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Hidden scale invariance at high pressures in gold and five other face-centered-cubic metal crystals
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Recent density functional theory simulations showed that metals have a hitherto overlooked symmetry termed
“hidden scale invariance” [Hummel et al., Phys. Rev. B 92, 174116 (2015)]. This scaling property implies
the existence of lines in the thermodynamic phase diagram, so-called isomorphs, along which structure and
dynamics are invariant to a good approximation when given in properly reduced units. This means that the phase
diagram becomes effectively one-dimensional with regard to several physical properties. This paper investigates
consequences and implications of the isomorph theory in six metallic crystals: Au, Ni, Cu, Pd, Ag, and Pt. The
data are obtained from molecular dynamics simulations employing many-body effective medium theory (EMT)
to model the atomic interactions realistically. We test the predictions from isomorph theory for structure and
dynamics by means of the radial distribution and the velocity autocorrelation functions, as well as the prediction
of instantaneous equilibration after a jump between two isomorphic state points. Many properties of crystals tend
to be dominated by defects, and many of the properties associated with these defects are expected to be isomorph
invariant as well. This is investigated in this paper for the case of vacancy diffusion. In regard to the perfect crystal
properties, we find the predicted invariance of structure and also, though less perfectly, of dynamics. We show
results on the variation of the density-scaling exponent γ , which can be related to the Grüneisen parameter, for all
six metals. We consider large density changes up to a factor of two, corresponding to very high pressures. Unlike
systems modeled using the Lennard-Jones potential where the density-scaling exponent γ is almost constant,
this quantity varies substantially when using the EMT potential and is also strongly material dependent.
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I. INTRODUCTION

The most common state of metals as used by humans is the
solid (crystal) phase. Investigation of the properties of pure
crystalline metals has played a huge role in the development
of solid state physics [1], and the mechanical properties
of pure metals and alloys have historically been the most
important topic in materials science [2]. It might therefore
be thought that all of the basic physics of pure crystalline
metals have been well understood and documented. However,
recent work has demonstrated the existence of a previously
unknown approximate scale invariance in a range of model
systems, including metals, in both the liquid and crystal
phases. Specifically, in the part of the phase diagram corre-
sponding to the condensed phases there exist curves, termed
isomorphs, along which a large set of physical properties,
namely, those relating to structure and microscopic dynamics,
as well as some thermodynamic properties and some transport
coefficients, are approximately invariant when expressed in
appropriately scaled units [3]. Recent ab initio simulations
[4] have confirmed that many pure metals belong to the class
of systems which have good isomorphs, a class known as
Roskilde or R-simple systems. It is the purpose of this paper
to document isomorph invariance of structure and dynamics
of perfect metallic crystals, specifically the fcc metals Au, Ni,
Cu, Pd, Ag, and Pt. The work was inspired by a bachelor’s
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degree student project which investigated isomorphs in the
liquid state for the same six metals [5].

An early paper [6] presented some evidence that metallic
systems belong to the class of R-simple systems. Hu et al.
have also reported results for a simulated metallic glass [7].
Recently, Hummel et al. confirmed using density functional
theory (DFT) methods that most metals are R-simple close
to their triple point [4]. Because of the large computational
cost of DFT methods, other state points were not studied, so
the variation of, for example, the density-scaling exponent γ

has not been studied. Moreover, the cost of DFT calculations
limits what aspects of thermodynamics and structure can be
studied and essentially prohibits the study of dynamics and
transport coefficients. It is of great interest to investigate and
document expected isomorph variances in metallic crystals,
liquids, and amorphous structures (metallic glasses) using
many-body empirical potentials, which offer a reasonable
compromise between computational efficiency and accuracy.
In addition, metals form an interesting class of R-simple
systems because they are not described by pair interactions
(as evidenced by the violation of the Cauchy relations for
the elastic constants) [8]; while a good understanding of the
density-scaling properties of systems with pair interactions
exists [9–11], many-body systems present a challenge: are
they R-simple?

In this work we use the effective medium theory (EMT)
semiempirical many-body potential [12]. It is considered
semiempirical because it is derived from DFT, and some of
the parameters are drawn directly from DFT calculations. The
expression for the total potential energy is similar in structure
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to other commonly used many-body potentials for metals,
such as the embedded atom method (EAM), involving pair
sums and some nonlinear “embedding” function. Unlike many
EAM potentials, EMT is based on fairly simple functional
forms, rather than complex functions which require heavy fit-
ting to large data sets and are typically tabulated. This means
that (1) EMT has been relatively straightforward to implement
in our graphical processing unit (GPU) molecular dynamics
software RUMD [13] and (2) we can hope to understand
analytically the existence of strong virial potential-energy
correlation in this potential and moreover find an analytic
expression for how γ depends on density. We use the simplest
version of EMT presented in Ref. [12], which provides all
parameters necessary to simulate EMT models of Ni, Cu, Pd,
Ag, Pt, and Au.

We restrict our investigation of the isomorph scaling prop-
erties of metallic systems to the crystal phases of pure sys-
tems, the metal elements listed above. These all have a face-
centered-cubic (fcc) ground state at zero pressure. A previous
work considered the isomorph scaling properties of classical
crystals consisting both of spherical particles interacting via
pair potentials, as well as simple molecular systems, and
found that simple measures of structure and dynamics are
invariant along isomorphs, as expected [14]. We consider the
same properties as those authors: we investigate structure
as quantified by the radial distribution function (RDF) and
dynamics as quantified by the velocity autocorrelation func-
tion (VAF), which can be related to the phonon spectrum
[15]. Mechanical properties of crystalline materials tend to
be dominated by defects, specifically vacancies, interstitials,
dislocations, stacking faults, and grain boundaries [16]. Many
properties associated with defects are expected to be isomorph
invariant—for example, defect mobilities—when expressed in
reduced units. As in Ref. [14] we investigate in this work a
simple case, namely vacancy diffusion. We also check one
of the dramatic predictions of isomorph theory, instantaneous
equilibration when a system is brought rapidly from one state
point to another on the same isomorph [3].

