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Isomorph invariance of dynamics of sheared glassy systems

Yonglun Jiang and Eric R. Weeks
Department of Physics, Emory University, 400 Dowman Drive, Atlanta, Georgia 30322, USA

Nicholas P. Bailey
Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, 4000 Roskilde, Denmark

(Received 31 July 2019; published 25 November 2019)

We study hidden scale invariance in the glassy phase of the Kob-Andersen binary Lennard-Jones system.
After cooling below the glass transition, we generate a so-called isomorph from the fluctuations of potential
energy and virial in the NV T ensemble: a set of density, temperature pairs for which structure and dynamics
are identical when expressed in appropriate reduced units. To access dynamical features, we shear the system
using the SLLOD algorithm coupled with Lees-Edwards boundary conditions and study the statistics of stress
fluctuations and the particle displacements transverse to the shearing direction. We find good collapse of the
statistical data, showing that isomorph theory works well in this regime. The analysis of stress fluctuations, in
particular the distribution of stress changes over a given strain interval, allows us to identify a clear signature of
avalanche behavior in the form of an exponential tail on the negative side. This feature is also isomorph invariant.
The implications of isomorphs for theories of plasticity are discussed briefly.
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I. INTRODUCTION

Recently, it was discovered that a broad class of classical
condensed matter systems exhibit an approximate scale invari-
ance [1–6]. Upon changing a system’s density, a correspond-
ing change in temperature can be found such that the structure
and dynamics of the system are unchanged, as long as they are
compared in an appropriate dimensionless form. State points
which are equivalent in this sense are said to be isomorphic,
and the key feature of systems exhibiting so-called hidden
scale invariance is the existence of isomorphic curves, or
isomorphs, in the phase diagram [5]. The theory of isomorphs
shows how they can be identified straightforwardly in com-
puter simulations, how to appropriately scale quantities for
comparison, and which quantities are expected to be isomorph
invariant. Isomorphs have been identified and investigated in
the equilibrium liquid state for many model systems [1,7–
10]. Systems with good isomorphs include those dominated
by van der Waals interactions, including molecular systems,
and most metals [11], while strong directional bonds, as in
hydrogen-bonding systems and network formers, generally
give rise to more complex behavior and the absence of iso-
morphs. Water is a good example of a system without good
isomorphs. The phase is not important for whether isomorphs
can be found, as long as relatively-high-density condensed
phases are considered. Nor is equilibrium essential; isomorphs
have been studied in conditions of nonequilibrium steady-
state shearing [12] and aging [5,13,14] and zero-temperature
shearing of a glass [15]. The class of systems exhibiting
good isomorphs has been referred to as R-simple systems
(R denoting Roskilde). For reviews, the reader may consult
Refs. [7,16,17]. In the present work isomorphs are investi-

gated in the context of deformation of the glass state at finite
temperature.

We consider an amorphous solid created by cooling a vis-
cous liquid down below its glass transition and then applying
Couette-type shearing at constant volume and fixed strain rate.
This necessarily involves a departure from equilibrium and
in principle introduces a potential dependence on history, for
example, through the cooling rate, as well as possible aging
effects, into the system’s behavior. We minimize these issues
by restricting our attention to steady-state shearing: If one
shears the system at a constant strain rate beyond, say, 0.5
or 1.0 strain, a steady state is obtained which depends only on
the density, the temperature, and the strain rate. As discussed
in Ref. [12], the existence of isomorphs reduces these three
variables to two: a variable labeling the isomorph (in equi-
librium this is generally taken to be the excess entropy) and a
dimensionless strain rate. In principle, however, isomorph the-
ory allows for independent configurations from equilibrium
states above the glass transition which are isomorphic to each
to be cooled into the glassy state in an isomorphic way such
that the entire thermal histories and deformation histories are
isomorphic. In that case the entire stress-strain curves could
be compared, rather than simply the steady-state part. Some
ten years ago Lerner and Procaccia proposed a scaling theory
for steady-state plasticity based on approximating the pair
potential by an inverse power law [18]. The relation between
that work and isomorph theory will be discussed below.

We work with the usual Kob-Andersen binary Lennard-
Jones glass forming model [19–21], which is useful because
it is difficult (though not impossible [22,23]) to crystallize on
computer timescales. It is certainly straightforward to obtain
a glassy state in a simulation with sufficiently rapid cooling.
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We consider two starting states in the glass, one just below
the glass transition and one deep in the glass. The focus of
the analysis is on analyzing steady-state stress-strain curves
statistically and the particle displacements characterized by
the mean-square displacement.

Demonstrating the presence of good isomorphs in the
glassy state has theoretical relevance not just because it
permits a simplification of the phase diagram, but for two
other reasons. First, given the existence of isomorphs, it
becomes clearer what the relevant thermodynamic variables
are: Pressure, while being of course extremely relevant from
an experimental point of view, becomes secondary to density.
Moreover, strain rates should be specified and compared in
their dimensionless (reduced) form. Second, the existence
of isomorphs puts a strong constraint on theories of glassy
behavior. Several theories for the mechanical properties of
amorphous materials have been proposed. Hidden scale in-
variance imposes constraints on candidate theories, since a
theory which purports to be general should in particular apply
to systems with hidden scale invariance and should therefore
involve equations expressed in reduced-unit quantities which
are explicitly isomorph invariant. This principle has been
called the isomorph filter [5,24]. In the context of theories
of the glass transition, for example, a theory connecting the
(reduced) relaxation time to the configurational entropy, with
no other dependence on thermodynamic state, passes the
isomorph filter because both quantities are isomorph invariant.
It should be noted that thermodynamic quantities such as the
average potential energy, pressure, and bulk modulus, and
thereby the equation of state, are not isomorph invariant;
interaction terms can be added to a model which hardly
fluctuate in a bulk system at fixed density, which can thus
affect the equation of state but not the structure and dynamics.

The following section gives an overview of the most
essential results from the theory of isomorphs. Section III
then describes the system and the simulation methods used.
Section IV describes how we generated glassy isomorphs
and checks the isomorph invariance of their structure using
the radial distribution function. The main analysis of the
paper is presented in the following two sections: Sec. V
presents a detailed analysis of the stress-strain curves while
Sec. VI contains an analysis of particle displacements via the
mean-square displacement transverse to the shearing direc-
tion. Section VII discusses implications of the existence of
isomorphs for theories of plasticity, showing via an example
from the literature how density dependence can be included
in an isomorph invariant way. Section VIII summarizes and
concludes the paper.

II. ISOMORPH THEORY

In this section we give a brief overview of the theoreti-
cal basis for analyzing isomorphs, starting with how to put
observables in the necessary dimensionless forms needed to
properly compare structure and dynamics at different thermo-
dynamic state points.

