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Abstract. Large scale Molecular Dynamics simulations of 65 systems with N = 80 000 Lennard–Jones
particles at two different supercooled liquid state points reveal, that the supercooled states contain spatially
heterogeneous distributed subdomains of particles with significant higher bond-order than the mean bond-
order in the supercooled liquid. The onset of the crystallization starts in such an area with relatively high
six-fold bond-order for a supercooled state, but low bond-order for a fcc crystal state, and the crystallization
is initiated by a nucleus where all particles in the critical nucleus have a significant lower bond-order than
in a fcc crystal. The critical nucleus of N ≈ 70 particles is surrounded by many hundreds of particles
with relatively high supercooled liquid bond-order and many of these particles are aligned with the crystal
ordered particles in the critical nucleus. The crystallizations are very fast and supported by a fast growth
of the supercooled areas with relative high liquid bond-order. The crystallizations are to fcc crystals, but a
significant part of the crystallizations exhibit five-fold arrangements of polycrystalline subdomains mainly
with fcc crystal order and sign of hcp crystallites.

1 Introduction

Computer simulations have allowed us to determine the
dynamics of crystallization. Alder and Wainwright’s [1]
pioneering simulations of systems of hard spheres revealed,
that a system of hard spheres at high packing fraction
crystallizes into an ordered state with fcc lattice structure.
Later, computer simulations of a system of particles with
the more realistic Lennard–Jones (LJ) potential [2] not
only confirmed the hard sphere result, but they were also
in agreement with crystallizations of noble gases at low
temperatures. Many later simulations of simple systems
verified the result, that the minimum free energy of a con-
densed system of simple spherical symmetrical particles is
for the fcc lattice arrangement [3–6].

The theory of crystallization is usually described by the
classical nucleation theory (CNT) and its extensions [7–9].
But, an exact analyze [10] and many computer simulations
of nucleation of liquids as well as crystals in supercooled
gases exhibit a much more complex dynamics with poly-
morphism [11], then given by CNT. The critical nucleus
in a gas phase is not a compact object of the new phase,
and it is not only initiated by density fluctuations, but
also by temperature fluctuations [12,13]. A recent review
of theory and simulations of crystallizations is given in
[14].
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The supercooled liquid exhibits bond orientational
order [15], and here we show that the bond-order, given
by Q6 [16], of the particles in a supercooled LJ liquid
is heterogeneous distributed. The supercooled liquid con-
tains big areas with significant higher bond-order than the
mean bond-order in the liquid, and the crystallization is
initiated from such an area. This result is consistent with
the well known dynamic heterogeneities in supercooled
liquids [17–19].

The crystallization is very fast and accompanied by a
growth of the supercooled areas with relative high liquid
bond-order. The growing crystal nuclei have fcc bond-
order, but in many cases the nuclei also exhibit five-fold
symmetry with polycrystalline domains. The crystalline
domains are mainly with fcc crystal arrangements, but
some are also with hcp structure. His behavior confirms
previous results for homogeneous crystallizations in hard
sphere systems [20,21] and in a LJ system [11,22–24].
Many of the polycrystalline nucleations ended in long time
metastable polycrystalline states.

2 Homogeneous crystallization

Molecular dynamics (MD) systems of 80 000 LJ parti-
cles (see Appendices A and B) at different liquid state
points were cooled down to the supercooled states (Fig. 1).
We have performed 25 independent NV E simulations
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Fig. 1. The liquid–solid phase diagram for a LJ system. The
liquid states, which coexist with gas are with light green. The
liquid states, which coexist with solid fcc are red, and the coex-
isting fcc crystal states are blue. The MD systems are quenched
from the liquids (red points) down to the supercooled liquids
(blue points).

of supercooling and crystallizations at the state point
(T, ρ) = (1.25, 1.10), and 20 NV E and 20 NV T simula-
tions at the state point (T, ρ) = (2.80, 1.30). The degree of
supercooling given by the ratio between the supercooled
temperature T and the freezing point temperature of the
liquid Tf is 0.54 and 0.60, respectively and the systems
crystallized at the time ∆t ≈ 50–150 after the quenches.
(Units are given in LJ units, see Appendix A, and the time
unit ∆t = 1 corresponds to 1000 MD time steps.)