II. ISOMORPH THEORY AND HIDDEN
SCALE INVARIANCE

Isomorph theory has been developed throughout a series
of papers [3,6,17–19] starting from first establishing
the existence and subsequently developing a theoretical
understanding of strong correlations between the equilibrium
fluctuations of the configurational parts of pressure and
energy. The correlations are deemed strong when R > 0.9
where R is the (Pearson) correlation coefficient

R = 〈�W �U 〉√
〈(�W )2〉〈(�U )2〉

(1)

with the sharp brackets denoting the canonical constant-
volume (NVT) averages, and where W and U are the virial
and the potential energy, respectively. Systems with these
strong correlations are also referred to as R-simple systems to
(1) account for the ambiguity of the term “strongly correlated”
in physics and chemistry, (2) stress the fact that these systems
exhibit a particularly simple behavior in terms of structure
and dynamics, and (3) show that this behavior is not limited to

liquids only but extends to the solid phase as well since the
strong correlations generally appear when the system is dense
[6,17].

Paper IV [3] of the series mentioned above introduced the
concept of isomorphs. Isomorphs are curves in the phase dia-
gram along which certain static, dynamic, and thermodynamic
quantities are invariant when given in appropriately reduced
units. Any configuration can be described in terms of the
particle coordinates as

R = (r1, r2, . . . , rN ) (2)

where ri is the coordinate vector of the ith particle. The
reduced unit version is given by R̃ = ρ1/3R, where ρ ≡ N/V
is the number density. If two configurations from different
state points have the same reduced coordinates,

ρ
1/3
1 R1 = ρ

1/3
2 R2, (3)

then Roskilde simplicity implies they have approximately
proportional configurational NVT Boltzmann factors

exp

[
−U (R1)

kBT1

]
∼= C12 exp

[
−U (R2)

kBT2

]
, (4)

where the constant C12 depends only on the state points
(T1, ρ1) and (T2, ρ2) and not on the configurations. This means
that the potential energy of a given configuration U (Ri ) at
density ρi can be scaled to a different density on the same
isomorph as follows:

U (R2) ∼= T2

T1
U (R1) + kBT2C12, (5)

or, considering fluctuations about the respective mean values:

�U (R2) ∼= T2

T1
�U (R1). (6)

The shape of an isomorph is characterized in terms of the
density-scaling exponent γ defined as the logarithmic deriva-
tive of temperature with respect to density along a curve of
constant excess entropy. Statistical mechanics provides an ex-
pression in terms of fluctuations for this derivative [3], giving

γ ≡
(

∂ ln T

∂ ln ρ

)
Sex

= 〈�W �U 〉
〈(�U )2〉 . (7)

“Excess” quantities are defined in reference to the respec-
tive quantity for the ideal gas at the same temperature and
density, e.g., Sex = S − Sid. Equation (7) allows one to map
out isomorphs in a stepwise manner by evaluating γ at each
state point. Another way to trace isomorphs is the so-called
direct isomorph check (DIC), which exploits the connection
between the energies and temperatures of two state points of
Eqs. (5) and (6). Hence, plotting the potential energies of the
initial microscopic configurations at ρ1 versus the potential
energies of the configurations scaled to another density ρ2 re-
sults in a scatter plot where the slope of the best fit line is given
by the ratio of the temperatures, T2/T1. An example of such a
scatter plot is shown in Fig. 1. The advantage of the direct
isomorph check is that this method allows a whole isomorph
to be generated from a single simulation at one reference state
point. We have checked that the generated temperatures differ
by at most 0.5% from isomorphs generated in the stepwise
manner by Eq. (7) (see Appendix A).
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FIG. 1. The direct isomorph check for gold: a scatter plot of
potential energies of configurations drawn from a simulation at a
given density ρ1 and temperature T1 versus the potential energies
of the configurations scaled to another density ρ2. The red line is
the best fit line and has the slope T2/T1, so the temperature T2 for
a state point with density ρ2 on the same isomorph as the initial
state point can be identified from linear regression. The same initial
configuration can be scaled to different densities, thus allowing one
to map out several isomorphic points from a single simulation.

The existence of isomorphs yields the profound simplifi-
cation of effectively reducing the (T, ρ)-phase diagram by
one dimension. The one-to-one correspondence between state
points as illustrated above also explains why many quantities
are invariant along isomorphs when given in reduced units.
Using the length unit l0, time unit t0, and an energy unit e0

defined as follows:

l0 = ρ−1/3, t0 = ρ−1/3
√

m/kBT , e0 = kBT, (8)

all quantities can be expressed in a dimensionless form to
compensate for the trivial scaling of lengths by average in-
terparticle spacing and energies by the temperature.