A. Reduced units

As mentioned above, quantities must be expressed in an
appropriate dimensionless form, referred to as using reduced

units. We essentially scale out the direct effects of changing
density and temperature on structure and dynamics: If we have
N particles in a volume V , then the system’s (number) density
is ρ ≡ N/V . A basic length scale l0 is defined by interparticle
spacing ρ−1/3. If the system is in equilibrium at temperature
T , then a basic timescale is defined by the time for a particle
with the thermal velocity

√
kBT/m to cover a distance l0:

t0 = ρ−1/3(kBT/m)−1/2. In the case of a mixture, the average
mass 〈m〉 should be used. Given l0 and t0, we can rescale
space and time, making it possible, for example, to compare
trajectories at different state points; the rescaling accounts for
the most trivial effects of changing density and temperature. In
fact, all physical quantities can be rescaled similarly, by taking
appropriate combinations of l0, t0, and 〈m〉. For a quantity
with dimensions of energy, the scale factor is just kBT . For a
pressure (or stress or elastic modulus) the scale factor is ρkBT .
We denote the rescaled reduced-unit quantities by a tilde; thus
the reduced form of a particle position r is r̃ ≡ ρ1/3r.

B. Identifying isomorphs

The scale invariance that underlies the existence of iso-
morphs derives ultimately from the fact that the potential
energy surface of the N-particle system changes in a somehow
homogeneous way when density is changed. For example,
suppose changing the density of any microscopic configu-
ration by a factor λ results in the potential energies being
changed by a factor λγ for some exponent γ . This can then be
compensated by increasing temperature by the same factor,
meaning all Boltzmann factors will be unchanged, so the
statistical probability of all microstates will be the same at the
new density as for the corresponding unscaled configurations
at the original density. It follows that all statistical measures
of structure will be invariant when expressed in terms of
the reduced coordinates r̃. It can also be shown [4] that the
equation of motion is also the same for both states when
expressed in reduced units and therefore that all dynamical
quantities are also invariant in reduced units. The case just
described is realized by systems interacting with an inverse
power law pair potential v = A/rn; in that case the scaling
exponent γ is given by n/3. In that case isomorphs are exact,
trivial, and well known and the invariant quantities include
not just all structural and dynamical quantities but also ther-
modynamic quantities in reduced units. More generally, we
do not expect to find exact isomorphs, but we find very good
approximations. The simplest way to express and identify
hidden scale invariance was shown in Ref. [25], where the
essential condition was stated as follows: A change of density
must preserve the order of potential energies of microstates.
To test for scale invariance, we consider infinitesimal changes
of density under uniform scaling, whereupon changes in the
potential energies U of microstates are given by

dU = W d ln ρ; (1)

here W is the virial, a quantity typically calculated in com-
puter simulations due to its appearance in the formula for pres-
sure [26]. Requiring that the order of energies be preserved
means in particular that configurations at a given density with
the same U will experience the same change in U upon an
infinitesimal change of ρ. By Eq. (1) this means they have
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the same W . In other words, the potential energy and virial
must be strongly correlated (the discovery of strong U and W
correlations [27] marked the beginning of the development of
isomorph theory). Linear regression applied to a scatter plot
of W versus U yields two parameters, namely, the correlation
coefficient

R = 〈�U�W 〉√
〈(�U )2〉

√
〈(�W )2〉

(2)

and the slope

γ = 〈�U�W 〉
〈(�U )2〉 . (3)

Here angular brackets denote canonical ensemble averages
and �X ≡ X − 〈X 〉 for any quantity X . A value of R close to
unity in a region of the phase diagram (typically values above
around 0.9 are considered good, although lower thresholds
have also been used [11]) indicates that the system exhibits
hidden scale invariance and should have good isomorphs in
that part of the phase diagram. The interpretation of the
slope γ was given in Ref. [5]: It is the slope of curves of
constant excess entropy (that is, configurational adiabats) in
the (ln ρ, ln T ) phase diagram(

∂ ln T

∂ ln ρ

)
Sex

= γ (ρ, T ). (4)

The excess entropy is defined as the entropy minus that of
the ideal gas with the same density and temperature and is
one of the thermodynamic properties which is invariant along
an isomorph. Thus, in systems with good isomorphs, the γ

of Eq. (3) is just the density scaling exponent γ discussed
above. In the Schrøder-Dyre formulation of the theory, the
status of configurational adiabats was raised such that these
are considered to define isomorphs in systems with strong U
and W correlations [25]. Since γ (ρ, T ) can be calculated at
any state point using the fluctuation formula (3), Eq. (4) pro-
vides a general method to generate isomorphs by numerical
integration. Typically, steps of order 1% in density are used.

III. SIMULATIONS

The system studied is the usual binary Lennard-Jones sys-
tem introduced by Kob and Andersen [19–21], which has been
mainly studied at one particular density 1.2σ−3

AA (where the A
particles are the larger ones). From now on, when not using
reduced units, we work with the unit system defined by the
Lennard-Jones (LJ) parameters of the A particles’ interactions
with each other, σAA and εAA, and the mass which is the same
for both A and B particles; thus, temperature is given in units
of εAA/kB. The potential is cut off using the shifted-force
method [28] at 2.5σ for each type of interaction. The number
of particles is 1000 (with the usual composition of 80% A).
The simulations are carried out on a GPU cluster using the
RUMD software [29,30].

The glassy states are created by cooling a liquid at constant
pressure at a fixed cooling rate from temperature T = 1.0
down to a given start temperature. Different cooling rates are
applied, but for the steady-state results presented in this work
the cooling rate is not relevant. The reason for cooling at fixed
pressure rather than fixed volume is to avoid arriving at a
state where the pressure is very low or negative, since good

FIG. 1. Black symbols indicate an isomorph in the supercooled
liquid which includes the point (ρ = 1.2, T = 0.44). We use this as
a guide to locating the glass transition; its relaxation time is about
2700 in reduced units, corresponding to 3850 in LJ units at the lowest
density 1.2. The inset shows the intermediate scattering function for
the different state points, lying almost on top of each other. The red
and green symbols indicate isomorphs generated in the glass which
we use for studying deformation, referred to as those starting at
temperatures T = 0.55 and 0.1, respectively. Note that the starting
densities are not the same, since these are taken from a cooling run
at fixed pressure P = 10.

isomorphs are generally obtained at not too low pressures.
To locate our glassy isomorphs in the phase diagram and
compare to other work on this system, it is useful to have
an idea of where the glass transition is. When considering
the full phase diagram the glass transition can be defined as
the set of (ρ, T ) points where the liquid’s relaxation time
attains some fixed value. There are two sources of ambiguity
or arbitrariness in such a definition: which observable to use
when defining the relaxation time and which value to set
as defining Tg(ρ). Experimentally, for the latter one chooses
conventionally a value of order 100 s in real units; with the
isomorph theory in mind it is natural to specify a criterion
in reduced units, since in a system with isomorphs the glass
line will then correspond to an isomorph [13]. In computer
simulations, relaxation times of order 100 s are nowhere near
realistic, so as a guide we choose a viscous liquid state which
can be equilibrated in reasonable time. In Fig. 1 we plot
a viscous liquid isomorph whose temperature at the usual
Kob-Andersen density 1.2 is 0.44. The relaxation time there
(based on fitting the self-intermediate scattering function of
the A particles to a stretched exponential function) is 3850
(LJ units), which corresponds to about 2700 in reduced units.
This isomorph is generated using the analytical expression for
Lennard-Jones potentials as described in Ref. [9] (using the
same reference density 1.6 but a slightly lower value of γ at
the reference density, 4.58 instead of 4.59) and simulated for
108 time steps per state point.

