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Abstract

A discrete and exact algorithm for obtaining planetary systems is derived in a recent article (Eur.

Phys. J. Plus 2022, 137:99). Here the algorithm is used to obtain planetary systems with forces

different from the Newtonian inverse square gravitational forces. A Newtonian planetary system

exhibits regular elliptical orbits, and here it is demonstrated that a planetary system with pure

inverse forces also is stable and with regular orbits, whereas a planetary system with inverse cubic

forces is unstable and without regular orbits. The regular orbits in a planetary system with inverse

forces deviate, however, from the usual elliptical orbits by having revolving orbits with tendency

to orbits with three or eight loops. Newton’s Proposition 45 in Principia for the Moon’s revolving

orbits caused by an additional attraction to the gravitational attraction is confirmed, but whereas

the additional inverse forces stabilize the planetary system, the additional inverse cubic forces can

destabilize the planetary system at a sufficient strength.
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I. INTRODUCTION

Our world consists of objects with collections of atoms and molecules which are bound

together by ionic or covalent bonds. On a larger length scale these objects are collected in

planetary systems in galaxies, which are bound together by gravitational forces. The ionic

and covalent bonds are established by electromagnetic forces whereas the planetary systems

and the galaxies are hold together by gravitational forces. Although the two forces differ

enormously in strength by a factor of ≈ 1036 they have, however, some common features.

The radial strengths of both forces are proportional to the inverse square (ISF), r−2, of the

distances between mass centers , and both forces are believed to extend to infinity. The

two forces can also result in regular closed orbits for the dynamics of a collection of force

centres, as is demonstrated by our solar system and the orbitals of the bounded electrons at

a atomic nucleus. The two other fundamental forces are the strong and weak nuclear forces

and they are both short ranged. All other forces are ”derived forces” such as the harmonic

forces or the attractive induced dipole-dipole forces.

Isaac Newton formulated the classical mechanics in his book PHILOSOPHIÆ NATU-

RALIS PRINCIPIA MATHEMATICA (Principia) [1], where he also proposed the law of

gravity and solved Kepler’s equation for a planets motion. According to Newton, gravity

varies with the inverse square of the distance r between two celestial objects, and a planet

exposed to the gravitational force from the Sun moves in an elliptical orbit. The Moon

exhibits, however, periodic ”revolving orbits” and Newton shows in Principia that this be-

haviour, which is caused by the daily rotation of the Earth, could be taken into account by

and additional inverse cubic force proportional to r−3 (ICF). But it raises the question: for

which forces can a system of objects have regular orbits?

It is only possible to solve the classical mechanics differential equations for two objects.

The classical second-order differential equation for the dynamics of two objects with a central

force proportional to rn can be solved for a series of values of the power n . An important

result was obtained by Bertrand [2], who proved that all bound orbits are closed orbits.

Later investigations have proved the existence of regular orbits for a series of values of the

power n of the central force, including the ICF [3–5].

For a system consisting of many objects, the dynamics of coupled harmonic oscillators

demonstrates that it indeed is possible to have stable regular dynamics for systems with other
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forces than the gravitational forces, but else there is no theoretical proofs, nor any other

examples of that it is possible. Here it is, however, demonstrated by Molecular Dynamics

simulations (MD) of planetary systems [6], that a planetary system also can have planets

with stable regular orbits for attractive forces which varies as

−r−1

−r−2 ± α× r−1

−r−2 ± α× r−3 for α ∈ [−100, 10].

But it has not been possible to obtain stable regular orbits for r−3.

II. THE FORCE BETWEEN TWO SPHERICALLY SYMMETRICAL OBJECTS

Newton was aware of that the extension of an object can affect the gravitational force

between two objects, and in Theorem XXXI in Principia [8] he also solved this problem for

ISF between spherically symmetrical objects.

Newton’s Theorem XXXI states that:

1. A spherically symmetrical body affects external objects gravitational as though all of

its mass were concentrated at a point at its center.

2. If the body is a spherically symmetric shell no net gravitational force is exerted by the

shell on any object inside, regardless of the object’s location within the shell.

Newtons theorem is, however, only valid for ISF. The forces between spherically sym-

metrical objects with forces proportional to r−1, inverse forces (IF), or ICF depends on the

objects extension. Newton’s derivation of the theorem is by the use of Euclidean geometry,

but the forces between two spherically symmetrical objects can also be derived by the use

of algebra.