As pointed out in paper IV [3], systems with strong corre-
lations have isomorphs and vice versa, i.e., these two features
are equivalent. It was found later that they are both manifes-
tations of an underlying approximate hidden scale invariance.
Indeed, isomorph theory has been refined in Ref. [20] by
defining R-simple systems directly from a scale invariance
of the potential-energy function. It is based on the following
scaling behavior:

U (Ra) < U (Rb) ⇒ U (λRa) < U (λRb), (9)

where U (Ri ) is the potential energy of a configuration Ri and
λ is a scaling parameter. Thus, a uniform scaling of configu-
rations does not change the ordering of potential energies. For
most systems this scale invariance is approximate and dubbed
“hidden” since it is not obvious from the mathematical expres-
sion for the potential. This approximate scaling is illustrated
in Fig. 2, where the potential energies of 20 configurations
from an equilibrium simulation have been scaled to differ-
ent densities. For clarity the energies have been shifted and
scaled using the mean value and standard deviation at each
density. For perfectly isomorphic systems—with correlation
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FIG. 2. Gold’s potential energy per particle after subtracting the
average and scaling by the standard deviation of 20 configurations
taken from an equilibrium simulation, which were subsequently
scaled uniformly by 20% up and down in density and plotted as a
function of the density-scaling factor. The lines obtained in this way
illustrate the hidden scale invariance of R-simple systems and cannot
cross each other in the ideal (R = 1) case. The configurations used
for generating this figure are taken from equilibrium simulations at
a state point close to ambient conditions at which R = 0.995. The
bottom panel shows the average virial for the scaled configurations.
The strongly diverging lines in the left part of the figure are due to
the virial becoming negative (indicated by the red dashed lines).

coefficient R = 1—the lines cannot cross each other. The
red dashed line indicates where the virial becomes negative,
which leads to a breakdown of the scaling properties as seen
by the sudden diverging of the lines.

The updated definition preserves the property that iso-
morphs are the configurational adiabats of the phase dia-
gram, curves along which structure, dynamics, and the excess
entropy Sex are invariant together with the simplification of
effectively reducing the phase diagram by one dimension.
Subtle differences between the versions of isomorph theory
emanate from the fact that the original formulation is a first-
order approximation of the more accurate updated theory of
Ref. [20]. This can be illustrated, for example, using the case
of the isochoric heat capacity CV . If exactly obeyed, Eq. (4)
implies that CV is invariant along isomorphs, which is often
a good approximation but not exact. The slight variation of
CV along isomorphs can, however, be accommodated using
the more recent formulation of isomorph theory, with which
Eq. (6) can be derived without requiring Eq. (4) or (5) [20].

One of the more fundamental consequences of the update
concerns the density-scaling exponent γ . Initially the density-
scaling exponent γ was interpreted as being related to an
effective inverse power law exponent, which (assuming it to
be constant) yields the form ργ /T = const for isomorphs,
consistent with experimental determinations of isochrones
[10,21–26]. Determination of γ from fluctuations in simu-
lations shows variation with state point, however [6]. It was
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TABLE I. Comparison of correlation coefficient R and density-
scaling exponent γ calculated using DFT and using EMT. A liquid
state point near the triple point is used in each case. The DFT values
are taken from Ref. [4].

Sym. Z T (K) ρ
( g

cm3

)
REMT RDFT γEMT γDFT

Ni 28 2000 8.19 0.96 0.92(0.03) 3.62(0.01) 3.5(0.3)
Cu 29 1480 8.02 0.95 0.90(0.02) 4.15(0.02) 4.1(0.2)
Pd 46 1900 10.38 0.91 0.92(0.04) 6.47(0.03) 4.9(0.5)
Ag 47 1350 9.32 0.93 0.90(0.03) 5.35(0.02) 4.8(0.4)
Pt 78 2200 18.53 0.87 0.87(0.06) 7.88(0.05) 6.0(1.4)
Au 79 1470 16.69 0.88 0.86(0.14) 7.93(0.05) 7.9(1.6)

shown in Ref. [11] that the assumption of constant CV along
isomorphs implies that γ can depend only on density, which
is a fairly good approximation. The most recent definition of
hidden scale invariance allows, however, temperature depen-
dence of γ also to be handled within the theory [20].

We find, in fact, that for metals—at least when using the
EMT potential—γ does vary significantly, both for a given
metal and between metals. Table I shows a comparison of
the DFT and EMT values of the parameters R and γ for
the liquid phase near the triple point. There is reasonable
agreement between the R and γ values, especially noting that
the latter vary quite widely (more than a factor of two). From
this we can conclude that EMT gives a reasonably accurate
description of the thermodynamic scaling properties of these
metals. A version of this table appeared in Ref. [5].

III. SIMULATION RESULTS

The results presented in this paper for the fcc metals Ni,
Cu, Pd, Ag, Pt, and Au have been obtained from simulations
carried out in RUMD [13,27] using the effective medium
theory (EMT) potential. The potential is based on a reference
system modified with a correction term. The reference system
is chosen to give a close to accurate description while still be-
ing a simple, well-known system which can be fitted through
some built-in scaling parameter. For metal crystals this can be
achieved with an ideal fcc lattice where the lattice constant
serves as the scaling parameter. The correction term accounts
for the difference between the real and the reference system
and is based on a pair potential. A detailed description of
the potential and the respective material-specific parameters
is given in Ref. [12].

The simulated systems consist of 4000 particles organized
on a 10 × 10 × 10 fcc lattice with periodic boundary condi-
tions. Atomic masses and densities are taken from Ref. [28].

For each metal, we simulate at least three curves: one
isomorph, one isotherm, and one isochore. The state points for
the isomorph have been determined using a single simulation
and the direct isomorph check, as described in the previous
section. We obtain isomorphic points corresponding to steps
of 10% density change in terms of the reference density up
to a total increase of 100% in density. The state points for
the isochore (isotherm) are chosen so that they match the
temperatures (densities) of the points along the isomorph.
The initial state point for each metal is chosen to resemble
a crystal with room temperature density, ρr.t . ([28]), at 1293 K

TABLE II. Pressure P, virial W , correlation coefficient R, and
density-scaling exponent γ along the studied isomorph for gold.