IV. GLASS ISOMORPHS

The temperatures chosen for starting isomorphs are 0.55
and 0.1. For generating glassy isomorphs a configuration is
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TABLE I. Thermodynamic data for the starting points of glassy isomorphs, obtained by cooling at constant pressure P = 10.0 from
temperature 1.0 over 108 steps of size dt = 0.0025. The cooling rate is therefore 1.8 × 10−6 for cooling to T = 0.55 and 3.6 × 10−6 for
cooling to T = 0.1.

Tstart = 0.55 Tstart = 0.10

ρ T P R γ ρ T P R γ

1.265 0.550 9.35 0.955 4.950 1.324 0.100 9.75 0.824 5.011
1.278 0.577 10.68 0.954 4.971 1.337 0.105 11.21 0.834 5.002
1.291 0.606 11.99 0.962 5.078 1.351 0.110 12.79 0.843 4.953
1.304 0.637 13.72 0.960 5.033 1.364 0.116 14.48 0.855 4.944
1.317 0.669 15.37 0.965 5.015 1.378 0.121 16.29 0.864 4.916
1.330 0.702 16.99 0.968 4.936 1.392 0.127 18.22 0.873 4.879
1.343 0.737 18.94 0.972 4.927 1.406 0.134 20.29 0.879 4.873
1.356 0.773 21.07 0.973 4.874 1.420 0.140 22.49 0.886 4.829
1.370 0.811 23.09 0.976 4.901 1.434 0.147 24.85 0.893 4.817
1.384 0.851 25.24 0.979 4.869 1.448 0.154 27.37 0.899 4.799

drawn from the cooling run close to the desired temperature,
and its density is used as the initial state for isomorphs. Due to
fluctuations, its density is not necessarily the same as the mean
density for the chosen temperature and pressure; similarly,
when performing NV T simulations in the glassy state the
mean pressure is close to but not equal to the pressure of
the cooling run. Table I shows thermodynamic information
including the isomorph parameters R and γ for the different
state point along each of the two isomorphs. We estimate that
the starting temperature of our high-temperature isomorph
corresponds, if we were to follow the isomorph down to the
usual density 1.2, to a temperature close to 0.421. At this
temperature the Kob-Andersen mixture can be equilibrated as
a liquid, but it requires substantial patience; at the strain rates
we apply in our deformation runs, the system can be consid-
ered a glassy solid. According to Chattoraj et al. [31], particle
displacements become driven more by strain than thermal
motion once the strain rate exceeds 10−2/τα . Since our lowest
strain rate is of order 10−5 and τα certainly exceeds 103, this
criterion is met and therefore we can speak of deformation
of a glassy amorphous solid, at least regarding steady-state
dynamics. Our second isomorph, starting at the lower tem-
perature 0.1, gives a system deep in the glassy state for which
virtually no spontaneous relaxation is expected on conceivable
simulation timescales. From Table I we see that the R values
for the lower-temperature isomorph are somewhat lower than
for the high-temperature isomorph, staying between 0.8 and
0.9; one might therefore expect poorer collapse of curves, but
we will see that this is not the case for our data.

Starting with the glassy states taken from the cooling run as
mentioned above, we ran NV T simulations and then increased
the density in steps of 1% while adjusting the temperature
based on the observed value of γ , according to

Tn+1 = Tn[1 + γn(ρn+1 − ρn)/ρn]. (5)

1This estimation can be done analytically using a formula derived
in Eq. (9) of Ref. [9]. The value of γ at a reference density must be
supplied; we used γ = 4.58 at ρref = 1.6.

This integrates Eq. (4) numerically using the Euler method
and when applied to systems in equilibrium generates curves
of constant excess entropy. In applying it here we essentially
ignore possible complications from being out of equilibrium,
assuming, for example, that no significant aging occurs dur-
ing the simulation. The number of time steps is 107 and
the starting configuration for each state point is the final
configuration from the previous state point. Figure 1 shows
three isomorphs in the density-temperature phase diagram
including one equilibrium liquid isomorph and the two glassy
isomorphs. Figure 2 shows a very good degree of collapse
for the radial distribution function along the glass isomorphs
when plotted as a function of the reduced pair distance r̃ =
ρ1/3r. This is true even for the high-temperature isomorph,
which one might expect to show some (small) changes of
structure due to aging [32].

V. SHEAR DEFORMATION: ANALYSIS OF
STRESS-STRAIN CURVES

When below the glass transition temperature (defined ac-
cording to the accessible timescales) the system does not
undergo any interesting dynamics unless perturbed by some
external force. Due to timescale restrictions in simulations,
it is easiest to apply a large mechanical deformation to drive
the system into a flowing state. In particular, we have cho-
sen to apply simple (Couette) shear at a fixed strain rate
and study the stress-strain curve. For shearing we use the
SLLOD algorithm combined with Lees-Edwards boundary
conditions [26,33,34]. When identifying isomorph-invariant
properties it is important that the shear rate be specified in an
isomorph-invariant way; that is, the reduced-unit strain rate
˜̇γ = γ̇ (kBT/m)−1/2ρ−1/3 should be fixed when comparing
flowing states at different density-temperature points on an
isomorph [12]. The full set of flowing states is therefore
characterized by a triple (ρ, T, ˜̇γ ). Since the physics is in
principle invariant along a (ρ, T ) isomorph at a given reduced
strain rate, we have thus a two-dimensional phase diagram,
where a state can be labeled by the isomorph and reduced
strain rate. This has been previously shown in the nonviscous
regime for the Lennard-Jones fluid [12], but has not been
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FIG. 2. Radial distribution function (RDF) for the large (A) parti-
cles in reduced units along glassy isomorphs starting at (a) T = 0.55
and (b) T = 0.1. Each figure shows ten curves, where the density is
increased by 1% for each state point, giving a 9.4% change in density
overall; the temperature increases by 54% overall. The insets show
close-ups of (a) the first peak and (b) the second peak, where very
some small deviations are discernible.

tested below the glass transition. In our simulations we choose
nominal strain rates of 10−2, 10−3, 10−4, or 10−5 and nominal
time step of 0.004. By “nominal” time step and strain rate we
mean the value in real units at the first point of each isomorph.
These values are scaled to keep the reduced-unit time step
and strain rate (SR) fixed along the isomorphs. For all our
deformation runs we simulated 108 molecular dynamics steps,
which for the above nominal strain rates give total strains
of 4000, 400, 40, and 4, respectively. Chattoraj et al. found
that total strains of up to 13.0 or even 24.0 were necessary
for accurate statistics [31]. This suggests that our runs are
sufficiently long except possibly for the lowest strain rates.
Note that the strain itself is dimensionless and therefore does
not need to be put into reduced units.

