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ABSTRACT: Intergranular fracture in polycrystals is often simulated by finite elements coupled to a

cohesive zone model for the interfaces, requiring cohesive laws for grain boundaries as a function of

their geometry. We discuss three challenges in understanding intergranular fracture in polycrystals.

First, 3D grain boundary geometries comprise a five-dimensional space. Second, the energy and

peak stress of grain boundaries have singularities for all commensurate grain boundaries, especially

those with short repeat distances. Thirdly, fracture nucleation and growth depend not only upon the

properties of grain boundaries, but also in crucial ways on edges, corners and triple junctions of even

greater geometrical complexity. To address the first two challenges, we explore the physical

underpinnings for creating functional forms to capture the hierarchical commensurability structure in

the grain boundary properties. To address the last challenge, we demonstrate a method for

atomistically extracting the fracture properties of geometrically complex local regions on the fly from

within a finite element simulation.
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Introduction

The nucleation and propagation of cracks in practical

engineering materials depends strongly on the mes-

oscopic structure; grain boundaries, polyphase

inclusions, dislocations and other defects determine

the toughness. Can continuum computational

modelling be used to quantitatively study such

complex failure modes?

Consider brittle intergranular fracture—rupture at

the boundary between two crystallites. Ignore for the

moment problems like embrittlement caused by

impurity segregation to grain boundaries, and as-

sume a clean, single-phase, equilibrium grain

boundary. Direct atomistic simulations are infeasible

for anything larger than nanocrystals; even simula-

tions that focus on the boundaries [1] will be

overwhelmed by the number of relevant atoms for

systems larger than microns in scale. Hence, let us

imagine a finite element simulation of the polycrys-

tal coupled to, say, cohesive zone models (CZM) for

each interface [2–5]. (A cohesive law gives the crack

opening as a function of the traction across the

interface; it is often parameterised by a peak stress

and a total energy associated with cleaving [6].) Can

one use atomistic models to measure the fracture

properties of the individual boundaries, and then use

these properties in a realistic continuum fracture

simulation?

Previous CZM simulations of polycrystals have

used cohesive laws that are guessed, chosen for

numerical convergence, and do not take into account

the effect of varying grain boundary geometries

within the material. The same cohesive law is used

throughout the material despite the fact that in a real

material, the geometries of the grain boundaries/

phase interfaces must vary [7–9]. Yamakov et al. [10,

11] describe a method for calculating cohesive laws

atomistically by calculating the stresses and dis-

placements in 3D cracks propagating in ductile Al for

one grain boundary geometry and incorporate this

method into multiscale simulations of intergranular
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fracture. Zhou et al. [12] use molecular dynamics

(MD) to derive cohesive laws for the fracture between

two brittle materials under mixed-mode loading

conditions.

We outline here some serious challenges involved

in continuum modelling of intergranular fracture:

the geometrical complexity of three-dimensional

grain boundaries, singularities at all commensurate

grain boundaries and the important role of features

such as triple junctions of grains that are not

described by planar cohesive laws [6, 13–15]. We then

suggest a new approach to overcome these chal-

lenges: using direct atomistic simulations of local

regions of interest and describe a corresponding open

source software tool.

Geometrical Complexity

The first challenge is that of geometrical complexity.

The cohesive law will depend on the structure of the

grain boundary. The macroscopic geometry of a 3D

grain boundary depends on five parameters that

describe the relative orientations of the two grains.

(The fracture dynamics may in principle depend on

properties of the crack that are not treated explicitly

by the CZM, such as the orientation of the crack front

within the grain boundary or the three separate stress

intensity factors.) The atomistic structure also

depends on how the two crystal lattices are translated

with respect to one another along the three direc-

tions, which can greatly affect the pattern of atoms

along the boundary and hence the peak stress and

energy [13]. One particular shift will constitute a

global energy minimum corresponding to the most

natural configuration [13].

In a polycrystal, one grain will have to find an

energy-minimising configuration with several other,

neighbouring grains. For a particular grain boundary

in a polycrystal, where each grain has been pinned by

other neighbouring grains, there will be a competi-

tion between elastic straining and plastic deforming.

For thick grains, in equilibrium, and away from

intersections, one can show that it is advantageous

for the crystallites to strain slightly to allow the

boundary to find the global energy minimum.

To compute the cohesive properties of grain

boundaries efficiently, it is useful to use periodic

boundary conditions in directions perpendicular to

the grain boundary, which demands that the two

crystals have finite repeat distances along the inter-

face and that the repeat distances be commensurate

with one another. We have found a systematic

method of finding commensurate grain boundaries

[13] and have also generalised it to allow for slight

elastic strains to mesh the two crystal boundaries

together. We can approximate commensurate grain

boundaries by allowing small strains in either direc-

tion. Figure 1 describes the commensurate grain

boundaries for 2D hexagonal crystals, Figure 2 shows

a cross section of the five-dimensional space of com-

mensurate and near commensurate grain boundaries

for three-dimensional face centered cubic crystals.

