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Atomistic simulations of Mg–Cu metallic glasses: mechanical properties
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Abstract

The atomistic mechanisms of plastic deformation in amorphous metals are far from being understood. We have derived potential parameters
for molecular dynamics simulations of Mg–Cu amorphous alloys using the Effective Medium Theory. We have simulated the formation of
alloys by cooling from the melt, and have used these glassy configurations to carry out simulations of plastic deformation. These involved
different compositions, temperatures (including zero), and types of deformation (uniaxial strain/pure shear), and yielded stress–strain curves
and values of flow stress. Separate simulations were carried out to study specific features in the stress–strain curves associated with transitions
involving internal rearrangements of atoms. Energy barriers were calculated as a function of stress, as was the plastic strain associated with
events. The latter leads to a characteristic volume of an event which seems to correspond with the derivative of the barrier with respect to
stress.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

This paper describes recent and ongoing efforts to study
the atomistic processes of plastic deformation in metallic
glasses using modern interatomic potentials. The material
studied is Cu–Mg, which forms a metallic glass in the com-
position range 9–42 at.% Cu (complete glass formation over
12–22%, optimal 14.5%). Our interest in this material is due
to the closely related ternary alloy Mg60Cu30Y10, which is
distinguished by the fact that it is abulk amorphous alloy,
or bulk metallic glass (BMG), meaning the cooling rate re-
quired to form it is slow enough that relatively large sam-
ples can be made. Discovered in the early 1990s by Inoue
[1] and Johnson[2] and coworkers, BMGs have been in-
tensely studied since, particularly with regard to finding new
BMG-forming systems. Because of the availability of large
samples, their mechanical properties are now very relevant
and important. However, there is still only limited under-
standing of their deformation processes.

The phenomena observed in, for example, a uniaxial ten-
sile test of a cylindrical sample at room temperature are
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[3,4]: (i) high yield and flow stresses (1.5–2.5 GPa), (ii) no
work-hardening; rather strain-softening is observed, which
leads to (iii) localization of the strain into intense shear
bands which traverse the sample causing finally (iv) com-
plete failure of the sample. It is clear from this phenomenol-
ogy that shear deformation is the primary mode of interest.
Items (i) and (ii) stem directly from the fact that there is
no topological defect playing the role of a dislocation in
an amorphous metal. The question arises as to what are the
elemental events that comprise plastic deformation. Early
theories[5] considered them to involve a single atom mov-
ing into nearby available space (free volume), with some
assistance from the stress field. More recently simulations
in two-dimensional systems[6] have shown the events to
involve several atoms transforming in a shear-like man-
ner and have lead to the formulation of a continuum the-
ory known as the shear transformation zone (STZ) theory,
which in its mean-field form has been reasonably successful
[6–13].

Our goals in this work are to (i) investigate the phe-
nomenology (e.g. stress–strain curves) of plastic deforma-
tion in the simulated glassy systems within computational
limits and (ii) determine the basic parameters of an STZ-type
theory in the atomistic regime, in the context of a real
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material.1 That is, we wish to identify and characterize the
STZ-like events, in terms of the amount of plastic strain
associated with an event, and the energetics of the process
(energy barrier, stress-dependence).

2. Generating glassy configurations and local atomic
structure

The derivation of the EMT potential parameters and the
cooling simulations have been described in detail elsewhere
[14]. The parameters have been optimized to reproduce co-
hesive energies, lattice constants and elastic constants of the
pure metals, as well as formation energies and some lattice
and elastic constants of the intermetallic compounds Mg2Cu
and MgCu2. Glassy samples were produced by cooling from
a temperature well above the melting point at 2.5×1011K/s,
a rate slow enough to give final configurations quite close
to the “ground state” in terms of glassy configurations, and
thus, quite stable[14]. The simulations in this work mostly
use a composition of 15 at.% Cu, which is close to the op-
timal glass forming composition, although some data are
for a larger range of compositions. In the cooling simula-
tions we observe the glass transition around 350 K for this
composition, close to the experimental value[15] of 380 K.
Measurements of thermodynamic properties and structure
are described in detail in Ref.[14].