The crystallizations result in a decrease in pressure and
energy and were essentially completed within a crystalliza-
tion time of ∆t ≈ 50. But for some of the simulations the
crystallizations were, however, first completed after longer
times. The energies per particle for the NV E crystalliza-
tions at (T, ρ) = (1.25, 1.10) are shown in Figure 2, and
the energies for the 20 NV T crystallizations are shown in
Figure 9.

The description of the dynamics of the crystalliza-
tion is divided into three subsections: the description of
the supercooled liquid, the onset of crystallizations, and
finally the crystallization and the description of the crystal
states after the crystallizations were completed.

2.1 The supercooled liquid

The bond-order function Q6 (defined in Appendix B) in
the supercooled liquid is used to detect the dynamics of
crystallization. The liquid state is characterized by having
a low value of bond-order compared with the bond-order
in the crystal state. In [25], the authors used bond-order
in the Gaussian core model, which is a prototype for
soft spheres, to analyze the onset of crystallization. They
found, that the crystallization occurs in precursor regions
of high bond orientation order, and that the crystal which
first nucleates is the one which has the closest symme-
try to the ordered regions in the supercooled state. A
later investigation of the bond-order in a compressed hard

Fig. 2. Energy per particle, u(t), as a function of the time after
cooling to the supercooled state (T, ρ) = (1.25, 1.10) (left blue
point in Fig. 1). The figure shows six representative examples
of u(t). The inset are the energies for all 25 experiments in
the time interval ∆t ∈ [4000, 5000] (i.e. for 1 million time steps
after four million time steps). The black straight lines in the
figure and the inset are the energy per particle for a perfect
fcc crystal.

sphere fluid found, however, that the hexagonal ordering
appeared simultaneously with the density fluctuation at
the onset of crystallization [26].

The present investigation shows, that the supercooled
liquid contains large subregions of particles with relatively
high Q6 bond-order, and the nucleus which initiates the
crystallization has only a bond-order which is somewhat
higher than the order in the heterogeneous distributed
bond-order domains, but on the other hand have a lower
bond-order than in the crystal.

The distributions of the order parameter Q6(i) for par-
ticles i in the liquid state (T, ρ) = (4.25, 1.10) (left red
point) in Figure 1 and in the supercooled state (T, ρ) =
(1.25, 1.10) (blue point) are shown in Figure 3 together
with the distribution in a fcc crystal state at (T, ρ) =
(1.25, 1.10). The distributions for the supercooled state
(blue curve) and for the fcc crystal state (green curve) are
separated, but the log distribution of Q6(i) in the inset of
the figure reveals, that there is an exponential decreasing
probabilities for low order in the crystal state and a high
order in the supercooled state, and that there is an overlap
of the two distributions in the region 0.35 < Q6 < 0.45.
Investigation of the crystal ordering at the creation of the
critical nucleus (next subsection) shows, that the success-
ful nucleus have a mean order Q6 > 0.35 in accordance
with the distributions in Figure 3. The distributions of
Q6 for the liquid and the supercooled liquid, shown in
Figure 3 are, however, different although they have the
same mean Gaussian-like shapes. An analysis of the dis-
tribution of particles with relative high bond-order reveal
this fact.

From the locations of particles with different values of
Q6(i) for the particles i in the supercooled liquid one
can see, that the distribution is non-uniform, and that
there exists big subdomains with relative high values of
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Fig. 3. Probability distribution of the bond-order parameter
Q6. The red curve is for the liquid before the cooling (left red
point in Fig. 1) and the blue curve is for the supercooled liquid
(left blue point in Fig. 1). The green curve is for a perfect fcc
crystal at the supercooled state point. The inset shows the
log-distributions.