Not only are these commensurability questions of

practical importance in efficiently computing the

properties of grain boundaries, commensurate grain

boundaries (especially those with short repeat dis-

tances) also have especially low energies and high
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Figure 1: Commensurate 2D Grain Boundaries. The set of

points above represent all (105) 2D grain boundary geometries

that can be simulated in a periodic box of 70 lattice constants or

less, with a strain of 0.05% or less. h1 and h2 are the tilt angles

that define the grain boundary geometry. The black dots rep-

resent geometries that are exactly rational while the gray dots

represent geometries that approximate commensurate grain

boundaries. There are gaps near perfect crystals, symmetric

grain boundaries, and high symmetry grain boundaries because

creating a new, nearby geometry requires adding flaws (extra

dislocations) at large separations [13]
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Figure 2: Commensurate 3D Grain Boundaries. The set of

points above represent a stereographic projection [defined for

normal vector n! by n!¼ ði; j; kÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i2 þ j2 þ k2

p
¼ (sin a cos b, sin

a sin b, cos a)] of all face centered cubic surface orientations that

are commensurate with the (100) surface within an area <100

square lattice constants with a strain of 0.1% or less. This

constitutes a three dimensional cross section of the five

dimensional space of grain boundary geometries, where the

twist angle parameter has been collapsed onto a 2D plot
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peak stresses [13, 16]. Modelling the geometry

dependence of the peak stress and energy could be

relatively straightforward if they depended in com-

prehensible ways on the five geometrical parameters.

Singularities at Commensurate Grain
Boundaries

The second challenge in continuum models of frac-

ture is to incorporate the singularities associated with

commensurate geometries into appropriate func-

tional forms. It is well established that cusp singu-

larities in the energy occur at special high-symmetry

grain boundaries with low repeat distances [13, 16–

19]. The cusps in energy can be understood by

thinking of a high-symmetry boundary as an unde-

formed reference crystal [13]. Nearby grain bound-

aries (whose crystallites are rotated by a small angle h

from the high-symmetry boundary) are thus

described by decorating the high-symmetry bound-

ary with a few extra dislocations, just as a low-angle

grain boundary in a crystal can be described as an

array of well-separated dislocations. This analogy

leads to a functional form for grain boundary energy

as a function of tilt angle in which the cusps around

the special high-symmetry grain boundaries have the

same h log h form as low-angle grain boundaries [13].

Figure 3A shows the results for a systematic study of

symmetrical 2D grain boundaries and the resulting

fitting function [13].

For the peak stress, it is known that there are jumps

at the same special grain boundaries [13, 16, 18]. We

can also understand these jumps by using the dislo-

cation picture described above [13]. As we add a dis-

location to the high-symmetry grain boundary, we

add a nucleation point for fracture, causing a dis-

continuity in the peak stress. As a result, the plot of

peak stress versus tilt angles is discontinuous at every

commensurate geometry (Figure 3B). By considering

the elastic interaction between the extra dislocations,

we have been able to understand also the dependence

of the peak stress in the vicinity of the high-

symmetry boundaries (see Figure 3B and [13]).

Importance of Local Geometries

Are cohesive laws enough? We have studied this

question computationally [6] by comparing a direct

atomistic simulation of polycrystalline fracture with

a finite element simulation of the same geometry

using cohesive law parameters derived from the same

interatomic potential. Figure 4 shows a snapshot of

the two simulations of polycrystalline fracture in

Stillinger-Weber silicon. Both in this case and for

other simulations, the atomistic simulations fail at

significantly lower stresses than the continuum sim-

ulations. Crack nucleation in both atomistic and

continuum simulations happens not only in the

middle of grain boundaries, but also at the triple

junction lines, edges and corners which are not

quantitatively described by the cohesive laws for the

grain boundary interfaces. Similarly, quantitative

understanding of how the crack turns, branches or

goes intragranular (Figure 4) at triple junctions

demands that we understand the effects of the

irregular atomistic configurations at these junctions.

The third challenge is thus to develop an effective

computational method for modelling more complex

local geometries. One in principle could incorporate

an analytical understanding of these local geometries
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Figure 3: Singularities at Special Grain Boundaries. Cusps in

energy appear at high symmetry grain boundaries (A) and have

the same h log h shape as the energy of low angle grain

boundaries. The red line is the functional form described in

[13]. The peak stress as a function of tilt angle (B) is discon-

tinuous everywhere, with higher values at special tilt angles

corresponding to high symmetry grain boundary geometries.