Isomorph theory predicts the whole stress-strain curve
to be invariant along isomorphs when stress is given in
reduced units σ̃ = σ/ρkBT . In the small systems typically
studied in simulations and particularly at low temperatures
and strain rates, however, stress-strain curves in the glassy

FIG. 3. (a) Section of the stress-strain curve for the lowest-
density state point on the higher-temperature isomorph (ρ =
1.265, T = 0.550) at the lowest nominal strain rate 10−5. (b) Section
of the stress-strain curve for a state point on the lower-temperature
isomorph (ρ = 1.324, T = 0.100) at the lowest strain rate 10−5. The
abrupt drops can be identified with avalanches of plastic activity.
The difference in vertical scale between (a) and (b) can be attributed
partly to the definition of reduced units for stress.

regime exhibit extremely intermittent behavior [35–38] which
is sensitive to initial conditions and other sources of random-
ness. Examples of this can be found in Fig. 3. Therefore, a
collapse of the actual stress-strain curves cannot be expected,
except perhaps the initial part which covers the elastic regime
and the transition to a flowing state. Instead we choose to
study the statistical properties of the steady-state region where
properties become time independent, apart from fluctuations.
We consider the steady state to have been reached after a strain
of 0.5 [39].

The most basic statistical measures that can be extracted
from the stress-strain curve are the mean value of the stress
(the flow stress) and its standard deviation. Figure 4 shows
these quantities plotted in reduced units along the two iso-
morphs studied, with different nominal strain rates. The
curves are consistent with being all flat within the statisti-
cal error (for the flow stress at the highest strain rate and
the low-temperature isomorph a small systematic decrease
with increasing density can be detected, not visible on the
scale of the figure). The errors are rather large for the stan-
dard deviation at the lowest strain rates where, as we noted
above, the total strain is significantly smaller. This figure
demonstrates isomorph invariance, the focus of this work. We
can also comment briefly on the strain rate and isomorph
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FIG. 4. Flow stress and standard deviation during the steady-state regime as a function of density along high-temperature isomorphs (left
panels) and low-temperature isomorphs (right panels) for different strain rates. The legend indicates the nominal strain rates, that is, the real
strain rates at the first point on each isomorph; for other state points in each data set, the reduced unit strain rate is the same. Error bars have
been calculated as the error of the mean and of the standard deviation, assuming the data are normally distributed [see Eq. (4.14) and Appendix
E of Ref. [40]]. We choose the effective number of data points to be the total steady-state strain divided by 0.05; we believe data points are
statistically independent for strain increments of 0.05. The horizontal lines indicate the mean value for the isomorph.

dependence. The dependence of flow stress on strain rate is
relatively weak given three orders of magnitude variation in
the latter. Equivalently, the shear viscosity varies by several
orders of magnitude, indicating we are in a strongly non-
Newtonian (shear-thinning) regime, as expected for glassy
systems [41,42]. Comparing the two isomorphs, the reduced
flow stress is a almost factor of 10 smaller at the high-
temperature isomorph compared to the low-temperature one,
partly reflecting its proximity to the supercooled liquid state,
but to some extent also an effect of our choice of reduced units
(see Sec. VII below for a discussion of alternative choices).
Interestingly, for the high-temperature isomorph the fluctua-
tions of the stress are independent of the strain rate (as well as
being invariant along the isomorph). This must mean that the
fluctuations here are essentially thermal in origin, despite the
rheology being clearly glassy in this regime (as determined
from the strain rate dependence of the flow stress).

To investigate the dynamical correlations present in the
stress-strain curves and check these for isomorph invariance,
we consider the autocorrelation function of the shear stress,
plotted as a function of strain interval. Figure 5 shows the
results. The collapse is not as good as we have seen in the
flow stress. While the curves are somewhat noisy, inspection
of the curves shows a trend where the decorrelation moves to
lower strain intervals as density increases along the isomorph.
To illustrate this more clearly, we fit the autocorrelation curves
to a compressed exponential

C(�ε) = A exp[−(�ε/εc)β], (6)

where β is greater than unity. For β < 1 this function is
known as a stretched exponential, typically used to fit time-
dependent relaxation correlation curves in the dynamics of
supercooled liquid. The characteristic strain εc corresponds to
the relaxation time τ in time-dependent correlation functions,
indicating roughly the strain interval after which a stress fluc-
tuation has decayed away. As shown in Fig. 5, the compressed
exponential can fit the main part of the decay reasonably well,
but not the initial slow decay or the negative portion at long
times, with values of the characteristic strain εc falling in the
range 0.01–0.035 and values of the compression exponent β

in the range 1.3–1.5. Figure 6 shows that along the isomorphs,
εc decreases approximately linearly as density increases, in a
similar manner for both isomorphs, while β increases slightly
for the high-temperature isomorph but shows little variation
on the low-temperature isomorph. Comparing different strain
rates, both εc and β decrease as strain rate decreases, although
for β the effect is weak compared to noise. Further investiga-
tion with longer runs will be necessary to determine if the
apparent variation of εc is an artifact of insufficiently long
runs, a sign of an imperfect procedure for generating iso-
morphs, or a genuine limit of isomorph invariance (which is
never exact). We note also that there seems to be a systematic
undershoot to negative correlation, after most of the stress has
decorrelated. This could tentatively be interpreted as a sign of
avalanche-type dynamics (discussed below).

As a further type of statistical analysis of the stress-strain
curves we attempt to infer something about the microscopic
processes by considering the distributions of stress changes
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FIG. 5. Normalized shear stress autocorrelation functions along
the (a) high- and (b) low-temperature isomorphs for three different
strain rates. Curves have been shifted for clarity. The dashed lines
indicated fits using a compressed exponential function for the first
curve in each set (lowest density and temperature); the parameters
can be seen in Fig. 6.

�σ over a given interval of strain �ε. Unlike the case of ather-
mal, infinitely slow driving that has been studied by several
authors [15,35–38,43,44], it is not possible to unambiguously
identify single flow events or so-called avalanches, since ther-
mal fluctuations tend to merge them together. Lemaître et al.
have shown, however, that the dynamics of a glassy system
can still be understood in terms of avalanche-type behavior
at relatively high temperatures, up to around 0.75Tg [31,45].
This would put our high-temperature isomorph outside the
avalanche-dominated regime and our low-temperature one
well within it. Indeed, visual inspection of the stress-stress
curves for lower strain rates and temperatures shows drops
in the stress reminiscent of avalanche behavior [see Fig. 3(b)].
The distribution of stress changes over a given strain interval
can be used to identify signatures of avalanche behavior
without having to identify precisely when avalanches occur.