Let the objects No. i and j be spherically symmetrical with masses mi and mj and with

a uniform density within the balls with the radii σi and σj . The attraction, IF, ISF or ICF,

on a mass δmi at si in object i and at the distance sij from a mass δmj at sj in j is

δFij = −βδmiδmjs
n
ij ŝij , (1)

with n=-1, -2 and -3, respectively, and the total force Fij is obtained by a quadruple inte-

gration, first between δmi at si and mass elements δmj in a sphere in j with radius σ
′

j ≤ σj ,

then over spheres centred at rj with radius σ
′

j , and then correspondingly between mass mj
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located in the center, rj and mass elements δmi.

Consider mass elements δmj(sj) = 4πσ
′2
j mjdσ

′
j/(4π/3σ

3
j ) at sj in a thin shell [σ′

j , σ
′
j+dσ′

j]

with center at rj and a distance r′ij =| si − rj |> σi + σj ≥ σi + σ′
j to si. The force

δFij = −βδmimjs
n
ij r̂

′
ij on δmi from object j is [9]

δFij = −β
δmi

4r
′2
ij

∫ σj

0

δmj

σ′
j

∫ r′
ij
+σ′

j

r′
ij
−σ′

j

snij[s
2
ij + r

′2
ij − σ

′2
j ]dsij r̂

′
ij. (2)

The integrals are very simple for ISF since

−β
δmi

4r
′2
ij

∫ σj

0

δmj

σ′
j

∫ r′ij+σ′

j

r′
ij
−σ′

j

s−2
ij [s2ij + r

′2
ij − σ

′2
j ]dsij (3)

= −β
δmi

4r
′2
ij

∫ σj

0

δmj

σ′
j

4σ′
j = −β

δmimj

r
′2
ij

,

and the integration over shells centred at ri with mass elements δmi leads to Theorem

XXXI.

The integrations are more complex for n 6= −2. The simplest way to proceed is to expand

the first integral in powers of σ′
j/r

′
ij . The first terms in the final expressions for the force

between i and j are given below.

For the IF function s−1:

Fij(rij) ≃ −
β1mimj

rij
(1−

σ2
i + σ2

j

5r2ij
)r̂ij +O(r−4

ij ) (4)

For s−2 one obtains the usual expression for the gravitational ISF force (β2 = G) which does

not depend on the extensions of the two spherically symmetrical objects

Fij(rij) = −
Gmimj

r2ij
r̂ij. (5)

For s−3 the ICF radial force is

Fij(rij) = −
β3mimj

r3ij
(1 +

2σ2
i + 2σ2

j

5r2ij
)r̂ij +O(r−6

ij ). (6)

The dynamics of planetary systems with the different kind of gravitational attractions is

given in the next Section.

III. DYNAMICS OF PLANETARY SYSTEMS WITH DIFFERENT GRAVITA-

TIONAL FORCES

A discrete and exact algorithm for obtaining planetary systems is derived in a recent

article [6]. The algorithm is symplectic and time reversible and has the same invariances
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FIG. 1: A loop of the innermost planet from a position at time t = 2.5× 106, marked by a

big black sphere to a position at t = 2.5007325× 106 (293000 discrete time steps), marked

by a small black sphere. The position of the ”Sun” is with an enlarged red sphere. Some

simultaneous loops of two other planets in the planetary system are shown in the next

figure.

-2000
-1000

 0
 1000

 2000

-1000

 0

 1000

 2000

-2000

-1000

 0

 1000

FIG. 2: The simultaneous orbits with bows for two other planets in the planetary system.

The orbits are obtained for one million discrete time steps in the time interval

t ∈ [2.5× 106, 2.5025× 106].
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FIG. 3: Bows in a loop with green and light blue for the outermost planet. The start

position at t = 2.5× 106 is marked with a big black sphere and the first three bows is with

green color. The position at t = 2.5025× 106 after the first three bows is shown by a

smaller black sphere, and the succeeding five bows is with light blue. Several consecutive

loops of the planet are shown in Figure 5.

as Newton’s analytic dynamics. For Kepler’s solution of the two body system of a Sun

and a planet one can compare the two dynamics [7], which leads to the same orbits. The

discrete dynamics is absolute stable and without any adjustments for conservation of energy,

momentum and angular momentum for billion of time steps. The algorithm and how to

obtain planetary systems is given in the Appendix. Here the algorithm is used to obtain

planetary systems with forces different from the Newtonian inverse square gravitational

forces.