Q6(i) for all the particles in the domain. The next figure
shows this. Figure 4 is a side view of the positions at a
certain time of particles i in the supercooled liquid. The
white transparent spheres are particles with Q6(i) < 0.25,
green spheres have 0.25 < Q6(i) < 0.35, blue spheres have
0.35 < Q6(i) < 0.40, and the red spheres are particles
in the supercooled liquid with a value of the bond-order
0.40 < Q6(i). The blue and red particles are particles with
a lattice order, which is sufficient for crystal nucleation.
(The values of Q6 are obtained as time averages over thou-
sands time steps, but the heterogeneous distribution is
also obtained from shorter and longer time intervals.) The
positions of the particles is not uniformly distributed, but
contains large areas with relative high bond-order.

The cluster distribution of particles in the system with
a certain quality, e.g. a high Q6 value, can be obtained
directly during the MD simulation and without a signifi-
cant increase in computer time for the big system by using
the nearest neighbor list [12]. The clusters of N particles
with 0.25 < Q6(i) and the mean number nN of clusters
with N particles was determined directly during a MD
simulation. The number nN (N), of a cluster with N par-
ticles with a bond-order 0.25 < Q6 within a time interval
δt = 0.1 is shown in Figure 5. The value Q6(ri(t)) of the
bond-order for a particle i at position ri(t) in the super-
cooled liquid state fluctuates with time, and the values of
nN in the figure are the mean for 200 independent dis-
tributions of clusters with Q6(i) > 0.25, and where Q6(i)
is obtained as the mean bond-order of a particle i within
the time interval δt = 0.1 (≈1 mean vibration within the
shell of nearest neighbors). The figure shows the mean
number nN of clusters of N particles with relative high
bond-order Q6(i) in the liquid state (T, ρ) = (4.25, 1.10)
(red curve) and the corresponding distribution of clusters
in the supercooled state (blue curve). The two distribu-
tions are essentially different. The figure shows log(nN )
as a function of log(N) and the inset gives log(nN ) as

Fig. 4. Side view of the box with the N particles. The super-
cooled particles are colored accordingly to their bond-order,
given by Q6. Particles i with Q6(i) < 0.25 are shown with
white transparent. Green spheres: 0.25 < Q6(i) < 0.35; blue
spheres: 0.35 < Q6(i) < 0.40; red spheres: 0.40 < Q6(i).

Fig. 5. Mean numbers of clusters nN in the liquid states for
clusters with N particles with bond-order Q6(i) > 0.25 for all
particles i in the clusters. The figure shows the log(nN (log(N))
distributions and the inset is the log(nN )(N) distributions.
Red curves are for the liquid (left red point in Fig. 1) and blue
curves are for the supercooled liquid. The straight black line in
the figure is an algebraic fit, a× nb

N , to the distribution in the
supercooled liquid for clusters in the interval nN ∈ [20, 200].

a function of N . The distribution in the liquid state is
exponentially declining (red ≈ straight line in the inset),
whereas the distribution for bigger clusters in the super-
cooled liquid is algebraic (blue ≈ linear function and black
straight line in the figure). The black straight line is a line
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Fig. 6. Number N(t), in 1 of the 25 simulations, of par-
ticles i in the biggest cluster of crystal-ordered particles with
0.35 < Q6(i). The onset of crystallization at tcr = 56 is marked
by an arrow. From there the crystal nucleus grows quite mono-
tonically. The green line is an estimate of the critical crystal
cluster size of Ncr. ≈ 70. The inset shows the x-, y-, and
z-positions of the biggest cluster.

obtained from a fit of a ×N b to the log(nN (logN)) dis-
tribution in the interval nN ∈ [20, 200]. The distribution
of nN shows also that there is regions of many parti-
cles, as can be seen in Figure 4, with relative high liquid
bond-order Q6 > 0.25.

The spatial algebraic- or “heterogeneous” distribution
of particles with significant higher bond-order than the
mean order in the supercooled liquid is consistent with
the well-known dynamical heterogeneity in supercooled
liquid [17–19]. In the next subsection, it is stated, that
the crystallization is initiated in such a domain.