Figures 7 and 8 show histograms of the reduced unit stress
changes �σ̃ = �σ/ρkBT , for different strain intervals �ε

and different strain rates, from simulations on the high- and
low-temperature isomorphs, respectively. Curves of the same
color represent data from different state points on the iso-
morph and the near collapse shows that the statistics as probed
by these histograms are isomorph invariant to a high degree.

FIG. 6. Fits of shear stress autocorrelation to Eq. (6) shown as
functions of density along the (a) high- and (b) low-temperature
isomorphs. The characteristic strain over which decays occurs, εc,
decreases approximately linearly as density increases.

This can be seen more explicitly in the insets of Figs. 7(d)
and 8(d), where the distributions for the different members of
the corresponding isomorph are shown in different colors, for
one particular strain interval. Having demonstrated isomorph
invariance, it is interesting to note some of the other features
of these data. One feature common to both isomorphs and all
strain rates is that for sufficiently large �ε, over 0.05, the
histograms converge to a Gaussian whose variance is twice
that of the stress fluctuations (mostly within 1%, 10% for the
slowest two strain rates at the lower temperature isomorph,
where the statistical errors are larger). This is expected since
our analysis of the autocorrelation indicates that correlations
vanish by strain 0.05 in all cases (see Fig. 5) (the characteristic
strain interval for decay is between 0.015 and 0.035, with
the functions essentially reaching zero by 0.05). For smaller
intervals �ε the distribution is generally narrower and reflects
contributions to stress fluctuations from the mechanical driv-
ing as well as from thermal fluctuations. As noted above, these
cannot be necessarily separated, but a reasonably clear picture
emerges from considering the dependence on the isomorph,
strain rate, and �ε.

Focusing first on the high-temperature isomorph,
Figs. 7(a)–7(d) show stress change histograms for strain
rates 10−2, 10−3, 10−4, and 10−5, respectively. For all strain
rates the distribution converges to the same Gaussian at large
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FIG. 7. Histograms of stress changes of intervals as indicated for the high-temperature isomorph for different strain rates. For each strain
rate and �ε, distributions from the ten members of the isomorph are plotted in the same color. The fact that they appear as one curve for
each color, apart from broadening due to statistical noise at the lowest strain rates, indicates a high degree of collapse. The distributions are
essentially Gaussian for all strain rates and strain intervals �ε, and their widths are relative insensitive to �ε even at the lowest strain rates,
indicating that most of the fluctuations are thermal rather than strain driven. The inset in (d) shows an alternative way of exhibiting isomorph
invariance for �ε = 0.000 512, by coloring different members of the isomorph differently, and on a linear scale.

intervals �ε. This is consistent with the bottom right panel of
Fig. 4, which showed that the fluctuations of the stress-strain
curve are independent of the strain rate (as well as being
isomorph invariant) in the high-temperature case, a sign
that the fluctuations are dominated by thermal noise in this
regime. For the high strain rate the shortest interval is 0.05, so
we see no dependence on the interval here. Some dependence
on the strain interval can be seen at low strain rate where
the width of the distribution appears to converge to a lower
value in the limit of small strain intervals. The timescale for
the shortest interval is of order 5 Lennard-Jones units (at the
lowest-density point on the isomorph), which should be still
somewhat longer than the vibrational timescale; therefore
this apparent limit presumably represents the full thermal
contribution to the fluctuations for an undeformed glassy
system. The increased width at high intervals can therefore be
interpreted as coming from the sampling of different glassy
configurations due to deformation2.

2Note that this would presumably also happen even without any
deformation by waiting long enough for liquid dynamics to become
relevant; in that case time, rather than strain, becomes the relevant
parameter.

Figure 8 shows histograms for the lower-temperature iso-
morph and the same nominal strain rates as Fig. 7. More
interesting behavior is apparent at these low temperatures,
particularly at the lowest strain rates, for example (nominal)
10−5: For the shortest intervals we see a Gaussian, represent-
ing purely thermal fluctuations, which are small at this tem-
perature. In other words, for a strain interval of 0.000 05 the
stress change due to driving is hidden by the thermal fluctua-
tions. As discussed above, we see a Gaussian at the largest in-
tervals where all correlations have decayed. For intermediate
strain intervals, however, a marked deviation from Gaussian
behavior appears in the form of a roughly exponential tail
on the negative side. This is a clear indication of avalanches:
correlated aggregations of multiple microscopic flow events
which release the stress, giving large negative stress changes,
as studied in the quasistatic case [15,35–38,43,44].

An analysis somewhat similar to ours was carried out by
Rottler and Robbins [39], who also found exponential tails at
low temperature and strain rate. Note that since we consider
a steady-state situation, the mean of the stress changes must
be zero, implying that the main Gaussian is shifted slightly to
positive values. We have checked this by fitting the Gaussian
part (not shown). The positive mean of the nonavalanche fluc-
tuations corresponds to elastic loading which is then released
by the avalanches. In the limit of zero temperature and then
infinitely slow deformation [37], the narrow Gaussian seen
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FIG. 8. Histograms of stress changes of intervals as indicated for the low-temperature isomorph for different strain rates. As in Fig. 7,
distributions for a given strain rate and strain interval, but different members of the isomorph, are plotted in the same color. They are Gaussian
for the largest strain intervals �ε as well as for the shortest �ε at the slowest strain rate, where the contribution of strain to the fluctuations
is negligible compared to the thermal contribution. For larger �ε at the slowest strain rate, an exponential tail on the negative side is a clear
indication of plastic events organizing into avalanches. For even larger �ε and at the larger strain rates, mixing of thermal and mechanic noise,
and multiple avalanches lead to more disorganized histograms. The inset of (d) shows, on a linear scale, distributions of the second smallest
strain interval with the different members of the isomorph represented with different colors as an alternative check of the invariance.

at short intervals would converge to a δ function at a small
positive value (the shear modulus times the strain interval).