A. Planetary systems for objects with inverse forces

The IF between two objects i and j is given by the Eq. (4). The Eq. (4) gives the first-

order size-correction for the forces between spherically symmetrical uniform mass objects.

The investigation is conducted in two ways by MD simulations. A: One can simply create

planetary systems in the same way as described in [6] and in the Appendix, or alternatively

B: one can replace the Newtonian ISF forces between objects in an ordinary planetary

6
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FIG. 4: A planet which after 13 orbits almost returns to its start position. The start

position at t = 2.5× 106 is shown with a big blue sphere, and the position at

t = 2.5051975× 106 after thirteen orbits by a smaller black sphere. The next figure shows

several orbits of the planet together with the orbits of the outermost planet.

system by the corresponding inverse IF forces.

A: The results of obtaining planetary systems spontaneously by merging of objects as

in [6] are shown in the next Figures. Planetary systems with strength β1 = 1 were created

spontaneously at time t = 0 from different configurations, distributions of velocities and

masses mi(0) = 1 of objects. (For units of length, time and strength of the attractions in

the MD systems see the Appendix.) Ten different planetary systems were formed and the

overall result and conclusion from the ten systems is, that it is easily to obtain planetary

systems with IF forces. But the regular orbits deviate, however, qualitatively from the

elliptical orbits in an ordinary planetary system. A typical regular orbit is shown in Figure

1.

Figure 1 shows a loop of the innermost planet in one of the ten planetary systems, which

was simulated with IF. The planetary system was started with thousand objects and the

planetary system with IF contained 38 planets after 109 MD time steps corresponding to

a MD time t = 2.5 × 106, and where the inner planets have performed several thousand

bound rotations. The planet in Figure 1 performs a loop, but with a change of its elliptical

major axis by ≈ π/3 at the passage of the ”Sun”, by which the total regular orbit appears
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FIG. 5: The outermost planet (green) together with the planet from Figure 4 (red) with its

orbits in bands. The outermost planet changes its major orbit axis with ≈ π/4 at every

past of the Sun. The central Sun is with red.

with three consecutive bows with an angle of ≈ 2π/3. The total angular momentum for

the system is conserved by Newton’s exact discrete algorithm [6], but also the angular

momentum of the individual planets in the system are conserved to a high degree so the

three bows are in the same plane. Most of the planets exhibit this regular dynamics. Figure

2 shows the simultaneous orbits for two other planets in the same planetary system. The

planetary system with the object shown in Figure 1 and Figure 2 consists of 38 objects in

bound orbits around a central heavy object (the ”Sun” with mSun=867). In [4] Broucke has

obtained the orbit for one planet (Figure 2 in [4]). There is, however, only some similarities

between the present orbits for a many-body three dimensional planetary system and the 2D

orbit of a single planet.

All the planets in the planetary systems with inverse forces show, what Newton probably

would have called revolving orbits, but not all of the planets have orbits of the form shown

in Figure 1 and Figure 2. The next figure, Figure 3, show the consecutive bows of the

outermost planet in the same planetary system. The planet changes its principal axis by

≈ π/4 by which it performs eight bows in its regular orbit. Figure 5 shows with green 3-4

loops of this planet together with another planet in the same planetary system.

It has not been possible to obtain simple elliptical regular orbits, but there are examples
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of planets with a smaller change of their principal axis at the passage of the Sun. Figure

4 gives such an example of a planet, which after thirteen loops return to its start position,

and a collection of consecutive loops for this planet, shown by red in Figure 5, demonstrates

that this regular pattern is maintained over many consecutive loops.

