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A modification of the constrained equations of motion of Kalibaeva et al. �Mol. Phys. 101, 765
�2003�� in the NPH and NPT ensembles is presented. The modified equations of motion are
discretized using central-difference techniques, and the derived integrators are time reversible and
conserve the invariant phase space measure. The constraint algorithm builds on the work of
Toxvaerd et al. �J. Chem. Phys. 131, 064102 �2009�� in the NVE and NVT ensembles: it thus
conserves the holonomic bond constraints at the finite machine precision level in the NPH and NPT
ensembles. The algorithms were tested on a system of n=320 ortho-terphenyl molecules, arriving at
the target temperature and pressure in a low and high pressure state. Isobaric heat capacities in the
NPH and NPT ensembles were calculated for comparison using the fluctuation formulas as well as
the thermodynamic definition. The heat capacities agree within the estimated uncertainties.
© 2010 American Institute of Physics. �doi:10.1063/1.3363609�

I. INTRODUCTION

Molecular dynamics �MD� solves equations of motion
for a system of N particles depending on the external con-
straints applied to the system such as constant energy, pres-
sure, or temperature. For realistic systems no analytical so-
lutions exist, and numerical techniques are therefore used to
solve the equations of motion. The step size �time step� of
these algorithms decides how computationally demanding it
is to propagate the system in time. The time step cannot be
chosen arbitrarily large and is limited by the frequency of the
fastest degree of freedom in the system. Typically, in mo-
lecular systems this is the fast covalent bond vibrations. Dif-
ferent techniques have been introduced to solve this
problem,2–4 one of them is constrained dynamics. Instead of
following the fast degrees of freedom, these are eliminated
by applying bond constraints to the system and hence a
larger time step can be used. Constrained dynamics was
originally proposed by Ryckaert et al.4 and later refined by
numerous groups.5–16 The common denominator for all con-
strained dynamics algorithms is the application of correc-
tions for conserving the constraints. The constraints deviate
from their desired values in some of these algorithms, how-
ever, not only because of accumulating round-off errors, but
also because the approximated expressions in the algorithms
break the time symmetry. The broken time symmetry leads to
algorithms that formally �i.e., no round-off errors� do not
conserve the constraints.

It was shown recently by Toxvaerd et al.14 that one can
derive an algorithm to systems subject to constant energy or

temperature �NVE or NVT�, which conserves the bond con-
straints formally as well as numerically. This algorithm will
be referred to as the TSCD �Time Symmetrical Central
Difference� algorithm. In the present paper the results by
Toxvaerd et al. will be used to derive an algorithm with the
same properties for systems subject to constant pressure and
enthalpy �NPH�, as well as constant pressure and tempera-
ture �NPT�.

Several equations of motion have been proposed to
sample the NPT ensemble distribution for systems subject to
constant pressure and temperature.17–27 Kalibeva et al.26 pre-
sented equations of motion using molecular scaling rather
than scaling of the atomic positions. The advantage of mo-
lecular scaling is that one obtains a set of simple equations of
motion which conserve the molecular bond constraints when
the volume/coordinates are scaled to approach the external
pressure.

The paper is organized as follows. The TSCD algorithm
of Toxvaerd et al.14 is reviewed in Sec. II, and the NPT
equations of motion of Kalibaeva et al. are presented and
modified in Sec. III. The corresponding NPH equations of
motion and algorithms are presented in Sec. IV and extended
in Sec. V to the NPT ensemble. Section VI presents results
from simulations on a system of ortho-terphenyl �OTP�
molecules,28 validating that the algorithms integrate the
equations of motion correctly in the NPH and NPT en-
sembles.

II. THE TSCD ALGORITHM

The equations of motion for N particles subject to the
usual conditions in MD simulations can be derived from the
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modified principle of Hamilton.29 This principle is still valid
for systems where the dynamics is constrained to satisfy G
holonomic relations among the coordinates

���rN,pN� = 0, �1�

�=1, . . . ,G. Limiting the discussion to a special type of ho-
lonomic constraints, namely, bond constraints ���=rij

2 −cij
2 �,

the constrained equations of motion follow as29

ṙi =
pi

mi
, �2�

ṗi = Fi + Gi, �3�

where

Gi � �
�=1

G

���ri
��. �4�

Gi denotes the constraint force and �� the Lagrange multi-
plier.

