivative” the
equation (3) can be written

γ = R ◦ φ. (4)

Notice, that the dimension of R is dim(output)/dim(input).

Classification of the response functions.

The name of the response function R is dependent on the type of input and
output . γ and φ may be any of f, q, e, p; however they must belong to different
causal classes. So if φ is e or p then γ has to be f or q and vice versa. This gives
eight possible response functions, of which however two are identical with two
other reducing the number to six:
With input of the effort type:

Compliance J , q = J ◦ e,
Admittance Y , f = Y ◦ e,
Lightness F , f = F ◦ p.

With input of the flow type:

Modulus G, e = G ◦ q,
Impedance Z, e = Z ◦ f ,
Inertance M , p = M ◦ f .

One of the response functions is enough to characterise a system since the six
functions are mathematically related. There are nevertheless several reasons
for introducing a number of seemingly redundant functions. One is that ex-
perimentally it is convenient to be able to decide, which variable (input) is
under control and which variable (output) is measured. In a physical theory of
a phenomena it may also be different which r.f. it is most natural to consider.
For certain of the simple network elements a particular response function is
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constant (independent of time). The scheme below gives an overview of the
different response functions,

The time domain.

Let stimuli (input) be a sudden (step) change in φ from 0 to φ0 at time t = 0.
This can be expressed in terms of the Heaviside function

E(t) =

{

0 , t < 0

1 , t > 0
(5)

because then we have φ(t) = φ0E(t). Differentiating the Heaviside function
results in the deltafunction δ(t), which is 0 everywhere except for t = 0, at
which point however it is infinite so that its integral is 1 Then we have

γ(t) =

∫

∞

0

R(t′)φ0δ(t− t′)dt′ = φ0R(t) (6)

The response function R(t) may thus be interpreted as the response γ(t) to a
unit step in stimuli at time t = 0, and it can be measured by a so-called step
response experiment.

The frequency domain.

Equation (3) expresses, that the output is found by a convolution of the time
derivative of the input with the response function. By a Fourier transformation
convolution becomes into multiplication, differentiation into multiplication by
(iω) and integration into division by iω. This is why an analysis of a system
behaviour is much easier in the frequency domain.

Thus consider a periodic input φ(t) = φωe
iωt. Since the equations are linear

it is permissible to assume a complex input and extract the real part at the
end of the calculation. We get

γ(t) =

∫

∞

0

R(t′)(iω)φωe
iω(t−t′)dt′

= (iω)φωe
iωt

∫

∞

0

R(t′)e−iωt′dt′ (7)

The calculation shows that a harmonic input results in a harmonic output..
Writing γ(t) = γωe

iωt, we read off

γω = R̂(ω)φω, (8)
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γ q f e p
� charge current voltage magn. flux
φ displacement velocity force momentum

q G
charge modulus

displacement stiffness

f Z M
current impedance inertance
velocity resistance mass

e J Y
voltage compliance admittance
force creep function mobility

p F
magn. flux
momentum lightness

Tabel 1 Table of the response functions, R and the possible relations, γ = R ◦ φ
between input, φ and output, γ. The operator ◦ is "convolution with the time

derivative"in the time domain and plain multiplication in the frequency domain.
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where
R̂(ω) = iωF{R, ω}, (9)

and F{R, ω} is the Fourier transformed of R(t),

F{R, ω} =

∫

∞

−∞

R(t)e−iωtdt. (10)

Here the lower limit could be extended to t = −∞, as usual in a Fourier
transformation due to the causality condition (2). Notice that besides a Fourier
transformation one has to multiply by iω. The Frequency response function

R̂(ω) becomes the function, that one would measure and define by (8) in a
measurement with a harmonically varying input. R̂(ω) is seen to have the
same dimension as R(t), and the limiting behaviour R̂(ω) for ω → 0 or ∞
corresponds to R(t) for t → ∞ or 0 respectively. If the frequency response
function is written in the modulus-argument form: R̂(ω) = |R̂(ω)|eiθω then
γ(t) = |R̂(ω)|ei(ωt+θω). Thus θω is the number of radians that γ(t) is phase
shifted ahead of φ(t), whereas |R̂(ω)| gives the amplitude ratio |γω|/|φω|.

The return to R(t) is performed by an inverse Fourier transformation

R(t) =
1

2π

∫

∞

−∞

R̂(ω)

iω
eiωtdω (11)

Laplace-Stieltjes transformation.

The Fourier transformation can be continued analytically for complex frequen-
cies ω = ω′ + iω′′. In the lower half plane where ω′′ < 0 this can still be calcu-
lated by (10) since the factor eω

′′t makes the integral converging for t > 0,
while this factor makes no troubles for t < 0, since R(t) = 0 here. One often
introduce the Laplace-frequency s = iω and defines the s-frequency response
function R̃(s) by

R̃(s) = s

∫

∞

0

R(t)e−stdt = sL{R, s} (12)

that is s times the Laplace transformed of R(t). The frequency response fun-
ction can now be found (more generally) by

R̂(ω) = lim
s→iω,s′>0

R̃(s) (13)
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Relations between the response functions.

I the frequency domain the relations between the response functions become
very simple:
Within the two causal classes:

M̃ =
1

s
Z̃ =

1

s2
G̃ , J̃ =

1

s
Ỹ =

1

s2
F̃ (14)

Between the two causal classes:

J̃ =
1

G̃
, Ỹ =

1

Z̃
, F̃ =

1

M̃
(15)

In the time domain it is only within the same causality class that it is fairly
simple making a conversion (by integration or differentiation). Shift from one
class to the other has to be done by solving an integral equation, which in fact
would be easiest to solve by transforming to the frequency domain.

Compound systems.

It is readily found that connecting two systems by a Kirchhoff mesh, implying
a common flow and an addition of the efforts results in a compound system
that is additive in the (flow class) response functions (G,Z,M). On the other
hand, connecting two systems by a Kirchhoff node, implying a common effort
and an addition of the flows results in a compound system that is additive
in the ( effort class ) response functions (J, Y, F ). Using these rules combined
with shift between the classes makes it swift to write up response functions of
rather complex physical networks.
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