B: Planetary systems with IF forces were obtained in another way by replacing the

Newtonian ISF forces in an ordinary planetary system with the IF forces. The discrete

dynamics with IF was started with the end-positions of the planet in the planetary system

[6]. A replacement with β1 = β2 = G results in a collapse of the planetary systems and

with only two planets in revolving orbits similar to the orbits shown in Figure 2. The other

planets were engulfed by the Sun. This is due to that the inverse forces with β1 = β2 = G

and acting on a planet are about a thousand time stronger than the Newtonian gravitational

forces. Planets in the Newtonian planetary systems in [6] are located at mean distances to

their Suns at < ri,Sun >≈ [100, 30000]. For an ordinary planet with a Newtonian ISF force

field and at a position ri,Sun = 1000 the corresponding IF force is of the order thousand time

stronger than the Newtonian ISF force. So in order to establish whether it is possible to

obtain simple elliptical orbits without revolving orbits, the forces in the Newtonian planetary

systems in [6] were replaced with IF forces and with β1 ≈ G/1000. The replacement was

performed in the following way:

A planet i with a rather circular orbit and at a mean distance < ri,Sun >≈ 1000 was

selected and the strength β1 = 0.00105 was determined so the planet follow the same elliptical

orbit shortly after the replacement. The result of this replacement of the forces in the

planetary system on the orbit of this planet is shown in Figure 6, which show the orbit of

an ordinary planet before( red) and after (green) the replacement. The replacement is for

β = 0.00105 for which the planet followed the gravitational orbit (red) over a long period

of time before it deviated and exhibited the revolving orbits shown in the figure, but with a

small change of its principal axis by passage at the Sun and with elliptical-like orbits. The

other planet in the Newtonian planetary system changed their orbits to the revolving orbits

(blue orbit Figure 6), also shown in the previous figures.

It has not been possible to obtain simple elliptical orbits, which spontaneously appears

in an ordinary Newtonian planetary system. The simulations were performed by the first

order IF expression, Eq. 4, but simulations with- and without the first order correction

| δFIF |= β1mimj(σ
2
i + σ2

j )/5r
3
ij showed, that the first-order correction only has a minor
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FIG. 6: The red elliptical orbits is for a planet with Newtonian ISF forces and the green

orbits are after the forces at the position marked with a black sphere is replaced with IF

forces and with β1=0.00105 by which the planet in a short time follow the elliptical path

before the revolving behaviour. The orbit (blue) of a planet at a mean distance slightly

bigger than the planet shown by red changed spontaneously its elliptical orbit to the bows

also shown in the previous figures.

quantitative effect, and that the exclusion of this term do not change the overall qualitative

result.

B. Simulation of systems with inverse cubic forces

A system of objects with masses mi(0) = 1 and pure ICF given by Eq. (6) does not self-

assemble to a planetary system. The objects either fuse together or expand as free objects.

This observation is valid for different values of the gravitational constant β3 in Eq. (6) and

it was not possible to create a planetary system with ICF.

Another way to demonstrate the instability of planetary systems with pure ICF attrac-

tions is to replace the Newtonian gravitational ISF in a planetary system by ICF as described

in the previous subsection. Thus it is possible to determine a values of β3 ± δ, by which a

given planet in an Newtonian planetary system either engulfs by the Sun by changing the

forces from −G/r2 to −(β3 + δ)/r3(1 + (2σ2
i + 2σ2

j )/5r
2
ij) or leaves the Sun as a free object

10
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FIG. 7: The orbits for a planet in a planetary system with ICF. The planetary system is

obtained from an ordinary planetary system and with elliptical orbits (red) by replacing

the ISF forces by ICF and with a strength β3 ≈ 1230×G. The black circles is the position

of the planet at the time where the replacement took place and the green curve is for

β3 = 1228.75 and the blue curve is for β3 = 1228.5.
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FIG. 8: Top view of the orbits of the planet also shown in details in the previous figure.

The blue curve is for ICF with Eq. (6) and the magenta curve is with the zero-order ICF

−1228.5mimj/r
3
ij .
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FIG. 9: The planet also shown in Figure 7 with red, but now with IF or ICF included in

the ISF attraction. The orbit with red is with pure ISF; the orbit with green is with ICF:

α3/r
3 = −100/r3 included from the position marked by a black sphere, and the orbit with

blue is with the IF: α1/r = 0.01/r included. The planet with ISF + ICF (green) has

revolved ≈ 23-24 times before the principal axis in the elliptical orbit has changed 2π.

for β3 − δ. Figure 7 shows this ”tipping point” for the same planetary system and planet as

is shown in Figure 6 with red for ISF and green for IF. The planet with pure ICF is engulfed

by the Sun for β3 + δ = 1228.75 (green curve), but escapes the Sun for β3 − δ = 1228.5

(blue curve). The Eq. (6) is with the first asymptotic correction in a rapid converging

expansion for the extension of the spherically symmetrical objects with an uniform density.