Toxvaerd et al.14 reported that it is possible to use central
difference techniques to integrate the equations of motion
Eqs. �2� and �3�, while maintaining the analytical properties
such as time reversibility, conservation of energy, and con-
servation of the holonomic bond constraints.

The technique of derivation, as given by Toxvaerd et al.,
is as follows. Applying central difference to Eqs. �2� and �3�,
respectively, the leap-frog �LF� algorithm appears

ri�t + h� = ri�t� +
h

mi
pi�t + h/2� , �5�

pi�t + h/2� = pi�t − h/2� + h�Fi�t� + Gi�t�� . �6�

The usual method for calculating �� is to require that the
constraints are to be satisfied exactly at time t+h in the dis-
crete map generated by the integrator �Eqs. �5� and �6��. Thus
one inserts the integrator in the condition ���t+h�=0 and
calculates �� from this equation. This numerical algorithm is
called SHAKE �Ref. 4� and its velocity Verlet counterpart,
RATTLE.6 SHAKE usually includes the iterative solution to the
coupled quadratic equations in ��, while other algorithms
iterate in a modified Chord-style such as MILC-SHAKE.13,15

Edberg et al.8 followed at first sight a completely differ-
ent path than Ryckaert et al.4 �SHAKE� by inserting the ana-
lytical equations of motion �Eqs. �2� and �3�� in the second

time derivative, �̈��t�=0, and then applying a linearization to
vi

2�t� to be able to calculate �� by solving linear equations.
The same path was also followed by Hess et al. in the LINCS

algorithm.11 This is analytically correct, but the linearization
breaks the time symmetry and the algorithm is therefore time
irreversible �the reader is referred to Ref. 14 for more de-
tails�. The TSCD algorithm follows the path taken by Edberg
et al., but additionally adds the requirement of time reversal
symmetry, for instance, by

vi
2�t� =

vi
2�t − h/2� + vi

2�t + h/2�
2

. �7�

Obeying time symmetry results in coupled quadratic equa-

tions in ��, as in the SHAKE algorithm. It was proven by
Toxvaerd et al. that the TSCD algorithm �method 0� has the
following property:

rij
2 �t + h� = 2rij

2 �t� − rij
2 �t − h� , �8�

which states that the bond length is exactly conserved in the
discrete integrator map. From a numerical perspective the
formula Eq. �8� is unstable and can be corrected by adding
different correction terms, to the zeroth-order term, in the
quadratic equations in ��. One possible way of eliminating
this instability is method 1a of the TSCD algorithm, which
results in the formula

rij
2 �t + h� = cij

2 , �9�

where cij is the desired bond length. This method �method
1a� is therefore equivalent to the SHAKE algorithm, and thus
bridges the missing link between the most commonly used
constraint algorithm, SHAKE, and the analytical approach in-
troduced by Edberg et al.

The numerical correction terms vanish when the discrete
dynamics do not contain round-off errors. Thus the present
authors identify the TSCD algorithm �method 0� as the most
basic algorithm, while the SHAKE algorithm is a convenient
way of eliminating numerical instability. The choice of
eliminating numerical instability is however not unique, and
the reader is referred to method 1 or method 2 of Toxvaerd et
al.14 as alternatives.

The Trotter factorization can also be used to integrate
Eqs. �2� and �3�. For a particular factorization and neglecting
that �� is a phase space function, the RATTLE algorithm
appears.6,30 This algorithm is the isochronous version of the
TSCD algorithm and thus preserves the constraints formally
�Eq. �8��, when calculating �� utilizing the prescription given
by Toxvaerd et al., i.e., obeying time symmetry. Thus it may
be concluded from this kind of reasoning that it is indeed
correct to consider the Lagrange multipliers as simple num-
bers when applying the Trotter factorization.30

The hidden constraint, �̇��t�=0, is also conserved in the
TSCD algorithm, given that

�̇��t − h/2� =
rij�t� + rij�t − h�

2
·

rij�t� − rij�t − h�
h

=
1

2h
�rij

2 �t� − rij
2 �t − h�� = 0. �10�

The form of Eq. �10� is consistent with the philosophy of the
LF algorithm. The last equality of Eq. �10� is valid for the
TSCD algorithm since the bond constraints are exactly con-
served.