2.2 The onset of crystallization

The crystallization in a supercooled liquid appears when
an ensemble of particles with lattice order gain free energy
by increasing its size. In the CNT by, that the gain in free
energy of the crystal phase exceeds the cost in surface free
energy by the increased surface of the crystal. In the MD
ensemble simulation, one primarily observes the crystal-
lization, and the method gives not a direct information
about the free energy. For this reason, it is not possible
to determine the critical nucleus precisely. But one can
locate the successful nucleus and its environment at the
onset of nucleation.

The onset of crystallization is determined from the
growth of the biggest cluster with bond-order 0.35 < Q6.
In the supercooled liquid, the numberNc of particles in the
biggest cluster with this crystal-like bond-order fluctuates
with Nc ≤ 100 (Fig. 6), but from the onset of crystalliza-
tion the biggest cluster grows very fast, as shown in the
figure. The x-, y-, and z- positions of the center of mass are
shown in the inset. The time record of these positions iden-
tify the position of the successful nucleus even before it
reaches the critical nucleus size. The rather constant loca-
tion of the center of mass of the biggest cluster at times

Fig. 7. The particle positions at t = 0.58 in the system with
the N(t) shown in the previous figure. The local environment
with the critical nucleus is shown in the next figure. Color as
in Figure 4.

t ≥ 56, and the fluctuating locations before t = 56 show,
that different crystal-like nuclei appear in the system for
t < 56, but from then on, the crystallization is initiated by
this nucleus. The size of the successful nucleus at t = 56 is,
however only Nc = 17 and clearly much smaller than the
critical nucleus. But after only 2000 time steps, the cen-
ter consists of 68 particles with 0.35 < Q6. The green line
N = 70 is an estimate of the critical nucleus size, based on
inspection of the 25 NV E simulation. As can be seen from
Figure 6 some nuclei at times t < 56 before the crystal-
lization sometime grow to this size. This behavior before
the onset of nucleation is a typically for all 25 systems in
the supercooled states.

The positions of the particles at t = 58 is shown in
Figure 7 and with the same color as in Figure 4. The crit-
ical nucleus is enlarged in the next figure. Figure 8 shows
the positions of the 574 particles within a sphere with
the center at the center of mass of the critical nucleus
and with the radius 5. The critical nucleus consists of 59
(blue) particles with 0.35 < Q6 < 0.40 and 9 (red) parti-
cles with 0.40 < Q6 < 0.45 (no particle have a 0.45 < Q6).
There is 223 particles (green) with 0.25 < Q6 < 0.35 and
the particles with Q6 < 0.25 are white transparent. The
mean bond-order of the 68 particles in the crystal-like
critical nucleus is 〈Q6〉 = 0.38. The green particles are
mainly located in a shell around the critical nucleus and
with a tendency to fit into the lattice planes of the criti-
cal nucleus. Even some of the white particles with lower
bond-order are located in the critical crystals planes.

The crystal bond-order 〈Q6〉=0.38 in the critical
nucleus is, however significantly lower than the bond-order
in a bulk fcc crystal, and the twenty NV E and the twenty
NV T simulations at the higher temperature and density
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Fig. 8. The local environment of 574 particles within the
sphere with radius 5 and with the center at the center of
mass of the of the critical crystal nucleus shown in Figure 7.
It consists of Nc = 68 particles with 59 (blue) particles with
0.35 < Q6(i) < 0.40 and 9 (red) particles with 0.40 < Q6(i).
The 225 small green particles have 0.25 < Q6(i) < 0.35 and
the small white transparent part particles have Q6(i) < 0.25.

(T, ρ) = (2.40, 1.30) show the same tendency. All the crit-
ical crystal nuclei have a significant lower crystal Q6 value
than a perfect fcc crystals.

The means for the 25 crystal critical nucleus are:

Mean bond-order in the critical nucleus 〈Q6(i)〉 = 0.38±
0.02, at the number of particles in the (estimated) critical
crystal nuclei Ncr = 73± 4.