The zero order expression for the ICF system: −β3mimj/r
3
ij gives the same qualitatively

result, as shown in Figure 8. The tipping point is the same either one includes the first order

correction or not.

IV. NEWTON’S PROPORTIONS FOR THE MOON’S REVOLVING ORBITS

The Moon exhibits apsidal precession, which is called Saroscyclus and it has been known

since ancient times. Newton shows in Proposition 43-45 in Principia, that the added force

on a single object from a fixed mass center which can cause its apsidal precession must be a

central force between the planet and a mass point fixed in space (the Sun). In Proposition
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44 he shows that an inverse-cube force (ICF) might causes the revolving orbits, and in

Proposition 45 Newton extended his theorem to arbitrary central forces by assuming that

the particle moved in nearly circular orbit [11]. The Moon’s apsidal precession is explained

by flattering by the rotating Earth with tide waves, which causes an ICF on the Moon. For

Newton’s analyse of the Moon’s apsidal precession see [12].

New investigations of isotopes from the Moon reveal that it was created ≈ 4.51 billion

year ago and ≈ 50 to 60 million years after the emergence of the Earth and our solar

system [13, 14], and the Earth contained the Hadean ocean(s) with tide waves shortly after

the creation of the Moon [15], so an ICF has not affect the overall stability of the Moon’s

regular orbit. The rotation of the Earth and the Moon’s orbit around the Earth results in an

ICF which has accelerated the Moon out to its present position with its apsidal precession.

The early orbit of the Moon may have had a high eccentricity [16], but it is difficult to

determine the evolution of the Moon’s orbit due to the many factors which influence its

evolution [17]. One can, however, conclude that the presence of an additional force on the

Moon due to the tide waves has not affected the overall stability of the Moon’s regular orbit.

The planetary system and the orbit shown with red in Figure 7 are simulated with either

ICF or IF included in the attractions. The planetary system is affected by including an

α3r
−3 ICF, and the systems are destroyed for α3 ≥ 100. The ISF planetary system with

the planet shown in Figure 7 with red contains twenty one planets and only three survived

by including 100 ∗ r−3 in the attraction whereas all twenty one planets remained in regular

orbits for ICF with α3 ≤ 10 ∗ r−3.

The orbits in a planetary system with ISF+ICF forces exhibit the revolving behaviour

predicted by Newton: Figure 9 shows the orbit of the planet, also shown in Figure 7, with

red without additional attractions, with (green) with ISF+ICF and with α3 = −100, and

with blue with ISF+IF and with α1 = 0.01. The behaviour of ISF+ICF and ISF+IF is in

agreement with Newton’s Proposition 45. Inclusion of IF in the gravitational attractions

enhances, however, the revolving behaviour and stabilizes the planetary system, whereas

inclusion of the ICF also results in revolving orbits, but it destabilizes the planetary system.

The planetary ISF+ICF system is not stable for α3 > 100 and for pure ICF attractions.
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V. CONCLUSION

The discrete algorithm (Appendix A), derived in [6] is used to obtain planetary system

with forces other than gravitational forces. The main conclusion is, that it is easy to obtain

planetary systems with inverse gravitational forces. However, it is not possible to obtain

planetary systems with inverse cubic gravitational forces, even if one smoothly replaces the

inverse square gravitational forces in a stable planetary system with inverse cubic forces.

A detailed investigation of the planetary system after the replacement of the forces shows,

that one can determine a strength of the gravitational constant β3 for inverse cubic forces for

which a planet either detaches itself from the planetary system for β3−δ, or are engulfed by

the ”Sun” for β3+ δ (Figure 7 and Figure 8). So the attractions in our universe with inverse

square forces for the gravitational attractions between masses and the Coulomb attractions

between charges is the limit value for regular orbits. A system of objects will, for inverse

attractions with ∝ r−n with n ≥ 3, have the well known thermodynamic behaviour with

gas-liquid-solid phases, but without regular orbits between units in the system.

The orbits of the planets in a planetary systems with pure inverse forces have ”revolving

orbits”. The regular orbits deviate, however, significantly from the slightly perturbed elliptic

orbits in an ordinary planetary with additional weak non-gravitational attractions. The

principal axis changes with ≈ π/3 at every loops (Figure 1, Figure 2, Figure 6 for the main

part of the regular orbits in a planetary system with inverse forces. But also changes with

π/4 is observed (Figure 3 and Figure 5) together with other smaller, but rather constant

changes (Figure 4 and Figure 5).