The existence of a shadow Hamiltonian in the con-
strained LF dynamics was proven numerically by Toxvaerd
et al.14 This indicates that the TSCD algorithm �and therefore
also SHAKE� is the exact time�-reversible� evolution of some
extended perturbed Hamiltonian.

III. DECOUPLING THE NPT EQUATIONS OF MOTION

We follow the notation of Kalibaeva et al.,26 according
to which, r�i, p�i, and m�i denote the position, momentum,
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and mass of atom i, inside molecule �. The center of mass
position, momentum, force, and mass of molecule � are de-
noted by, respectively, R�, P�, F�, and M�. V, PV, and MV

are, respectively, the volume, volume momentum, and the
volume inertial factor. �, PS, and MS are the position, mo-
menta, and inertial factor belonging to the thermostat for the
N particle system. An additional thermostat has position, mo-
menta, and inertial factor, respectively, �, P�, and M�. P and
T are the instantaneous molecular pressure and kinetic
atomic temperature defined in Eqs. �20� and �21�. kB is the
Boltzmann constant and g=3N−G−3 is the number of de-
grees of freedom in the system.

We consider a system composed of N atoms grouped
into n molecules, each molecule containing n� atoms ��
=1, . . . ,n�, i.e., N=��=1

n n�. The system is subject to G
=��=1

n k� holonomic molecular constraints of the type
��

��r�1 , . . . ,r�n�
�=0, where �=1, . . . ,k� and k� is the num-

ber of constraints applied to molecule �. It is assumed that
the following identity holds �i=1

n� �r�i
��

� =0, i.e., that the con-
straint functions are invariant under a translation of the co-
ordinate system. The equations of motion of Kalibaeva et
al.26 for constant pressure and temperature �NPT� are

ṙ�i =
p�i

m�i
+

PV

3VMV
R�, �11�

ṗ�i = F�i + G�i −
PS

MS
p�i −

m�iPV

M�3VMV
P�, �12�

V̇ =
PV

MV
, �13�

ṖV = �P − PEXT� −
P�

M�

PV, �14�

�̇ =
PS

MS
, �15�

ṖS = gkB�T − TEXT� , �16�

�̇ =
P�

M�

, �17�

Ṗ� =
PV

2

MV
− kBTEXT, �18�

where

G�i � �
�=1

k�

��
��r�i

��
� , �19�

P �
1

3V
�
�=1

n � P�
2

M�

+ F� · R��
=

1

3V��
�=1

n
P�

2

M�

+ �
���

n

F�� · R��� , �20�

T �
1

gkB
��

�=1

n

�
i=1

n� p�i
2

m�i
� . �21�

We modify these equations of motion by eliminating �� , P��
from the extended phase space. The modified equations of
motion become

ṙ�i =
p�i

m�i
+

PV

3VMV
R�, �22�

ṗ�i = F�i + G�i −
PS

MS
p�i −

m�iPV

M�3VMV
P�, �23�

V̇ =
PV

MV
, �24�

ṖV = P − PEXT, �25�

�̇ =
PS

MS
, �26�

ṖS = gkB�T − TEXT� . �27�

These modified equations of motion are a combination of
molecular scaling and one single Nosé–Hoover
thermostat,7,18,19 and as such inherit the deficiencies in the
ergodic sampling from the Nosé–Hoover algorithm for stiff
harmonic systems;31 however, for many realistic and com-
monly used systems, this is of no concern.

In an isolated system the equations of motion demand
R=P=0 in order to sample the correct NPT distribution.32,33

In most MD simulations this is performed unconditionally.
Equation �26� is a redundant but useful equation for calcu-
lating the conserved quantities.