The dependence of peak stress on angle near the high symmetry

grain boundaries (lines and parabolas shown) can be explained

using the interactions of the extra dislocations added [13]. The

inset shows the peak stress for the grain boundary with tilt

angle 49.1 and the nearby geometries
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into, for example, cohesive laws for triple junctions,

but the geometrical complexity would seem

daunting. Can one rely here on direct atomistic

simulations? Brittle crack nucleation is a local phe-

nomenon, and the intersection of a growing crack

with a triple junction edge again will happen at a

point. A feasible atomistic simulation of the local

region of interest could be launched whenever the

continuum simulation reached a stress state where its

cohesive laws become unreliable. The information

about the local geometry (elastic strains, grain ori-

entations and impinging crack surfaces) would be

transferred from the continuum simulation to

generate the atomistic configuration, and the results

of the atomistic simulation (nucleation thresholds,

crack branching and turning events) passed back to

the finite element simulation.

Overlapping Finite Elements and Molecular
Dynamics

To address this third challenge, we have developed a

tool called Overlapping Finite Elements and Molec-

ular Dynamics (OFEMD), which uses the DigitalMa-

terial [20] atomistic simulation environment to

perform MD simulations within a finite element

mesh. An example of a simulation of fracture at a

triple junction of grains generated automatically by

OFEMD is shown in Figure 5. In this example, the

finite element model (FEM) is that of a polycrystal

generated with a Voronoi tessellation, and we have

used the MEAM potential [21, 22] to model Si.

Overlapping Finite Elements and Molecular

Dynamics retrieves information about the geometry,

orientation and boundary strains from a finite ele-

ment simulation by communicating with a remote

XML repository or database via WebServices or SQL

[23, 24]. The user has the option to decorate a local

region of interest centered on an arbitrary point,

mesh feature (vertex, edge or face) or the entire mesh

to perform an overall MD to FEM comparison as in

[6]. For decorating local regions of interest, the user

may choose an atomic configuration of a sphere,

cylinder or rectangular prism and the corresponding

length scale parameters. If the user specified geome-

try spans multiple grains within the FEM, OFEMD

initialises each grain with atoms configured in the

lattice orientation retrieved from the FEM. A shell of

atoms, indicated by the darker atoms in Figure 5 is

used to impose the boundary strains extracted from

the continuum simulation.

(B)

(C)

(A)

Figure 4: Comparison of Atomistic and Continuum Fracture

Simulations. The figures above show a center cross-section of

the atomistic (A) and continuum (B) polycrystal simulations.

The geometry is that of a cube in cube with three crystal ori-

entations for the upper half of the outer cube, lower half of the

outer cube, and the inner cube. An upwards displacement is

imposed on the top face. The color scale indicates the vertical

component of stress. In the FEM simulation (B), we include an

interface through the center of the inner cube to allow for

intragranular fracture. The atomistic simulation fails at a strain

0.02 smaller than the FEM simulation (a percentage error of

20%), with the crack propagating partially intragranularly

through the inner cube and partially through the interface at

the top of the inner cube. The continuum simulation cracks

straight through the center plane of the inner cube [6]

(B)(A)

Figure 5: Direct Atomistic Simulation of Triple Junctions. A cylinder of atoms decorates a finite element edge that coincides with a

triple junction of grains. (A) shows the initial configuration. (B) shows the atoms after they have been deformed according to the

finite element displacements and relaxed, opening a crack along two of the interfaces
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After relaxing the atoms to find a natural configu-

ration, the atoms are deformed according to the

mesh displacements solved for by the finite element

simulation. The outer shell of atoms are held fixed

while the inner atoms are relaxed according to the

chosen dynamical algorithm.

Overlapping Finite Elements and Molecular

Dynamics can feed back to larger scale, continuum

simulations in three ways: with decision-making

information such as how a crack propagates at a triple

junction of grains, crack initiation parameters and

overall comparison with small scale continuum sim-

ulations. If a crack nucleation, branching or turning

event is found, the continuum simulation can be

updated, and the crack grown with continuum

models such as the CZM.

To further improve on the fidelity of polycrystal

fracture simulations, OFEMD could be used with a

tool such as OOF [25, 26] which creates finite

element simulations directly from experimental

microstructure data. The result will be the capability

to perform fully atomistic, fully continuum, or

multiscale fracture simulations based on realistic

geometries that can be compared directly to exper-

iment.

Conclusion

We have discussed three main challenges involved in

continuum modelling of polycrystal fracture. First,

exploring the cohesive properties of 3D grain

boundaries involves exploring a 5D space. Second,

the peak stress and energy have singularities at all

commensurate grain boundaries. Even if it were not

for the first two challenges, our comparisons of

atomistic and finite element simulations of poly-

crystal fracture show that cohesive properties of the

interfaces alone are not enough to model the fracture

of polycrystals using continuum methods. Sites such

as triple junctions, edges and corners of grains are

important nucleation sites. To resolve this last chal-

lenge, we suggest the use of direct atomistic model-

ling of local regions of interest.
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