3. Plastic deformation

We have carried out a range of simulations to deter-
mine the plastic response of the glass sample. The first of
these were zero-temperature stress–strain measurements un-
der pure shear, done for all glassy compositions. The tech-
nique for zero-temperature simulations was as follows: First
the configuration resulting from the cooling run was mini-
mized in energy with respect to atomic positions and the size
and shape of the periodic box. Then the box-vectors were
subjected to increments of strain (in this case pure shear,
ε23) of 0.0005. Each time the strain was incremented a min-
imization procedure was carried out to relax all degrees of
freedom—atomic positions and strain components—other
than the strain component being incremented. The mini-
mization procedure was the MDmin[16] dynamical mini-
mization algorithm. The convergence criterion was that the
root-mean-square force on the atoms was less than 10−6

eV/Å. For the zero-temperature simulations, the strain his-
tory was: 0→ 0.1 → −0.1 → 0. Some stress strain curves
are shown inFig. 1. All curves start at zero stress and strain,
with the stress increasing linearly with strain until about 3%
shear strain. The slope (twice the shear modulus) increases

1 As opposed to two-dimensional materials with model potentials used
in the original simulations of Ref.[6].

Fig. 1. Stress–strain curves at zero temperature for three compositions:
5, 15 and 25 at.% Cu, solid, dashed and dotted lines, respectively. Inset:
composition dependence of zero-temperature flow stress. Filled symbols,
increasing strain; open symbols, decreasing strain.

with the amount of Cu, thus the peak stress does also. Af-
ter the elastic limit of 3%, the stess–strain curve consists
of a sequence of linearly increasing sections separated by
sharp drops in stress, indicating the occurrence of internal
rearrangements which relieve the stress. Investigations of
the nature of these rearrangements will be discussed below.
Another interesting and possibly important feature is that
the peak stresses on the reverse part of the cycle (decreas-
ing strain) are significantly smaller in magnitude than on
the increasing side. This indicates some kind of strain soft-
ening, which may be part of the mechanism which leads to
strain localization in macroscopic samples in experiments.
By taking averages of stress over the non-elastic parts of the
stress–strain curves, we can determine a flow stress. For in-
creasing strain the average is taken between strains 0.05 and
0.1. For decreasing strain it is taken between 0.05 and−0.1.
These flow stresses are plotted in the inset ofFig. 1, which
show more clearly the difference between the increasing and
decreasing flow stresses.

The simulations described above differ significantly from
experimental measurements in two ways: the very small
system-size, and the temperature being zero; at finite tem-
perature the strain-rate also becomes relevant. The jumps
in stress seen here do not appear in experimental measure-
ments, presumably because thermal fluctuations allow tran-
sitions to occur before the stress reaches such high peaks and
because of spatial averaging in the material: the likelihood
of the overall stress reaching a high value before some kind
of yielding occurs somewhere in the material diminishes as
the size of the system increases. We next present data from
simulations at finite temperature, at the same system size
(2048 atoms). For these simulations a constant temperature
and stress MD algorithm was used to simulate the dynam-
ics, subject to the constraint that the component of strain
appropriate for the deformation (ε11 for uniaxial strain and
ε23 for pure shear) was increased at a fixed rate, specifically
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Fig. 2. Stress–strain curves for 15 at.% Cu samples deformed under pure
shear at various temperatures, strain rate 5× 107 s−1.

Fig. 3. Stress–strain curves for 15 at.% Cu samples deformed under uni-
axial tension at various temperatures, strain rate 5× 107 s−1.

5×107 s−1. The range of strains was 0 to 0.2, and the stress
was averaged over strain intervals of 0.0005.Figs. 2 and 3
show stress–strain curves for compositions 15 at.% Cu, for
pure shear and uniaxial strain for temperatures ranging be-

Fig. 4. Finite temperature flow stress for 15% Cu sample. Squares, uniaxial
strain; diamonds, pure shear strain.

tween 20 and 200 K. We see that the large jumps persist
even at 200 K, thus finite temperature alone is not enough to
produce realistic stress–strain curves. By an averaging pro-
cedure similar to the one used for theT = 0 data, we can
determine the flow stress as a function of temperature. Here
the averaging is from strains 0.1 to 0.2, because the initial
“yield” stress appears to be significantly higher than the sub-
sequent “flow” stress, which is our current interest. The flow
stresses for the 15 at.% Cu sample are shown inFig. 4.

4. Energy barriers and effective Burgers vectors

In order to study the individual events more closely we
have calculated the enthalpy barriers associated with the
events taking place during a particular zero-temperature
stress–strain simulation. The appropriate means of doing
so is in within a constant stress formalism, where all six
strain components are true degrees of freedom of the sys-
tem, and a stress term is added to the energy (making
the enthalpy), and to the generalized forces acting on the
strain components. The procedure is as follows: starting
with configurations saved before and after a plastic event
as determined from the stress–strain curve, for each of a
range of stresses (including the maximum stress reached
before the event occurred and the final stress at the com-
pletion of the event), the configurations are minimized with
respect to atomic positions and strain-components, under
the given constant stress. This gives two local minima of
enthalpy separated in the 3N + six-dimensional config-
uration space by an enthalpy barrier. We use the nudged
elastic band (NEB) method[17–19] to compute the height
of this barrier. The result is the barrier height as a function
of stress for each event studied. In the NEB calculation,
the strain-components, and hence the periodic supercells,
differ along the chain; it would be ambiguous to compute
real-space difference vectors, so instead we use scaled
coordinates for the atomic positions.