The asymmetric deviations from Gaussianity can be quan-
tified by the Fisher-Pearson coefficient of skewness, based on
the third moment of the distribution scaled by the cube of the
standard deviation

SFP = m3

m3/2
2

, (7)

where

mi = 1

N

N∑
n=1

(xn − x̄)i, (8)

where x̄ is the sample mean. Figure 9 shows SFP as a function
of strain interval for four different strain rates for the low-
temperature isomorph. Different curves with the same color
come from different members of the isomorph for a given
strain rate. The skewness vanishes for short and long strain
intervals where, as discussed above, the distributions become
Gaussian. The variations between the distributions for a given
strain rate are not systematic and thus presumably reflect sta-
tistical uncertainty. The variation is relatively small and thus
consistent with this measure of the dynamics being isomorph
invariant (this follows of course also from the good collapse

of the distributions in Figs. 7 and 8). The minimum (most
negative) value of the skewness parameter identifies a strain
interval εs at which the deviation from Gaussianity is most

FIG. 9. Fisher-Pearson skewness SFP of (reduced) stress drop
distributions as a function of strain interval for different strain rates
for the low-temperature isomorph. Different curves of the same color
correspond to different points on the isomorph.
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FIG. 10. Histograms of (reduced) stress changes over strain in-
tervals εs chosen to minimize skewness for each strain rate, on the
low-temperature isomorph. Data for different points on the isomorph
are plotted in the same color for each nominal strain rate. In order of
decreasing strain, the minimum-skew strain intervals, as judged by
eye from Fig. 9, are 0.02, 0.008, 0.004, and 0.003.

pronounced. Histograms for this strain interval are plotted in
Fig. 10 for the low-temperature isomorph and different strain
rates, with the values of εs given. These values are a factor of
2–3 smaller than the characteristic strain intervals identified
from the autocorrelation functions (see Fig. 6). For the lowest
strain rate it is an order of magnitude larger than the strain
interval at which the exponential tail indicating avalanche
behavior is seen, 5 × 10−4 (see Fig. 8). Denoting the latter by
εa (where a denotes avalanche), we can tentatively identify,
in the low-temperature low strain-rate limit at least, a broad
hierarchy of strain scales which characterize different physical
processes: (i) the smallest strain scales where stress fluctu-
ations are purely thermal or vibrational; (ii) the avalanche
strain εa over which stress changes show signs of correlated
avalanche-type behavior, of order 5 × 10−4; (iii) the strain
over which stress change distributions deviate most from
Gaussianity εs an order of magnitude larger than εa, where the
exponential tails of the avalanches and the changes due elastic
loading between them merge to make a broader distribution,
but signs of correlation remain; (iv) the characteristic strain εc

identified via the stress autocorrelation function, where εc is
of order 2 × 10−2, which is a small factor (2–3) larger than
εs; and (v) the strain interval around 5 × 10−2 beyond which
all correlation has vanished (though this is not physically in-
dependent of εc; rather it represents where the autocorrelation
function is small compared to 1/e).

VI. PARTICLE DYNAMICS UNDER SHEAR: TRANSVERSE
DIFFUSIVITY

As an alternative probe of dynamical processes under
steady-state shearing we consider also the particle displace-
ments. Accounting for the contribution to a particle’s dis-
placement in the shearing direction when using Lees-Edwards
boundary conditions is nontrivial [46], so we consider only
the components of a particles displacement transverse to the

FIG. 11. Self-part of the intermediate scattering function for
larger (A) particles based on particle displacements transverse to the
shearing direction for (a) the high-temperature isomorph and (b) the
low-temperature isomorph, for different strain rates.

shearing direction. Based on these displacements, we compute
the self-intermediate scattering function (ISF) and the mean-
square displacement (MSD). For the ISF one must choose a
wave number q, which, as is conventional, we choose to be
near the first peak in the structure factor S(q). This must be
of course scaled according to ρ1/3 along an isomorph such
that the reduced wave number q̃ ≡ qρ−1/3 is constant [this is
compatible with choosing q to be near the first peak, as S(q) is
invariant in reduced units] [5]. We restrict consideration to the
larger (A) particles for brevity. The ISF is shown in Fig. 11.

For both isomorphs and all strain rates we find a good
collapse, though slightly less so for the lowest strain rates.
Fitting of the curves to a stretched exponential form [Eq. (6),
where β < 1 and with τ instead of εc], not shown, indicates
at most a slight systematic variation in relaxation time τ ,
suggesting the apparent failure to collapse perfectly is mostly
due to statistical error. From the fits, for the high-temperature
isomorph we find near-exponential behavior (β � 1) for the
highest strain rates and mildly stretched exponential behavior
as the strain rate decreases (β � 0.85 at the lowest strain rate).
For the low-temperature isomorph we find near-exponential
behavior for all strain rates. Stretched exponential behavior
is typical of dynamics in the supercooled, highly viscous
liquid. The vanishing of stretching, i.e., the near-exponential
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FIG. 12. Mean-square transverse displacement plotted in re-
duced units for (a) the high-temperature isomorph and (b) the low-
temperature isomorph. The horizontal arrows indicate a factor of 10
in the time axis and can be used to judge by what factor the curves
can be shifted onto each other in time.

behavior, at low temperatures and slow shearing indicates that
the nature of particle dynamics is different in this regime.
Exponential behavior of the self-intermediate scattering func-
tion for the same system under shear in the limit of zero
temperature was also reported by Berthier and Barrat [41].

Plots of the mean-square transverse displacement in re-
duced units are shown in Fig. 12. The form of the curves is
reminiscent of what is seen for equilibrium viscous liquids:
a ballistic regime at short times (where the slope is 2), a
plateau of varying extent, followed by a transition to diffusive
behavior (slope 1). The collapse is good in all cases, although
again some deviations are apparent for the lowest strain rates,
particularly around the crossover to diffusive behavior. Super-
ficially, not much difference can be seen between the low- and
high-temperature isomorphs, but upon closer examination one
can see some physically relevant differences (see Fig. 13). On
the higher-temperature isomorph thermal motion is greater;
thus the height of the plateau (in units of the interparticle
spacing) is larger. More interestingly, in the low-temperature
case, the diffusivity curves are essentially a factor of 10 apart
in the time axis, corresponding to the factor 10 change in
strain rate, while for the high-temperature case the diffusivity
curves are shifted by a factor smaller than 10 on the time

FIG. 13. The MSD curves from Figs. 12(a) and 12(b) plotted
together, though without the short-time parts. At low strain rates
the MSD appears to become independent of the isomorph, as well
as which point on the isomorph. The definition of reduced units
means that the curves for the different isomorphs are plotted in
terms of different timescales, so caution is required when drawing
conclusions from the apparent collapse.

axis. The interpretation is that thermal activation plays a
noticeable role in particle diffusion in the high-temperature
case, but almost no role in the low-temperature case. In the
latter the diffusive motion is determined entirely by the strain
rate at the lowest temperatures. Figure 13 emphasizes the
long-time parts of the MSD for both isomorphs. In this plot the
difference at long times between the two isomorphs appears
minimal; the MSD is determined much more by the strain
rate than by which isomorph is considered (and almost not
at all by which point on the isomorph, which is the essence
of isomorph invariance). It must be noted, however, that
direct numerical comparison of the MSD curves at different
temperatures (isomorphs) for the same nominal strain rate
can be difficult to interpret due to the use of reduced units;
thus it appears that at nominal strain rate 10−2 the diffu-
sivity, counterintuitively, is greater on the lower temperature
isomorph. Recall, though, that this is in reduced units, i.e.,
with respect to a timescale defined by the thermal velocity.
A meaningful comparison would first of all involve identical
reduced (rather than nominal) strain rates; the reduced strain
rates for the low-temperature isomorph are a factor of 2.3
higher than the corresponding ones for the high-temperature
isomorph. Second, there is a further complication already
alluded to, which will be discussed further below, namely, that
the definition of reduced units is not unique and a different
choice could in principle be more relevant, and elucidate the
physics better, in the limit of low temperatures. We emphasize
that the most important result in this section is the near perfect
collapse of the MSD for different state points along a given
isomorph (and given reduced strain rate), when reduced units
are used.