In conclusion, the crystallization is initiated in a domain
with excess bond-order for the supercooled liquid, but
all the particles in critical nucleus have a bond-order
significantly less than the bean bond-order in the crys-
tal (fcc) state. This result disagrees with the result in
[27] for homogeneous crystallizations in a system of hard
ellipsoids.

2.3 The crystal states

Some crystallizations were completed within a short time-
interval of 50–100 time units, but it took much longer
times for many of the crystallizations as shown in Figure 2.
Moreover, the systems did not end up in the same crys-
tal state with energies close to the energy of a perfect fcc
crystal. Some of the systems ended up in states with sig-
nificant higher energies and pressures. For the 25 systems
at the relative low density two to three of the simulations
ended up in states with significant higher energies than
the other systems. This tendency is more pronounced for
the twenty NV E and the twenty NV T simulations at the
higher temperature and density state (T, ρ) = (2.80, 1.30).

Figure 9 shows the energy per particle u(t) for the
20 NV T simulations after the supercooling, and with the
energies at the end of the simulations in the inset of the
figure. The energies exhibit two energy bands, with four-
teen of the energies a little above the energy for a perfect
fcc crystal (black line), whereas there are six simulations
that have significant higher energies. The same result was
obtained for the twenty NV E simulations at the same
state point. From inspection of the particle positions and

Fig. 9. Potential energy per particle, u(t), as a function of
time at the onset of crystallization for the (T, ρ) = (2.80, 1.30)
(right blue point in Fig. 1). The inset shows u(t) at the end of
the simulations.

from the radial distribution functions, it is clear that the
14 systems in the lower energy band are fcc lattices with
some defects, but the crystal states in the systems with
energies in the upper energy band is more complex.

The structures of the systems with energies in the
high energy band are investigated in order to determine
their lattice structure. Particles interacting with simple
spherical symmetrical pair-potentials can exist in many
crystal arrangements [5]. But for a LJ system at the two-
state point investigated here the fcc crystal structure has
the lowest free energy [5,6]. The positions of particles
for the system with the highest energy in Figure 9 (red
upper energy function in the inset of Fig. 9) is shown
in Figure 10. The particles are colored in accordance
with their bond-order, and the colored positions show a
complex crystalline structure with many areas with rel-
ative low bond-order and even without crystalline order
(Q6 < 0.35).

Crystalline order is traditionally determined from a sys-
tems structure factor or its Fourier transform, the radial
distribution function g(r). The extremes in the radial dis-
tribution functions at the high temperature T = 2.80 are,
however, not sharp due the particles vibrations at their
lattice positions. This thermal “noise” can be removed by
cooling the system down to a low temperature. Figure 11
shows the radial distribution functions for the system with
lowest energy (blue) and highest energy (red) in Figure 9,
and the distribution gfcc(r) for a perfect fcc lattice (green),
and after the systems were cooled down to T = 0.1. The
figure confirms, that both systems mainly consist of par-
ticles in a fcc arrangement. The disordered system with
the highest energy deviates, however, from gfcc(r) espe-
cially at the radial distance r ≈ 1.9. The inset, where the
two functions are compared with ghcp(r) (green) for a hcp
crystal reveals, that the crystal (Fig. 10) contains a small
number of particles with hcp structure. The system with
the highest energy was simulated over a very long time
(47 000 time-units) in order to test whether it is stable,
and it continued to be in the polycrystalline state.

https://epjb.epj.org/
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Fig. 10. Side view of the particles in the system with the
highest energy after the crystallization (upper red curve in
Fig. 9). The particles i are colored as in Figure 4. With:
low order with Q6(i) < 0.20: green 0.20 < Q6(i) < 0.30; blue:
0.30 < Q6(i) < 0.45; red: 0.45 < Q6(i).

Fig. 11. The radial distribution functions for the system with
the lowest energy (blue) and with the highest energy (red)
in the twenty NV T simulations. After the crystallizations the
systems were cooled down to T = 0.1 and compared with g(r)
for a perfect fcc crystal (green). The two distributions are com-
pared with a corresponding hcp crystal distribution (green) in
the inset.