T (K) ρ
( g

cm3

)
P (GPa) W

(
eV

particle

)
R γ

1293 19.32 10 0.86 0.986 6.47
2177 21.25 30 3.03 0.994 4.66
3143 23.18 70 5.58 0.996 3.77
4175 25.12 110 8.50 0.997 3.25
5255 27.05 160 11.73 0.998 2.90
6374 28.98 220 15.25 0.998 2.63
7522 30.91 300 19.03 0.998 2.44
8692 32.84 380 23.05 0.998 2.27
9879 34.78 480 27.29 0.998 2.14
11 073 36.71 590 31.71 0.998 2.02
12 270 38.64 710 36.32 0.998 1.92

for gold, corresponding to a pressure of 10 GPa. The isotherm
is along T = 1293.15 K and thus shares the initial point with
the isomorph. To avoid melting on isochores, they start at
higher densities, ρ = 32.84 g/cm3 for the investigation of
structural and dynamical invariance and ρ = 30.91 g/cm3 for
the vacancy study.

For each state point the NVT ensemble was simulated
using periodic boundary conditions and a Nosé-Hoover ther-
mostat. Table II shows the temperatures and densities for the
isomorph simulated for Au, while Fig. 3 shows the isomorph
together with the melting curve for this system. The latter
was determined using the interface pinning method [29]. A
single point from the experimental melting curve is included,
showing that it lies somewhat higher in temperature than
the model curve. A slight discrepancy between model and
experiment is expected if the model has not explicitly been
fitted to the melting temperature. Melting is identified as the
point where the Gibbs free energies of the solid and the liquid
phase are equal, thus a precise prediction for the melting
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FIG. 3. A density-temperature phase diagram of EMT-Au show-
ing the melting curve determined by the interface-pinning method
[29] and the crystal isomorph studied in this work. One point from
the experimental melting curve is also included [30]. The isomorph
for Au studied in this work is quite close to the melting curve.
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FIG. 4. The radial distribution functions (RDFs) plotted in re-
duced units [see Eq. (8)] for the case of gold. From top to bottom,
the panels show the RDFs for state points that are respectively
isomorphic, isothermal, and isochoric to each other. The top panel
shows the data collapse along an isomorph as predicted by isomorph
theory. Isomorph and isotherm share the state point indicated by the
black line, while isochore and isomorph match at the purple line (this
is done to avoid melting of the crystal along the isochore; the highest
temperature is probably above the melting temperature, however,
meaning that this is a superheated state).

temperature requires a model that describes both phases with
the same accuracy, which is usually not the case [31].

A. Isomorph invariance of structure and dynamics

We start with the results on structure and dynamics. For
brevity, the results shown here in detail are from simulations
for gold; the other five materials exhibit the same behavior and
will be presented in a summarized fashion. A phase diagram is
shown in Fig. 3 indicating the isomorph simulated along with
the melting curve for the model, to give an idea of where in the
phase diagram our focus lies. Some numerical data for gold
along the isomorph are shown in Table II. The structure of
a system can be quantified by the radial distribution function
(RDF), also called pair-correlation function g(r), which is a
measure of the probability of finding a particle at a distance r
away from a given reference particle. Figure 4 shows the RDF
for the reduced pair distance r̃ = ρ1/3r for the state points
indicated in the panels, thus along an isomorph, an isotherm,
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FIG. 5. The figure shows the normalized velocity autocorrelation
function (VAF) for the same state points as in Fig. 4. The insets depict
the respective phonon or vibrational densities of states (VDOS)
obtained from the Fourier transform of the VAF [Eq. (10)]. The
predicted data collapse along the isomorph is obeyed, although not
as well as in the RDF case.

and an isochore, respectively. The peak positions are expected
to remain the same also along the isotherm and isochore as a
trivial consequence of the reduced pair distance being scaled
by ρ1/3. Isomorph theory predicts that the structure along an
isomorph is invariant, thus we expect all isomorphic RDFs to
collapse onto a single curve. Figure 4 validates this to a good
approximation, even for large density changes, for the case of
gold.

In addition to the structure, also the dynamics of isomor-
phic state points are predicted to be invariant. The dynamics
are studied here by means of the velocity autocorrelation
function (VAF). Figure 5 shows the normalized reduced-unit
single-particle VAFs obtained from the same simulations and
state points of gold as the RDF data. The top, middle, and
bottom panels show the VAFs for state points along isomorph,
isotherm, and isochore, respectively. The isomorphic curves
exhibit a reasonable collapse but with some deviation, espe-
cially compared to the near perfect agreement in the RDF
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FIG. 6. Radial distribution functions (RDFs) and vibrational densities of states (VDOS) along isomorphs for Ni, Cu, Pd, Ag, Pt. The other
five metals confirm the findings for gold, i.e., a near perfect collapse for the structure and a less perfect, but reasonable collapse for the dynamic.
The most notable deviations are for the first state point(s).

case. The insets of Fig. 5 show the phonon (vibrational)
density of states of their respective curves. The spectrum is
related to the Fourier transform of the velocity autocorrelation
function via [15]

ρ(ω) = 1

3NT kB

∫ ∞

−∞

N∑
i=1

〈vi(t )vi(0)〉C(t )eiωt dt, (10)

where we include a Gaussian function C(t ) = exp[−(t/tc)2]
(with tc chosen to be fixed in reduced units) to smoothly
truncate the integrand, which otherwise decays very slowly
compared to the data-sampling window.

We obtained similar results for the structure and dynamics
of the five other materials simulated, viz., Ni, Cu, Pd, Ag, and
Pt; see Fig. 6. Each row shows the RDF on the left and the
phonon density on the right, along an isomorph for one metal.
All metals demonstrate a comparably good collapse to that
found for gold.