Lemaître and co-workers have studied over several papers
the effect of finite temperatures and strain rates on avalanche
dynamics [31,45,47]. They found that studying transverse par-
ticle diffusivity is useful for disentangling the effects of strain
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and temperature. In particular, Chattoraj et al. [31] used the
transverse diffusivity D determined from the long-time limit
of the MSD curves and its strain-normalized analog D/γ̇ .
Their Fig. 5 shows nicely the crossover from strain-dominated
to temperature-dominated diffusion. As they pointed out, the
strain-normalized diffusivity is the more relevant one in the
strain-driven regime (low temperatures and strain rates), while
normal diffusivity is relevant at high temperatures. Moreover,
they showed that the crossover strain rate as a function of
temperature tracks more or less the inverse relaxation time:
Strain begins to have a pronounced effect on particle diffusion
once the strain per relaxation time exceeds an amount of order
10−3–10−2. Our results are consistent with theirs in terms
of the interplay of strain-driven and thermal contributions to
particle motion. They did not consider density as a parameter,
but our results show that it can be simply accounted for
through isomorph invariance and by remembering that “at
high temperature” really means “on high-temperature iso-
morphs.”

VII. DISCUSSION

A. Implications for theories for flow stress

Several authors have studied the dependence of flow stress
of simulated amorphous solids below the glass transition on
thermodynamic parameters such as density, temperature, and
strain rate and system size [18,31,39,48,49]. System size
becomes relevant for the flow stress at the lowest temper-
atures where deformation occurs through avalanches [47].
Some of these works have attempted to determine theoretical
expressions or scaling forms to account for size, temperature,
and strain rate dependence of the rheology of amorphous
solids [31,48,49], while only a few have included density
as a variable [18]. One of the crucial implications of the
existence of isomorphs is that it does not make sense to
think of temperature dependence in isolation from density
dependence. We therefore hope that future theoretical work on
the rheology of amorphous solids will take this into account.
To illustrate this point we consider the expression developed
in Ref. [31] for the flow stress as a function of T and γ̇ ,

σ (γ̇ , T ) = A0 + A1

√
γ̇ − A2T 2/3[ln(A3T 5/6/γ̇ )]2/3, (9)

where A0, A1, A2, and A3 are constants. The form of the
expression and the interpretation of the constants were derived
through a combination of the theoretical considerations and
fitting to data from two-dimensional simulations. We make no
claims regarding its validity for three-dimensional situations,
but rather wish to illustrate how this expression can be made
isomorph invariant in order to ensure consistency with hidden
scale invariance. We assume three dimensions in the sense
that ρ has units of inverse length cubed. To include density
dependence we must allow the Ai to be functions of density
whose functional form will be determined by isomorph theory.
Using standard reduced units (an alternative will be discussed
below), we rewrite Eq. (9) in terms of the reduced flow stress

σ̃ ≡ σ/ρkBT and strain rate ˜̇γ :

σ̃ (γ̇ , ρ, T )

= A0(ρ)

ρkBT
+ A1(ρ)

ρkBT

√
˜̇γ ρ1/6(kBT/m)1/4

−A2(ρ)

ρkBT
T 2/3{ln[A3(ρ)T 5/6ρ−1/3(kBT/m)−1/2/ ˜̇γ ]}2/3.

(10)

To proceed from here we recall from earlier work [50]
that an isomorph in the density-temperature plane may be
written as h(ρ)/kBT = const, where the constant indexes the
isomorph. The function h(ρ) has not been used so far in the
present work; it is the basis of theoretical analysis connecting
the shape of the isomorphs to the interatomic potential [9,50].
In particular, for any Lennard-Jones system (including mix-
tures), h(ρ) has the form

h(ρ) = Aρ4 − Bρ2. (11)

Sometimes called the density scaling function, h(ρ) describes
the way the potential energy surface depends on density. The
assumption that this depends only on density (and not on
which isomorph one considers) is equivalent to assuming that
γ depends essentially only on ρ. Indeed, γ is then simply the
logarithmic derivative of h(ρ):

γ (ρ) = d ln h(ρ)

d ln ρ
. (12)

The normalization of h(ρ) is arbitrary, but it makes phys-
ical sense to assume that it has units of energy, since it
describes the density scaling of the potential energy surface.
If Eq. (10) is to hold in a system with good isomorphs, then
the individual terms must be isomorph invariant. Specifically,
they must be writable as powers of the combination h(ρ)/kBT .
Taking the first as an example, we find that A0 = Ã0ρh(ρ),
where Ã0 is a dimensionless constant, i.e., independent of both
temperature and density. The full set is, as can be checked
straightforwardly,

A0(ρ) = Ã0ρh(ρ), (13)

A1(ρ) = Ã1ρ
5/6[h(ρ)]3/4, (14)

A2(ρ) = Ã2ρ[h(ρ)]1/3, (15)

A3(ρ) = Ã3ρ
1/3[h(ρ)]−1/3. (16)

Inserting these expressions into Eq. (10) yields the following
expression for the reduced flow stress as a function of the
isomorph scaling combination h(ρ)/kBT and the reduced
strain rate:

σ̃ (γ̇ , ρ, T ) = Ã0
h(ρ)

kBT
+ Ã1

(
h(ρ)

kBT

)3/4√
˜̇γ

− Ã2

(
h(ρ)

kBT

)1/3
{

ln

[
Ã3

(
h(ρ)

kBT

)−1/3/
˜̇γ

]}2/3

.

(17)

This is an explicitly isomorph-invariant theoretical expression
for the flow stress as a function of ρ, T , and γ̇ , based on
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the original expression whose validity was determined (or
assumed) for a particular density. However, given that the
original expression had a finite limit as T → 0, it seems
problematic that the reduced stress therefore diverges as we
consider isomorphs lower and lower in temperature. There-
fore, we must consider alternative definitions of reduced units
when approaching zero temperature.