Newton stated in Proposition 43-45 in Principia, that the Moons revolving orbits could

be explained by an additional attraction, r−n, to the gravitational attraction with n 6= 2.

The present simulations of planetary systems with gravitational attractions and an addi-

tional attractions with either n = 1 or n = 3 confirm Newton’s Propositions, but whereas

attractions with additional inverse attractions stabilize the planetary systems, the inclusion

of a weak inverse cubic attractions also gives ” revolving orbits” (Figure 9), but it will

destabilize the planetary system by adding sufficient strong inverse cubic attractions to the

inverse square gravitational forces.
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VI. APPENDIX

The gravitational force, Fi(ri), on a planet i at ri in a planetary systems with N celestial

objects is

Fi(ri) =

N∑
j 6=i

Fij(rij) (7)

where the summations over forces F(rij) is given by one of the Eqn 4-6.

Newton derived the discrete central difference algorithm when he obtained his second law

[7]. In Newton’s classical discrete dynamics [1, 7] a new position rk(t+ δt) at time t+ δt of

an object k with the mass mk is determined by the force fk(t) acting on the object at the

discrete positions rk(t) at time t, and the position rk(t− δt) at t− δt as

mk
rk(t+ δt)− rk(t)

δt
= mk

rk(t)− rk(t− δt)

δt
+ δtfk(t), (8)

where the momenta pk(t+ δt/2) = mk(rk(t+ δt)− rk(t))/δt and pk(t− δt/2) = mk(rk(t)−

rk(t − δt))/δt are constant in the time intervals in between the discrete positions. Newton

postulated Eq. (A2) and obtained his second law, and the analytic dynamics in the limit

limδt→0.

The algorithm, Eq. (A2), is usual presented as the ”Leap frog” algorithm for the velocities

vk(t + δt/2) = vk(t− δt/2) + δt/mkfk(t). (9)

The positions are determined from the discrete values of the momenta/velocities as

rk(t+ δt) = rk(t) + δtvk(t+ δt/2). (10)

Let all the spherically symmetrical objects have the same (reduced) number density ρ =

(π/6)−1 by which the diameter σi of the spherical object i is

σi = m
1/3
i (11)
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and the collision diameter

σij =
σi + σj

2
. (12)

If the distance rij(t) at time t between two objects is less than σij the two objects merge to

one spherical symmetrical object with mass

mα = mi +mj , (13)

and diameter

σα = (mα)
1/3, (14)

and with the new object α at the position

rα(t) =
mi

mα
ri(t) +

mj

mα
rj(t), (15)

at the center of mass of the the two objects before the fusion. (The object α at the center

of mass of the two merged objects i and j might occasionally be near another object k by

which more objects merge, but after the same laws.)

The momenta of the objects in the discrete dynamics just before the fusion are pN(t−δt/2)

and the total momentum of the system is conserved at the fusion if

vα(t− δt/2) =
mi

mα
vi(t− δt/2) +

mj

mα
vj(t− δt/2), (16)

which determines the velocity vα(t− δt/2) of the merged object.

The algorithm for planetary system consists of the equations (A3)+(A4) for time steps

without merging of objects, and the fusion of objects is given by the equations (A6),(A7),

(A8), (A9) and (A10).

Newtons discrete algorithm (A3), which is used in almost all MD simulations, is usually

called the Verlet- or Leap-frog algorithm and it has the same invariances as his exact analytic

dynamics [6, 18, 19]. The invariances are maintained by the extension to planetary systems

(A6),(A7), (A8), (A9) and (A10) [6] .

The gravitational strengths in the article are in units of β∗
i = G = 1 and the mass

mi(0) = 1 and diameters of the planets σi(0) = 1 at the start time t = 0. For units and

set-up of the systems see also [6]. The planetary systems in the articles are obtained for

thousand objects, which at t = 0 are separated with a mean distance < rij >≈ 1000 and

with a Maxwell-Boltzmann distributed velocities with mean velocity < vi >≈ 1, for the
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set-up of the systems see also [6]. The systems are followed at least 109 MD time steps, i.e.

t = 2.5× 106 time-units, which corresponds to ≈ 103 to 104 orbits for a planet.
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