B. Other implications of isomorph theory

Another prediction from isomorph theory concerns iso-
morph jumps, which refer to a sudden change in density via
a uniform scaling of all particle coordinates and temperature
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FIG. 7. Potential energy per particle before and after instanta-
neous jumps at t = 0 between the state points indicated. The black
and the green lines depict jumps between state points that are,
respectively, isochoric and isothermal to each other. Only the red line
shows instantaneous equilibration—the line stays flat and does not
visibly fluctuate—after the jump.

between state points on the same isomorph. Isomorph theory
implies that such a sudden change from a well-equilibrated
initial state point should not require further equilibration
post jump, predicting the system to be instantaneously in
equilibrium at the final state point [3], because the Boltzmann
probabilities are unchanged by a jump along an isomorph.
This prediction has been validated for viscous liquids, as well
as for perfect Lennard-Jones crystals.

The simulations start with runs at the respective starting
point to make sure the systems are in equilibrium. At the
jump, the density is changed by uniformly scaling all par-
ticle coordinates, the temperature for the thermostat is set
to the new value, and all velocities are scaled accordingly.
The results for gold can be found in Fig. 7, showing the
potential energy per particle before (t < 0) and after (t > 0)
jumps to the point indicated in the figure. The initial points
have been chosen to be isothermal (green), isochoric (black)
and isomorphic (red) to the final state point. The red line
validates the prediction as it shows no visible fluctuations in
the potential energy post jump. The system is instantaneously
in equilibrium as evidenced by the red line staying perfectly
flat (apart from normal equilibrium fluctuations, not visible
here). In contrast to this, the black and the green lines are
clearly not in equilibrium, and the potential energies oscillate
towards the new level after the jump.

Since many mechanical properties in crystals are associ-
ated with the existence of defects in the lattice and these
properties are also expected to be isomorph invariant, we
examine this in the following for the case of vacancy diffusion.
A vacancy in the lattice is an empty spot from which the atom
has been removed. This introduces a new kind of dynamics
to the crystal since atoms can now jump to the new, empty
positions on the lattice, resulting in the vacancies moving
around. Vacancy diffusion is quantified by means of the mean-
square displacement (MSD) of the atoms [14,32]. Figure 8
shows the MSD along isomorph, isochore and isotherm for
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FIG. 8. Mean-squared displacement (MSD) for the state points
indicated. To generate vacancies, four randomly selected atoms
have been removed from the initial crystal. The collapse exhibited
along the isomorph is good in the ballistic regime (trivial) and the
plateau (less trivial), while the diffusive part shows some deviations,
especially for the lowest density state point. (Note that the isochore
has a slightly different density than that of Fig. 4.)

the case of four particles removed from a 10 × 10 × 10 fcc
crystal of gold, corresponding to a vacancy concentration of
10−3, which is only slightly higher than the experimental
concentration close to melting, 7 × 10−4 [33]. The isomorph
used for studying diffusion was redetermined using the DIC,
leading to slightly different temperatures.

The figure shows an approximate collapse along the iso-
morph, although there is a noticeable deviation for the first
two curves (the lowest two densities). The collapse is poorer
than that seen for the Lennard-Jones crystal in Ref. [14].
This can be partly explained by observing that the starting
state point in the present case is closer (in density) to the
triple point than was the case for the Lennard-Jones results,
although the pressure in our simulations is still large by
experimental standards (see Table II). The prediffusive parts
of the curves collapse well. For the initial ballistic regime
the MSD is proportional to time squared, which is a trivial
consequence of the use of reduced units and has nothing
to do with isomorph invariance (this is seen also for the
isochore and isotherm). But the invariance of the height and

022142-7



FRIEDEHEIM, DYRE, AND BAILEY PHYSICAL REVIEW E 99, 022142 (2019)

10-2

100

102

R
ed

uc
ed

 M
SD

100 102 104 106

Reduced time

10-2

100

102

R
ed

uc
ed

 M
SD

10-2

100

102

R
ed

uc
ed

 M
SD

100 102 104 106

Reduced time

(a)  Ni (b)  Cu

(c)  Pd (d)  Ag

(e)  Pt (f)  Au

FIG. 9. Mean-squared displacement along isomorphs for the six
metals with four vacancies (the bottom right panel depicting gold
shows the same data as the top panel of Fig. 8).

the location of the onset of the plateau are nontrivial aspects
of the vibrational dynamics. The diffusivity (corresponding
in the double-logarithmic representation to the height of the
long-time part of the MSD curves) is presumably determined
by a single energy barrier associated with vacancy hopping.
The poor collapse of the curves here therefore implies that
this energy barrier scales in a slightly different manner than
the potential energy surface near the ground state—it is the
latter which controls vibrational dynamics whose fluctuations
determine the isomorph.

Figure 9 shows the MSD along an isomorph in all six fcc
metals with each crystal having four vacancies. The bottom
right panel shows the same gold isomorph as in the previous
figure. The same overall behavior is observed in the other
metals, i.e., that the higher density and temperature points
collapse well while the first (two) curve(s) exhibit an outlier
behavior. This is more notable for the materials on the left-
hand side; these have incomplete d-shells, corresponding to
stronger bonding and higher melting points, therefore the
simulated isomorphs (which all start at the same temperature)
are further below the melting line in these cases.