B. Alternative reduced units

Our definition of reduced units, apart from the length unit,
is based on thermal motion; thus the energy scale is e0 = kBT ,
the velocity scale is v0 = (kBT/m)1/2, and the timescale is the
time for a particle with such a constant velocity v0 to cross the
interparticle spacing, t0 = ρ−1/3(kBT/m)−1/2. This choice has
the advantage of using only macroscopic parameters; apart
from the particle mass, no knowledge about the system under
consideration (its Hamiltonian, phase diagram, or isomorphs)
is needed. However, as noted above, this definition becomes
problematic as temperature approaches zero; it is natural at
finite temperature but not in the limit of zero temperature,
where the thermal timescale diverges. A vibrational timescale
which is well defined in that limit is preferable. Noting that the
definition of reduced units must satisfy the condition that the
reduced quantity is still constant along isomorphs, we can de-
fine a new energy scale e1 = e0

h(ρ)
kBT = h(ρ) and timescale t1 =

t0( h(ρ)
kBT )−1/2 = ρ−1/3[h(ρ)/m]−1/2. These are independent of

T and therefore suitable for use in the limit T → 0. From
the interpretation of h(ρ) in terms of the curvature of the
pair potential at the nearest-neighbor distance [51], we can
interpret t1 as a vibrational timescale for a single neighbor
pair. Thus we can introduce an alternative reduced stress,
denoted by a circumflex,

σ̂ ≡ σ

ρh(ρ)
= σ̃

kBT

h(ρ)
(18)

and alternative reduced strain rate

ˆ̇γ ≡ γ̇ ρ−1/3[h(ρ)/m]−1/2 = ˜̇γ

(
h(ρ)

kBT

)−1/2

. (19)

It is straightforward to rewrite Eq. (17) in terms of the alter-
native reduced units, giving

σ̂ (γ̇ , ρ, T ) = Ã0 + Ã1

√
ˆ̇γ

− Ã2

(
kBT

h(ρ)

)2/3
{

ln

[
Ã3

(
kBT

h(ρ)

)5/6

ˆ̇γ −1

]}2/3

.

(20)

We thus recover an expression which resembles the original
equation (9) while still being explicitly isomorph invariant.
We stress that the two expressions [Eqs. (17) and (20)] are
equally valid and that for the purpose of checking for iso-
morph invariance of a quantity the choice of which system
of reduced units is not important except for practical pur-
poses, e.g., when T = 0. However, it can become relevant
when comparing different isomorphs in order to identify the
relevant physics, or for constructing a theory of the latter,
which is evident in the example above. Another example is
the comparison of flow stress shown in Fig. 4, where the

strong temperature dependence of the reduced flow stress was
partly ascribed to our choice of reduced units. Using ρh(ρ)
instead of ρkBT would probably reduce this variation and is
potentially therefore more relevant for the glassy regime. Thus
the advantages of one choice over the other are potentially
greater clarity, insight, or ease of interpretation.

Lerner and Procaccia studied the flow stress for simulated
glasses under steady-state conditions covering both finite
temperatures and the athermal limit [18], using a scaling
theory based on the approximation of their pair potential
by an inverse power law. Their system is modeled using an
approximate inverse power law potential, which means that
h(ρ) is approximately a power law ργ , in their notation ρν−1.
Noting that their exponent ν corresponds to our γ + 1, all
their scaling expressions are in fact compatible with isomorph
theory, once one recognizes that their choice of time scaling is
equivalent to our alternative reduced units. Another example
where the alternative choice of reduced stress was used was
the athermal simulations of Ref. [15], where the analysis was
based on the isomorph theory and it was assumed (with little
discussion) that the correct scaling of the stress at T = 0 was
ρh(ρ). Our point in the present discussion is that there is a
choice of which system of reduced units to use and that that
choice is related to how relevant physics is best revealed. It
is analogous to the choice of whether we study the standard
diffusivity based on mean-square displacement as a function
of time or the strain normalized diffusivity based on the mean-
square displacement as a function of strain [31]. We note
again, however, that using h(ρ) [9,50] is less straightforward
than kBT because it depends on the potential and is not
directly available in the simulation. In some cases, including
the Kob-Andersen system used here, it is known analytically
[50,51] [see Eq. (11)]; otherwise it must be identified from
the shape of the numerically determined isomorph before
conversion into reduced units can take place.

C. Improvements to future simulations

Future work in this area could benefit from the following
improvements. (i) Our protocol assumes that aging is negligi-
ble in our glassy undeformed systems such that it makes sense
to generate isomorphs using fluctuations as if in equilibrium.
It may be possible to avoid this assumption by using the
fluctuations from the steady-state shearing as the next best
thing to equilibrium fluctuations. This possibility needs to
be developed and evaluated theoretically. (ii) Another route
to glassy isomorphs is to use the forces on particles in a
single configuration, bypassing the need for equilibrium [52].
(iii) For comparing different isomorphs, consistent reduced
strain rates should be used and, moreover, different choices
of how to define the reduced units should be considered, as
discussed above.

VIII. CONCLUSION

We have simulated isomorphs for the Kob-Andersen bi-
nary Lennard-Jones glass and compared their static structure
and their dynamics under steady-state shearing deformation.
Two isomorphs were generated using the potential energy
and virial fluctuations during an NV T simulation (no shear),
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assuming that aging effects could be ignored. This is probably
a reasonable assumption for the lower-temperature isomorph,
but this is less clear for the high-temperature one, which is
only a few percent below the conventional mode-coupling
temperature for this system and therefore can be equilibrated
as a liquid with longer (but still feasible) simulation times
than we have used here. Nevertheless, excellent collapse of
the radial distribution function is observed and good collapse
for most of the dynamical measures. The worst collapse is
observed for the shear stress autocorrelation function, which
exhibited a systematic variation of the characteristic decay
strain along an isomorph. Better statistics, i.e., longer runs,
would probably help, but a more careful determination of
the correct isomorph might be necessary, as it could be that
this quantity is simply more sensitive to deviations from the
correct isomorph than the others we have investigated. Going
beyond simply checking for isomorph invariance, we have an-
alyzed the distributions of stress changes over different strain
intervals. We showed that different features emerge according
to whether purely thermal effects are visible or avalanches, as
indicated by an exponential tail in the distribution, or more
complex and extremely non-Gaussian distributions at larger
strain intervals which include multiple avalanches. Isomorph

invariance is clear in all the data presented for this analysis. In
comparing the mean-square transverse particle displacements,
in addition to almost perfect isomorph invariance, we noted
how the MSD curves apparently become independent of tem-
perature in the limit of long times, but also that one has to
be careful to compare the same reduced strain rates. We note
that no noticeable difference in the quality of the isomorphs
is observed, despite the lower-temperature isomorph showing
lower values of the correlation coefficient R (see Table I). In
the discussion we showed how the existence of isomorphs can
inform and constrain the development of analytical theories
for how, for example, the flow stress can depend on density,
temperature, and strain rate. In addition, an alternative defini-
tion of reduced units emerged, the full implications of which
are left for future work.
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