The polycrystalline state is ensured in the beginning
of the crystallization, and it is not a final size effect
of the periodical boundaries. The next figure shows the
particle positions 40 time-units after the onset of crystal-
lization. The crystal nucleus consists of 5516 particles and
the periodic plane in front goes through the crystalline
nucleus and reveal, that the nucleus consists of several
small crystals with different orientations of the crystal
planes. The green particles in the supercooled liquid with
relative high bond-order percolate the system and a new
crystal center (upper left) is created with green parti-
cles included in the lattice arrangement. The figure shows
that the spontaneous crystallization is preformed also by
growing coherent order in the supercooled liquid (green

particles), caused by the critical nucleus. This behav-
ior of the spontaneous crystallization is found in all the
crystallizations.

3 Conclusion

A supercooled liquid exhibits spatially heterogeneous
dynamics [17], which influences the dynamic behavior
of the supercooled and viscous liquid. Here it is deter-
mined, that the particles with relative high bond-order in
the supercooled Lennard–Jones system is heterogeneous
distributed, and that the supercooled liquid contains sub-
domains with significant higher bond-order than the mean
bond-order in the supercooled liquid. Furthermore, the
crystal nucleation is initiated from such region with rel-
ative high bond-order Q6 for a supercooled liquid. The
domains with excess bond-order changes in extension and
locations with time, and this is “consistent” with the
dynamic heterogeneities for supercooled liquid, but we
have not directly established the connection between the
domains of bond-order and the dynamics of the super-
cooled liquid, e.g. by determining the mobility of the
particles in the subdomains.

The nucleus which initiates the crystallization is a rela-
tive compact object with six-fold symmetry as assumed in
the classical nucleation theory (CNT), but all the N ≈ 70
particles in the nucleus have, however, a significant smaller
bond-order than the bond-order in the fcc crystal. And in
addition, many of the surrounding particles in the subdo-
main are aligned with the particles in the initiating crystal
nucleus (Fig. 8).

The growth of the critical nucleus is fast, and the crys-
tal has percolate the big system of 80 000 LJ particles
within a crystallization time of ≈50–100 time units. The
systems did, however, not always end up in a homogeneous
fcc state, but quite often they ended up in a polycrys-
talline state. The polycrystalline state with traces of hcp
crystallites is, however, established in the crystal nucleus
shortly after the onset of crystallization (Fig. 12). The
polymorphism, where the particles crystallizes into differ-
ent structures have already been observed in LJ systems
[28,29]. Also here the areas with relative high bond-order
in the supercooled part of the system plays a role for the
fast-spontaneous crystallization. The heterogeneous dis-
tributed areas grow fast and percolate the system long
times before crystallization.

The systems have been simulated by Molecular Dynam-
ics NV E and NV T and with the same qualitative results.
This is perhaps not surprising, because there is only a
marginal difference between the two MD methods for the
big system. This fact is due to, that the particles in the
NV T dynamics are constrained to a thermostat tempera-
ture Tth by the excess of kinetic energy of the hole system.
The systems mean temperature T in NV T are smoothly
constrained over longer times to the NV T ′s Tth value,
which removes the latent heat during the spontaneous
crystallization.

Ulf R. Pedersen, Trond S. Ingebrigtsen, and Jeppe C. Dyre
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VILLUM Foundation’s Matter project, grant No. 16515.
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Fig. 12. Side view of the particles in the system (Fig. 10), but
at a short time ∆t = 40 after the onset of nucleation. The color
of the spheres are the same as in Figure 10, but particles with
0.20 < Q6 are (white) transparent. The crystal cluster contains
5516 particles and the periodic boundary plane in front goes
through the crystal nucleus.
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Appendix A: The MD system
and the computational details

The system consists of N = 80 000 LJ particles in a cubic
box with periodic boundaries, and the crystallizations are
obtained by molecular dynamics NV E simulations with
Newton’s central difference algorithm [30] (“Leap-frog”).
The time and length are given by the length unit l∗ = σ
and energy unit u∗ = ε/kB in the LJ potential for particles

with the mass m. The unit of time is t∗ = σ
√
m/ε. The

LJ forces are truncated and shifted at the interparticle
distance rc = 2.5 [31], by which the system is energy stable
[32]. The molecular dynamics is performed with a small-
time increment, δt = 0.0010 due to the high densities in
the supercooled liquids.