Results for a single vacancy and 16 vacancies in the same
10 × 10 × 10 fcc crystal of the six metals can be found in
Appendix B. Both cases exhibit a much worse collapse than
the case of four vacancies. For 16 vacancies, visualization
(snapshot included in Appendix B) shows that the vacancy
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FIG. 10. Effective scaling exponent for specific configurations
determined using EMT potential for gold and the Lennard-Jones
(LJ) potential. The vibrational configurations, one for each system,
were sampled from an NVT run of the perfect crystal at density
ρref = 19.3 g/cm3 and temperature 1300 K for Au, density ρref =
1.05σ−3, and temperature 0.630 ε/kB for LJ. The potential energy
relative to the perfect lattice was determined for a range of densities
(scaling both the perfect lattice and the vibrational configuration).
The saddle configurations are the unrelaxed saddle point between
vacancy hopping, constructed by moving a neighbor atom of the
vacancy in an otherwise perfect crystal halfway towards the vacant
site. The energy difference between the unrelaxed saddle point
and the unrelaxed vacancy was determined for the same range of
densities. The effective scaling exponents given by the logarithmic
derivatives d ln U/d ln ρ are plotted against the reduced densities
ρ/ρref .

concentration is too high, which causes them to cluster to-
gether early on in the simulation runs. We thus in this case
inadvertently probed void migration rather than vacancy dif-
fusion. Especially interesting is the case of one vacancy where
clustering is not an issue. We found a failure to collapse much
like Albrechtsen and Olsen found for Lennard-Jones crystals
with only one vacancy [34]. This case seems especially sen-
sitive to departures from isomorph invariance (see also the
discussion of Fig. 10), but at present we do not have a good
explanation of this deviation.

IV. DISCUSSION

The overall results presented here are consistent with ex-
pectations from the work of Hummel et al., which showed that
most metals in the liquid state have a high virial potential-
energy correlation coefficient R [Eq. (1)] and are therefore
R-simple. As such they are expected to have good isomorphs.
The present work has concentrated on the crystal phase at
moderate and high temperatures to avoid quantum effects. The
analysis is similar to that undertaken by Albrechtsen et al.
for Lennard-Jones and other simple model systems including
simple molecules [14].

The basic predictions of isomorph theory are invariance of
structure and dynamics when the observables are expressed
in reduced units: lengths in terms of the interparticle spacing
ρ−1/3, energies in terms of the temperature kBT , and times in
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terms of the time a particle with the thermal velocity would
take to move an interparticle spacing [Eq. (8)]. With these
units we find an excellent collapse of the radial distribution
function. For the dynamics of the perfect crystal we studied
the velocity autocorrelation function (VAF) and its Fourier
transform, which can be interpreted as an effective vibrational
density of states (VDOS). Here we observed an approximate
collapse, clearly worse than the RDF, and also worse than
the collapse seen for the Lennard-Jones crystal in Ref. [14].
We validated the prediction of instantaneous equilibration for
isomorph jumps. To study dynamics beyond vibrations we
simulated a system with vacancies and monitored the mean
squared displacement. The collapse here was also approxi-
mate, in fact poorer than for the VAF, suggesting that the
relevant energies (around the saddle point of the vacancy
hopping process) scale somewhat differently with density than
energies near ground state (perfect crystal), which are relevant
for vibrations. In particular one can imagine that the local
density experienced by the hopping atom at the top of the
energy barrier is quite different from the densities of the
surrounding atoms, corresponding to different effective γ .

The combination of locally high density at the saddle point
for the hopping atom and the strong density dependence of
the density-scaling exponent for EMT systems suggests a
scenario like this. As a crude test we consider the energy of
the “unrelaxed saddle point” relative to that of the unrelaxed
vacancy, as well as the energy of a typical vibrational config-
uration of the defect-free lattice, drawn from a simulation at
a specific temperature, relative to that of the perfect lattice.
The unrelaxed vacancy is the perfect lattice with one atom
removed. The unrelaxed saddle point is the configuration ob-
tained by displacing a neighbor of the removed atom exactly
halfway towards the empty site. The logarithmic derivatives
of these energy differences give a kind of “configuration-
specific” density-scaling exponent γ , plotted in Fig. 10. There
is a significant reduction in the effective scaling exponent for
the unrelaxed saddle-point energy compared to that of the
vibrational energy (5.5 versus 7.2 at the initial density). Since
vibrational fluctuations dominate the determination of the γ

used to generate isomorphs, the lower scaling exponent for
saddle points means these configurations have a lower energy
than expected as one moves along the isomorph, which is
why the diffusivity in reduced units is higher than than for
the reference state point. The contrast between the energy
fluctuations used to determine the isomorph and those relevant
for the dynamics is greater for a defective crystal than for
a liquid or amorphous solid, allowing such deviations from
perfect isomorph scaling to arise. The figure includes also
results of the same calculation for the Lennard-Jones crystal,
where there is also a difference, albeit smaller than in the
EMT case. The presence of this difference is consistent with
the lack of collapse for a single vacancy noted in Ref. [34],
while its small size explains the generally better collapse
found in Ref. [14]. It remains unclear why including several
vacancies then gives a better collapse; it presumably involves
the interactions between them (including vacancy binding and
unbinding) reducing the contrast between the energy fluctua-
tions used to determine the isomorph and the relevant saddle-
point energy which governs vacancy dynamics. In a sense it
is not that surprising that the specific parts of the potential
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FIG. 11. Variation of γ for the six fcc metals along the T =
1293 K isotherm in the main panel (a). The inset (b) shows the
same variation along isochores where ρ = ρr.t . is the respective
room temperature density of the metal. The γ variations are clearly
dominated by changes in density. The bumps visible in the low γ

regime, most notable in the Cu and Ni isotherms, are due to the cutoff
as detailed in Appendix C.

energy function associated with vacancy hopping behave dif-
ferently under density changes compared to those related to
vibrations. Thus, while less pronounced in the Lennard-Jones
case, the same deviations occur in both systems. This kind
of nonuniform scaling could possibly also be the root of the
failure to get a good collapse of the VAF, although in that case
we do not see quite the same “outlier” behavior for the low
density (temperature) data, except perhaps for Ni.