The holonomic molecular constraints applied to the sys-
tem are not affected by the scaling of the coordinates since

�̇�
� = �

i=1

n�

�r�i
��

�ṙ�i = �
i=1

n�

�r�i
��

� p�i

m�i
= 0. �28�

It should be noted that the �first� definition of the instanta-
neous molecular pressure depends on the choice of the coor-
dinate system used via the molecular virial. This choice can
never influence how the integrating algorithm scans the
phase space, and the usual expression given in the last equal-
ity of Eq. �20� should be used. The center of mass of each
molecule is directly available in the algorithm, and calculat-
ing the molecular virial can easily be accomplished during
the �pair� force calculation without any noticeable slow-
down.

The task at hand is to integrate the equations of motion,
Eqs. �22�–�27�. We take the center of mass, R� and P�, as
dynamical variables of the system and thus need to derive
their corresponding equations of motion. Using their defini-
tions and �i=1

n� G�i=��=1
k� ��

��i=1
n� �r�i

��
� =0, it follows that

Ṙ� =
P�

M�

+
PV

3VMV
R�, �29�
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Ṗ� = F� − � PS

MS
+

PV

3VMV
�P�. �30�

Thus we need to solve the system of coupled differential
equations �22�, �23�, �29�, and �30� and the regulator vari-
ables �24�–�27�. We can ease this integration by �almost�
decoupling equations �22� and �23� from the remaining dif-
ferential equations. This was suggested by Marry et al.,34

however their method is to derive algorithms using the
Trotter factorization. In this article we derive integrators
purely from central difference techniques.

The decoupled equations of motion are now derived.
Two new variables are defined

r̃�i = r�i − R�, �31�

p̃�i = p�i −
m�i

M�

P�, �32�

r̃�i and p̃�i are the Galilean transformation of the position
and momentum of atom i to the center of mass coordinate
system of molecule �. Substituting these definitions into
Eqs. �22� and �23� and using Eqs. �29� and �30�, it follows
after some reduction that

ṙ̃�i =
p̃�i

m�i
, �33�

ṗ̃�i = F�i + G�i −
m�i

M�

F� −
PS

MS
p̃�i. �34�

The entire system of differential equations to be solved be-
comes

ṙ̃�i =
p̃�i

m�i
, �35�

ṗ̃�i = F�i + G�i −
m�i

M�

F� −
PS

MS
p̃�i, �36�

Ṙ� =
P�

M�

+
PV

3VMV
R�, �37�

ṗ� = F� − � PS

MS
+

PV

3VMV
�P�, �38�

V̇ =
PV

MV
, �39�

ṖV = P − PEXT, �40�

�̇ =
PS

MS
, �41�

ṖS = gkB�T − TEXT� . �42�

The above equations of motion are subject to two additional
holonomic constraints

R̃ = 0, �43�

P̃ = 0. �44�

Numerical errors accumulate, and it is therefore necessary to
correct for this behavior by, i.e., a transformation r̃�i= r̃�i

− R̃�. The correction scales linearly and is as such consistent
with the integrating algorithm.

IV. ALGORITHMS FOR THE NPH ENSEMBLE

Taking �� , PS�= �0,0� in Eqs. �35�–�42� one arrives at
equations of motion for molecular constrained systems sub-
ject to constant enthalpy and pressure �NPH�

ṙ̃�i =
p̃�i

m�i
, �45�

ṗ̃�i = F�i + G�i −
m�i

M�

F�, �46�

Ṙ� =
P�

M�

+
PV

3VMV
R�, �47�

Ṗ� = F� −
PV

3VMV
P�, �48�

V̇ =
PV

MV
, �49�

ṖV = P − PEXT. �50�

The NPH ensemble has a long history going back to
Andersen,17 and Ryckaert et al. extended this ensemble to
systems with molecular scaling and constraints.7 The NPH
ensemble was first investigated numerically by Haile et al.35

It should be noted that the requirement of R=P=0 is still
valid in an isolated system for these equations of motion.

We can use the NPH ensemble as another test of the
validity of the integrating method, i.e., the central difference
technique, and the ensemble provides an alternative way for
extracting and comparing thermodynamic properties ob-
tained at constant pressure.