The precise details of the phase diagram (Fig. 1) for a
LJ system depends on, from where the long-range attrac-
tive forces are ignored, given by the value of rc [33]. Most
simulations of LJ systems including this one are for rc =
2.5, for which the triple point densities are (ρl, ρs, T ) =
(0.8290, 0.9333, 0.618) [34]. The present simulations of
crystallizations are for supercooled liquids at the state

points (T, ρ) = (1.25, 1.10) and (T, ρ) = (2.80, 1.30). The
crystallizations can be characterized as crystallizations in
supercooled condensed liquid states.

The crystallizations are performed by cooling from
the liquid states at (T, ρ) = (4.25,1.10) and (T, ρ)
= (5.25,1.30) down to the supercooled states (T, ρ) =
(1.25, 1.10) and (T, ρ) = (2.80, 1.30), respectively. The
cooling and NV T simulations are performed by a stan-
dard NV T thermostat. The NV E simulations are per-
formed by cooling the high temperature system down in
10 000 time steps by the thermostat. The NV E super-
cooled state was accepted, if the temperature in the
succeeding 10 000 time steps without a thermostat was
within the temperature interval T ∈ 1.25 ± 0.005. The
temperature in the systems increases at crystallization
for simulations without a thermostat. The NV E systems
were, however, so supercooled, that they ended up in crys-
tal states (T, ρ) ≤ (1.63, 1.10) with total crystallization.
A LJ fcc crystal at ρ = 1.1 melts at T = 1.68 [35].

Appendix B: Identifying crystal structure

The crystal order is determined by a modified bond-
orientation order analysis [16,25,36]. A complex order
parameter

qlm(i, t) ≡ 1/nbΣ
nb
j=1Ylm(rαβ(t)) (B.1)

is calculated for each particle i at time t. The sum over
the nb particles j in the local environment runs over all
neighbors α of particle i plus the particle i itself [36]. A
potential neighbor β to α is defined as a particle j within
the first coordination shell of particle α, given by the first
minimum in the radial distribution function. rαβ(t) is the
vector between a particle α in nb and a nearest neighbor
β. The summation is further restricted to the sum over
no more than the twelve nearest neighbors [25] (there are
occasionally more than twelve nearest neighbors in the
first coordination shell in the supercooled liquid states).
The Ylm are the spherical harmonics, and the Steinhardt
order parameter is defined as

Ql(i, t) =

√
4π

2l + 1
Σlm=−l | qlm(i, t) |2. (B.2)

In [36], the authors compared Q6 and Q4 for different crys-
tal structures. The present LJ system crystallizes into a fcc
crystal, and the best separation between the bond-order
in the supercooled liquid states and in the crystal states
is obtained for Q6 (Fig. 3). Finally, a temporarily stable
crystal order at particle i is determined by averaging over
a short time-interval of one time unit

Q6(i) = 〈Q6(i, t)〉. (B.3)

The clusters of particles with crystal order are obtained
directly during the simulations [12]. The threshold value
for crystal order is Q6(i) ≈ 0.35 accordingly to Figure 3.
A crystal nucleus is determined by, that all particles in

https://epjb.epj.org/
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the nucleus have an order Q6(i) > 0.35, and all particles
in the nucleus have at least one nearest neighbor particle
j with Q6(j) > 0.35. The cluster distribution is obtained
directly during the simulations. The biggest cluster is the
successful nucleus, and the center of mass of the biggest
nucleus reveal whether there is a competition between dif-
ferent growing crystals. It was never observed, once the
successful nucleus was established (see inset in Fig. 6).
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