The general degree of isomorph invariance is similar for
the different metals (see Fig. 6 for the radial distribution
functions and phonon density of states, and Fig. 9 for the
vacancy diffusion), which is not surprising since the same
functional form of interatomic interactions is used for all of
them. In the future, it is important to investigate isomorph
invariance of these metals using other types of potentials, for
example, EAM.

Unlike in other systems, the density-scaling exponent γ is
strongly state point dependent when using the EMT potential.
The main panel in Fig. 11 shows the variation of γ for the six
fcc metals with changing density at constant temperature. The
behavior for increasing temperature at fixed density can be
seen in the inset. It is evident that the change in γ is dominated
by changing density and only mildly decreasing with tempera-
ture. Thus, the variation of γ along an isomorph (not pictured)
displays a similar behavior to that of the isotherms. The
oscillatory behavior along the isotherms in the low γ region,
most obvious in the cases of Ni and Cu, is an artifact due the
cutoff and occurs when increasing the density pushes a new
neighbor shell through the cutoff distance (see Appendix C).

Next we discuss briefly the connection between the
density-scaling exponent γ , of the two most important param-
eters (together with R) in isomorph theory and the Grüneisen
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TABLE III. Comparison of experimental Grüneisen parameters
with EMT values at ambient pressure and temperature.

Sym. γG (exp.) γG (EMT)

Ni 1.88(a) 1.9
Cu 1.96(a) 2.1

1.99(b)

Pd 2.33(c) 3.4
Ag 2.40(a) 2.8

2.33(b)

Au 2.94(b) 4.2
Pt 2.54(a) 4.3

(a)Ref. [35].
(b)Ref. [36].
(c)Ref. [37].

parameter γG, which is an important thermodynamic parame-
ter in the study of solids. The latter plays a fundamental role
in the Mie-Grüneisen equation of state, often used to model
metals at high pressures. Pandya et al. [38] argue that the
Grüneisen parameter, involving as it does third derivatives of
the potential, is a stringent test of a model of a solid. Reference
[39] discusses the use of a pressure-dependent Grüneisen
parameter to estimate the melting curves of silver, gold, and
copper at high pressure. Insight from isomorph theory and
the study of the isomorphic properties of metals can help to
understand the density dependence of γ and by extension
γG. The microscopic definition of γG involves the density
dependence of normal mode frequencies, but we focus on the
macroscopic or thermodynamic definition

γG ≡ V
αpKT

CV
(11)

where αP is the thermal expansion coefficient, KT the isother-
mal bulk modulus, and CV the isochoric specific heat. The
relation

γG = γCex
V + NkB

CV
(12)

between γ and γG—where Cex
V is the excess part of the

isochoric heat capacity CV —was derived in Ref. [18] and
is exact within the classical approximation. Typically γ is
greater than γG by around a factor of two. Using Eq. (12),
Hummel et al. compared values of γ determined from the ex-
perimental values of γG for liquid metals to values determined
from their DFT calculations (see their Fig. 5). In Table III
we compare values of γG determine for the crystal phase
at ambient temperature and pressure to values determined
for EMT. We find good agreement for Cu and Ni, while
the other values are significantly overestimated compared to
experiment. From Table I for the comparison of γ between
EMT and DFT for the liquid, and from the work of Hummel
et al. who compared DFT results for γ with values inferred
from experimental Gruneisen parameters, we can infer that for
Au and Ag the EMT values match the DFT values reasonably
well, but both overestimate the experimental values of γ and
γG. For Pd and Pt the DFT results match experiment, but the
EMT results are too high.
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FIG. 12. Gruneisen parameter γG for the six metals as a function
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n indicated for each metal in the legend. The data show small bumps
associated with the cutoff artifact mentioned above for the fitting only
the data at small densities were used. For Cu and Ni allowing the
exponent to vary leads to negative values of the additive constant a
and here the exponent was fixed at n = 3.

There is interest in the literature in the density dependence
of γG, for example, for understanding the state of matter deep
in the earth’s interior [36,38]. A frequently used empirical
model for the density dependence is γGρ = const, i.e., the
Grüneisen parameter decreases inversely with density. This is
consistent with our observation that γ is mainly a function of
density and for EMT metals decreases strongly with density;
however, our data do not support a 1/ρ dependence of γG

(see Fig. 12). A closer look at the functional form of the
EMT potential should provide some clues for the density
dependence of both γ and γG.

Finally we discuss implications for the thermodynamics of
melting and freezing of metals. An early prediction of the iso-
morph theory was that the melting curve follows an isomorph
for R-simple systems [3]. This follows from the general idea
that the structure is invariant. Considering constant volume
conditions in the coexistence region, ensuring the presence
of a fixed amount of each phase, a broad interpretation of
“structure” would include “degree of crystallization,” and
would have the consequence that the melting curve must
follow an isomorph (otherwise the degree of crystallization
along an isomorph would vary). However, for realistic systems
isomorph invariance applies to a single phase, but not a system
containing two phases with different densities. In the latter
case terms in the free energy which depend on density only
become relevant, affecting the position of the melting curve
while having no relevance for the structure and dynamics of a
single phase. This has been studied in detail in Refs. [40] and
[41]. In particular the theory developed in Ref. [40] allows
calculation of the freezing and melting lines using isomorphs
as the basis for a perturbative approach. Computer simulations
confirmed the predictions for the Lennard-Jones case. The
data in Fig. 3 for the melting curve seem not to coincide
with crystal isomorph, though data for the freezing line for
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the same system (not shown) coincide very closely with a
liquid isomorph. The methods of Ref. [40] should allow both
to be calculated from simulations at a single temperature.
Applied to more computationally demanding first-principles
methods, such as DFT, this gives the possibility to make
accurate melting curve determinations at high pressures.