We now limit the discussion to holonomic molecular
constraints of the type

��
��r�i,r�j� = r�ij

2 − c�ij
2 = 0, �51�

i.e., holonomic molecular bond constraints. The constraint
force is then G�i=�	��

�r�ij. Thus, before we are able to
integrate Eqs. �45� and �46�, we must find a suitable �dis-
crete� expression for ��

�. The constraint force can be ex-
pressed equivalently as G�i=�	��

�r̃�ij. This is also true for
the holonomic bond constraint Eq. �51� and thus for the sec-
ond derivative with respect to time.

If we now integrate Eqs. �45� and �46� using a central
difference with pivot t+h /2 and t, respectively, i.e., the LF
algorithm, then the discrete determination of �� in the NPH
case can be taken to be equivalent with the �NVE� TSCD
algorithm. The non-relative coordinates in the expressions of
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Toxvaerd et al. are merely replaced with the internal motion
coordinates. The same is valid for the NPT algorithm with a
slight modification �see Sec. V�. We therefore present no
investigation of the conservation of the bond constraints in
the NPH and NPT ensembles, as these will be equivalent to
the NVE and NVT case, respectively, and as such conserved.

The problem is thus to solve the remaining equations of
motion for the center of mass movement and the variables
representing the barostat. We now define two new scaled
variables

Q� �
1

V1/3R�, �52�

S� � V1/3P�. �53�

By defining this transformation the equations of motion are
transformed to their virtual canonical form �see Ryckaert et
al.7�. Substituting Eqs. �52� and �53� into Eqs. �47� and �48�
and reducing, it follows that:7

Q̇� =
1

V2/3M�

S�, �54�

Ṡ� = V1/3F�. �55�

We can solve these equations of motion using a time sym-
metrical central difference with the pivot t+h /2 and t in Eqs.
�54� and �55�, respectively. In that way, we arrive at the
following algorithm:

Q��t + h� = Q��t� + h
S��t + h/2�

M��V�t + h� + V�t�

2
�2/3 , �56�

S��t + h/2� = S��t − h/2� + hF��t�V1/3�t� . �57�

Applying the same technique to V and PV leads to

V�t + h� = V�t� +
h

MV
PV�t + h/2� , �58�

PV�t + h/2� = PV�t − h/2� + h�P�t� − PEXT� . �59�

The molecular pressure P�t� can be calculated from

P�t� =
1

3V2/3�t���
�=1

n
S�

2 �t + h/2� + S�
2 �t − h/2�

2M�V�t�

+ �
���

n

�F���t� · Q���t��� , �60�

which follows by substituting the definition �52� and �53�
into Eq. �20� and using a time-symmetrical mean around t.

The modified equations of motion in the virtual canoni-
cal form are symplectic �no constraints�, in this context
meaning that they preserve the invariant measure of Hamil-
tonian dynamics,29 i.e., the phase space volume-element. As
Ishida et al.36 emphasize, it is the conservation of the
volume-element and not the true symplectic condition that
provides stability. The algorithm presented in this section
�rewritten to its isochronous form� derived from the central

difference technique does indeed give 	J	=1, where J is the
Jacobian matrix of the discrete coordinate transformation.
The discrete algorithm is therefore symplectic and time
reversible.

V. ALGORITHMS FOR THE NPT ENSEMBLE

An algorithm for Eqs. �35�–�42� is now presented. The
technique used in the Sec. IV is once again applied, and the
derived algorithm degenerates to the NPH algorithm in the
case of �� , PS�= �0,0�.

Equations �35� and �36� are the usual Nosé–Hoover
equations of motion, and the integration �and determination
of ��� almost follows the NVT integration algorithm devel-
oped by Toxvaerd37 and applied in the TSCD algorithm14 for
the constrained NVT ensemble. We continue from the trans-
formation defined in Sec. IV, and the slight change in the
method of Toxvaerd37 is illustrated when integrating the
similar equation of motion

Ṡ� = V1/3F� −
PS

MS
S�. �61�

We rewrite Eq. �61� following the approach introduced by
Jang et al.38

d

dt�exp�

0

t PS�t��
MS

dt��S�� = exp�

0

t PS�t��
MS

dt��V1/3F�.