For each event and each stress we obtain an enthalpy pro-
file as inFig. 5; the most important quantity is the barrier
itself—the maximum enthalpy of a replica with respect to
the initial replica. A second quantity of interest is the dif-
ference in strains between the before and after states; this is
the amount of plastic strain associated with the event. We
can imagine a shear event in an idealized sense by taking
a small flat areaA with normal n̂ within the material, cut-
ting the material over this surface, and letting the material
on one side of the cut slip with respect to that on the other
side of the cut by an amount�b (compare to the continuum
picture of the nucleation of a dislocation loop with Burg-
ers vector�b). The shear strain felt by the boundary of the
system isεij = (1/2)A(nibj +njbi)/V , whereV is the sys-
tem volume. Since the actual events are not of this form,
we cannot identify�b andAn̂ directly, but we can infer the
symmetrized product(1/2)A(nibj + njbi) by multiplying
the observed plastic strain byV . This quantity is a symmet-
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Fig. 5. Enthalpy profiles for various stresses for a particular event during
T = 0 shear deformation of a 15% Cu sample. The profiles have been
shifted in energy to meet at the initial point. Squares in top profile indicate
Nudged Elastic Band replicas of the system. Arrows indicate intermediate
minima along the path. Inset shows the part of the stress–strain curve
corresponding to this event.

ric tensor with units of volume; the volume is of the order
of an atomic volume or bigger; focusing on the 23 compo-
nent, we call itVslip. Another volume that emerges from the
barrier computations is the derivative of the energy barrier
with respect to stress. Since this is negative, we define the
quantityV ∗ = −dEB/dσ. In the case of dislocation motion,
in particular the motion of a kink, this derivative is of the
order ofb3, which is also the size thatVslip would be. It is
thus of interest whether the volumes are equal for plastic
events in an amorphous material.

However, while the plastic strain (inset ofFig. 6) is rea-
sonably independent of stress,εpl,23 ∼ 0.01 ⇒ Vslip ∼
430 Å

3
(the volume is 43,000 Å

3
), the stress dependence of

the barrier is not so clearcut. There is a distinct change of
slope visible inFig. 6and it is not clear which slope should
be compared toVslip. The reason for the change of slope is

Fig. 6. The enthalpy barrier as a function of stress, for the same event
as in Fig. 5. Inset is the 12-component of plastic strain caused by this
event, as a function of stress.

clear when one looks atFig. 5. From the shape of the pro-
file we can see that in fact there are two intermediate min-
ima along the path (arrows inFig. 5). The “event” in this
case can be viewed as three sub-events. The reason they ap-
peared as one is also clear: by the time the barrier for the
first event is zero, the barriers for the other two have already
vanished and the system simply slides downhill in enthalpy
to the final state (all three sub-events having happened). At
lower stresses the minima are still there, and at finite tem-
perature one would expect three distinct events. We can also
now understand the change of slope of the barrier vs. stress:
initially the biggest barrier to the final state is the third one,
which has a large stress dependence. Once it becomes lower
than the first sub-barrier, the latter becomes dominant, and
its stress dependence is much weaker. The associatedV ∗ pa-
rameters are∼600 and∼25 Å3, respectively. Thus it seems
reasonable that hereVslip is perhaps an average of differ-
entVslip for the three sub-events. To properly determine the
connection betweenV ∗ andVslip it will be necessary to run
separate NEB calculations with the intermediate minima as
end-points. This is part of our ongoing work.

5. Summary

We have presented the initial stages of a program to study
in detail the mechanisms of plastic deformation with atom-
istic simulations. We have made realistic amorphous config-
urations by molecular dynamics simulation of cooling from
the melt. We have measured stress strain curves at zero tem-
perature and at several non-zero temperatures, and made
some progress in analyzing the specific internal rearrange-
ment events that make up the overall deformation.

We have seen that with the small systems and high strain
rates that we use, there are large jumps in stress–strain curve.
These are not expected to appear in larger systems; we have
begun simulations of larger systems (16,384 atoms) and the
preliminary data indicate that the large jumps are absent.
However, small systems are useful because we can look at
the individual events more closely and easily, since the num-
ber of degrees of freedom is not too large. In our continu-
ing work we hope to gain more complete understanding of
the geometry and energetics of the local plastic deformation
events, how they are distributed with regard to quantities
such asVslip andV ∗, and the way in which they contribute
to the overall deformation, particularly as the system size
increases.
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