In summary, we have shown that isomorph theory applies
well to fcc metals simulated using the effective medium theory
many-body potential. We find the expected invariance of
structure and, slightly less perfectly, of vibrational dynamics.
Instantaneous equilibration following an isomorph jump is
also seen. Slightly larger deviations emerge when studying
defect dynamics. This was argued to be a consequence of, on
one hand, the contrast between the configurations governing
(in this case) vacancy hopping and those dominating the fluc-
tuations, and on the other hand, the strong density dependence
of γ .
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APPENDIX A: VALIDATION OF THE DIRECT
ISOMORPH CHECK

We present two different ways of validating the direct iso-
morph check. The first is to compare with an isomorph gener-
ated by numerical integration of Eq. (7) using density steps of
1%. This is an accurate method for generating isomorphs [3],
but is computationally demanding if large density changes are
considered. The second validation method requires no extra
simulation; instead it checks for self-consistency of the DIC
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FIG. 13. Comparison between the isomorphic state points gener-
ated from the direct isomorph check and integration of Eq. (7) for
Au. The inset shows a fit of γ (ρ ) = a + b/ρn with parameters a =
1.823, b = 2.977 × 106, n = 4.520; analytic integration of Eq. (7)
using this functional form starting from the lowest density yields
the dashed curve. Numerical integration of Eq. (7) from the lowest
density using the γ values determined along the way yields the
smooth red curve.

isomorph: After generating the isomorph and simulating those
state points, the actual γ values can be plotted as a function
of density and fitted to a simple function γ (ρ) = a + b/ρn.
An example of such a fit is shown in the inset of Fig. 13.
Integration of this yields the form ln T = ln T0 + a ln ρ/ρ0 +
b(1/ρn − 1/ρn

0 )/n for some starting point ρ0, T0. Both this
and the numerical step-by-step generation of the isomorph
are shown in Fig. 13. The stepwise-generated isomorph has
a temperature within 0.5% of the DIC isomorph at the highest
density. The analytic integration based on the fitting procedure
underestimates it by about 2%, probably due to the small
deviations between of the fit from γ (ρ) visible in the inset.
Had the stepwise isomorph not been available, this could be
considered a reasonable validation of the DIC.

APPENDIX B: TESTING DIFFERENT
NUMBERS OF VACANCIES

The failure of the diffusive part of the mean-squared dis-
placement to collapse along an isomorph is shown in Fig. 14
for the case of one vacancy and in Fig. 15 for 16 vacancies.
Reasons that spoil isomorph invariance in the respective cases
are discussed in the main text. Figure 16 shows a snapshot
of the clustered vacancies in the 16 vacancies case; here
the larger, pink spheres indicate the empty lattice positions
while the actual particles were removed for better visibility,
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FIG. 14. MSD along isomorphs after removing one out of 4000
particles.
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FIG. 15. MSD along isomorphs after removing 16 out of 4000
particles.

while the gray spheres are a guide to the eye and indicate
the corners of the simulation box. The movie obtained from
several of these “inverted” configurations shows that these

FIG. 16. Snapshot of the clustering of 16 vacancies in gold.
The picture shows a “negative” of the simulation. The pink spheres
indicate the vacant lattice points, and the actual particles have been
removed. The gray spheres indicate the corners of the simulation box.

kind of clusters form early on in the simulation and do not
disperse again.

APPENDIX C: CUTOFF ARTIFACT

An explanation is given here as to how the bumplike
artifacts in the density dependence of γ for Cu and Ni
(Fig. 11) arise. They occur when successive neighbor shells
pass through the cutoff. The latter is implemented in the form
of a smoothed step function (a Fermi function) modulating
the interactions: Noting that the distance to the nth shell of
the zero-pressure, zero-temperature fcc lattice, dn, is given by
dn = √

nd1, where d1 = a√
2

is the nearest neighbor distance,
then the half-way point of the Fermi function is set to lie
between the neighboring shells n and n + 1 at

rc = d1
(
√

n + √
n + 1)

2
(C1)

with the default choice n = 3. The fcc lattice constant a can
be expressed in terms of the number density ρ as follows:

ρa3 = 4 ⇔ a = (4/ρ)1/3. (C2)

This yields the distance to the nth shell in terms of the density:

dn = √
nd1 = √

n
a√
2

=
√

n

2

(
4

ρ

)1/3

. (C3)

The densities at which the n > 3 shells pass through the
middle of the cutoff, can be found through equating Eqs. (C3)
and (C1) setting n = 3 in the latter:

√
n

2

(
4

ρ

)1/3

= d1
(
√

3 + √
4)

2
, (C4)

ρ = 4

(√
2

d1

√
n√

3 + √
4

)3

. (C5)
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FIG. 17. Oscillatory behavior of density dependence of γ for Cu
and Ni due to the cutoff. The light gray lines (solid for Cu, dashed for
Ni) indicate the densities at which the radius of the fourth and fifth
shells is exactly in the middle of passing through the cutoff.
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Insertion of the material dependent nearest-neighbor dis-
tances: dNi

1 = 2.49 Å, dCu
1 = 2.56 Å from the EMT parame-

ters in Ref. [12] yields the following densities:

Ni: ρn=4 = 0.113 Å
−3

, ρn=5 = 0.158 Å
−3

(C6)

Cu: ρn=4 = 0.104 Å
−3

, ρn=5 = 0.145 Å
−3

(C7)

These densities are marked by light gray lines (solid for
Cu and dashed for Ni) in Fig. 17 and coincide with the
bumps in the variation of γ . The reason this effect is most
visible for these metals is that γ reaches quite small values,
which implies (interpreting γ as arising from an effective
inverse power law exponent) a relatively long-ranged effective
interaction and that contributions from distant neighbors are
more significant than is the case for higher values of γ .
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