�62�

Jang et al. have modified the NVT algorithm developed by
Toxvaerd.37 The above transformation carries a close resem-
blance to the normal form procedure suggested by Legoll et
al.,39 i.e., rewriting the equations of motion to a form where
the divergence vanishes; however, we do not in this proce-
dure define new variables, we merely use the differential
equation as a stepping stone. Applying a central difference
with pivot t and using a mid/end-point approximation for the
integral, it follows that38

S��t + h/2� =
1

S�+�t�
�S�−�t�S��t − h/2� + hV1/3�t�F��t�� ,

�63�

where

S�+�t� � exp�hPS�t�
2MS

� , �64�

S�−�t� � exp�−
hPS�t�
2MS

� . �65�

The change in the NVT algorithm of Toxvaerd37 is given by
Eqs. �63�–�65�, where �1	x� is replaced with exp�	x�, and
thus has no impact on the constraint algorithm of Toxvaerd et
al.14 The remaining NPT equations of motion, � and PS, are
integrated as
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��t + h/2� = ��t − h/2� +
h

MS
PV�t� , �66�

PS�t + h� = PS�t� + hgkB�T�t + h/2� − TEXT� , �67�

where the integration of Q�, V, and PV remains the same as
in Eqs. �56�, �58�, and �59�, respectively.

The invariant phase space measure of non-Hamiltonian
dynamics relates to the phase space compressibility and con-
stitutes a modified volume-element.33 The presented NPT al-
gorithm is exactly measure preserving40

	J	 =
e3�N+n���0�

e3�N+n���h� =
d��h�
d��0�

. �68�

The number �N+n� in Eq. �68� is due to the fact that we have
taken the relative coordinates and the center of mass of the
molecules as the independent variables of the system.

The NVT algorithm of Toxvaerd37 is not exactly measure
preserving40,41 due to the approximation exp�	x�
�1	x�.
This approximation only introduces accumulating errors
from terms of O�h3�, and we could not establish any signifi-
cant difference between the two approaches. We have thus
derived exactly measure preserving integrators using central
difference techniques for the NPH and NPT ensembles.

Sergi et al.31 proposed an extended symplectic notation
for deriving equations of motion that conserve a quasi-
Hamiltonian

ẋi = �
j

Bij
�H

�xj
, �69�

where Bij is an antisymmetric matrix. The antisymmetry of
Bij ensures the conservation of the quasi-Hamiltonian H, and
thus it is possible to manipulate the phase space compress-
ibility, 
=�i,j�Bij /�xi���H /�xj�, for the desired phase space
sampling. Sergi et al. also observed that it is possible to
formulate many extended equations of motion, such as the
Nosé–Hoover equations, in this notation �Eq. �69��. The
quasi-Hamiltonian can often be written as a sum of terms,
i.e., H=K+U+ PV

2 /2MV+ ¯ =��H���, and these terms in-
duce a natural splitting of the Liouville operator42

L̂ � �
i

ẋi
�

�xi
= �

i,j
Bij

�H

�xj

�

�xi

= �
�,i,j

Bij
�H���

�xj

�

�xi

= �
�

L̂��� . �70�

As shown by Ezra42 this fact ensures that any algorithm de-
rived from the Trotter factorization technique, according to
the splitting in Eq. �70�, is exactly measure preserving. The
splitting in Eq. �70� is however not necessarily the obvious

splitting of L̂��iẋi�� /�xi�. This method thus provides an-
other way of designing measure preserving algorithms along-
side the above mentioned technique.

VI. TESTING THE ALGORITHMS BY COMPUTER
SIMULATIONS

The NPH and NPT algorithms were tested on a system
of n=320 OTP molecules with periodic boundaries in the x-,
y-, and z-direction. The OTP molecule is locked as a rigid
isosceles triangle using three connected holonomic bond
constraints.28 We performed simulations43 �h=0.0025� at two
different state points, in both ensembles with a low and high
pressure: PEXT=1.00 bar and 3.50 kbar. The intermolecular
interactions are defined via the truncated pair potential

u�r� = u12−6�r� − �du12−6�r�
dr

�
r=rc

· �r − rc� − u12−6�rc� ,

�71�

with no discontinuity in the potential or the force at the trun-
cation distance, rc=2.5. The algorithms were all started by
initially setting the momenta PV�t0�= PS�t0�=0. The inertial
factors MV and MS were defined as

MV � PEXT�V
2 , �72�

MS �
gkBTEXT�S

2

4�2 , �73�

where �V and �S are parameters to be specified.
Now consider the NPH ensemble and the two different

state points with a low and high pressure. In the low pressure
state the algorithm was unstable for �V�0.0080. A value of
�V�0.22 resulted in fast volume/pressure fluctuations, with
some “higher” values of �V producing dead zone for the
barostat. The corresponding numbers for the high pressure
state were �V�0.00019 and �V�0.0045. The NVT ensemble
was used to estimate the value for �S=0.20.37 The estimated
values of �S and �V from the NVT/NPH ensemble were used
in the NPT ensemble, where the behavior of changing the
individual variables reflected the state in their sole ensemble.
This is not surprising since our modified equations of motion
have no coupling between the individual regulator variables.
We observed fluctuating behavior of the energy/enthalpy in
the NPH ensemble, due to the real constant of motion being
the sum of the enthalpy and the kinetic energy of the
“piston”––in the limit N→
, the piston term disappears and
so do the fluctuations. Nevertheless as shown below, the heat
capacities calculated from the fluctuations agree, and the al-
gorithm samples states in the NPH ensemble.

The momenta PV and PS should both be Gaussian
distributed26 in the NPT ensemble with fNPT�Px��exp
�−Px

2 /2kBTEXTMx�. In the NPH ensemble, we cannot directly
write down the probability distribution of the PV momenta
due to the �-function expression. The NPH ensemble is,
however, similar to the NVE ensemble �i.e., the inverse
Laplace transform of the NPT ensemble17�. We thus expect
that the PV variable is Gaussian distributed, and from the
NPT probability distribution a reasonable estimate seems to
be fNPH�PV��exp�−PV

2 /2kB�T�t��MV�. QQ-plots comparing
the empirical momenta with the theoretical distributions
showed superb agreement, in both ensembles, from simula-
tions in a low pressure state. The same conclusion was

154106-6 Ingebrigtsen et al. J. Chem. Phys. 132, 154106 �2010�

Downloaded 20 Apr 2010 to 130.226.173.85. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



reached from a QQ-plot comparing the Maxwell–Boltzmann
distribution with the momentum of a given molecule in a
high pressure state.

The mean quantity of Eqs. �20� and �21� should equal
PEXT and TEXT, respectively, at the used finite precision. A
thermostat and a barostat share the common property, that
one cannot pulse heat into the system or change the volume
of the system at a faster rate than the system can come to
equilibrium after a perturbation. The system relaxation time
toward equilibrium, after a perturbation, depends on the in-
vestigated state point. Changes in the volume �scaling� suffer
from longer relaxation times than changes in the kinetic en-
ergy, as the particles need to relocate. Thus one must care-
fully select the inertial factor, MV, depending on the investi-
gated state point. It therefore took longer simulation time to
establish a correct mean pressure in our investigated low
pressure state than in the high pressure state, due to a longer
relaxation time.

In Table I, the mean pressure, given by Eq. �20�, after nts

time steps �the mean is taken over all nts time steps�, is
reported for the low and high pressure state, in both en-
sembles. It is seen that the mean molecular pressure �P�t�� in
the NPH ensemble and the low pressure state is within �in
single-precision� 0.5% of the target pressure, PEXT, after just
nts=250 000 time steps. In the NPT ensemble, the corre-
sponding number is 0.6%. The high pressure state has estab-
lished the correct target pressure within the same number of
time steps in the NPH and NPT ensembles. The “exact”
number of time steps is sensitive to the particular choice of
the factor MV and negative mean pressure can also be
experienced.34

An important thermodynamic property of a system is the
heat capacity. As another test of our algorithms we calculated
the isobaric heat capacity for the OTP system at two different
state points, using different methods. In this manner we
cannot only compare different ways of measuring the same
property, but also between different ensembles. When
comparing results between different ensembles, we must
remember that we are simulating finite systems, and only in
the thermodynamic limit �N→
� all ensembles become
equivalent.

The isobaric heat capacity may be calculated from the
thermodynamic definition CP���H /�T�N,P and from fluctua-
tions in observable quantities. The expressions for the fluc-
tuations are1,44

CP

�NPH� = kB�2

g
−

�2�K�
�K�2 �−1

, �74�

CP�NPT� = �2�H��kBTEXT
2 �−1, �75�

where H=E+ PEXTV is the enthalpy and K is the kinetic en-
ergy. We estimated the heat capacities in the NPT ensemble
from a simulation over 500�106 time steps. Every 5�106

time steps––for a total of 125�106 time steps––the instan-
taneous configuration from the NPT simulation was written
to the disk, providing different starting configurations for
measuring the heat capacity in the NPH ensemble. Each in-
dependent configuration was simulated 5�106 time steps in
the NPH ensemble and used to estimate the heat capacity.

In Table II, the specific isobaric heat capacity, CP
�

=CP /nkB, at the two different state points, in the NPH and
NPT ensembles, is reported. The heat capacities agree within
the estimated uncertainties �recall the ensemble difference�.
We note a very weak temperature dependence of the isobaric
heat capacity over the investigated temperature range, where
the lower temperatures gave a slightly higher heat capacity.

VII. SUMMARY

Time reversible integrators arising from central differ-
ence techniques are widely used for solving equations of
motion. Recently it was shown by Toxvaerd et al.14 that one
can derive central difference integrators for the NVE and
NVT ensembles with holonomic bond constraints, which
conserve the bond constraints formally �i.e., no round-off
errors� as well as numerically. This was achieved first by
obeying time symmetry and then, second, adding a correc-
tion term to the solved equations for the Lagrange multiplier,
which is formally zero.

We have in this article derived central difference integra-
tors for the constrained NPH and NPT ensembles using a
modification of the equations of motion of Kalibaeva et al.26

The bond constraints are satisfied at each discrete point in
time, using the results of Toxvaerd et al. thus creating a
unified theory for practical simulations of constrained dy-
namics in the most common ensembles. The algorithms are

TABLE I. The mean molecular pressure �P�t�� given by Eq. �20� after nts

time steps with h=0.0025 using single-precision accuracy. The mean value
is taken over all nts time steps. The low and high pressure state had ��V

=0.22,�S=0.20� and ��V=0.0045,�S=0.20�, respectively.

nts time steps NPH NPT

PEXT �1.00 bar, 300K� 1.360 22�10−3 1.360 22�10−3

100 000 1.392 41�10−3 1.359 18�10−3

250 000 1.352 97�10−3 1.367 98�10−3

1 000 000 1.362 59�10−3 1.366 41�10−3

5 000 000 1.360 25�10−3 1.360 68�10−3

PEXT �3.50 kbar, 450K� 4.760 74 4.760 74

100 000 4.760 76 4.760 73
250 000 4.760 73 4.760 73
500 000 4.760 74 4.760 74

TABLE II. The specific isobaric heat capacity, CP
� =CP /nkB, calculated at a

low and high pressure state in the NPH and NPT ensembles, where
CP�FLUCT� is given by Eqs. �74� and �75�, respectively. CP�SLOPE� is
calculated from CP���H /�T�N,P, where a number of state points surround-
ing the chosen statepoint were fitted to a straight line.

Ensemble NPH NPT

�1.00 bar, 300 K� �1.00 bar, 300 K�
CP

� �FLUCT� 11.43	0.06 11.51	0.01
CP

� �SLOPE� 11.52	0.01

�3.50 kbar, 450 K� �3.50 kbar, 450 K�
CP

� �FLUCT� 10.25	0.07 10.26	0.01
CP

� �SLOPE� 10.29	0.03
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time reversible and preserve the invariant phase space mea-
sure.

We performed simulations in a high pressure state in
both ensembles, establishing the correct pressure and tem-
perature within a few hundred thousand time steps. The low
pressure state takes longer simulation time as expected due
to a longer relaxation time. Isobaric heat capacities were
compared between ensembles and using different methods.
The results agreed within the estimated uncertainties and
validate, that the algorithm correctly samples states in the
NPH and NPT ensembles.

The equations of motion of Kalibaeva et al. apply a mo-
lecular scaling and a molecular description of the pressure. It
is an open problem of how to extend the presented methods
to the more complex equations of motion with atomiclike
scaling.23–25
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