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Abstract

The focus in this study is on the fragility concept, that is the degree of departure

from Arrhenius temperature dependence of the relaxation time in the viscous liquid.

Fragility has in the course of the last decade been shown to (or suggested to) correlate

with a large number of properties in the liquid and the corresponding glass. We

develop a set of criteria for scrutinizing these types of correlations by introducing

pressure as a control variable in addition to temperature. Particularly we show that

correlations to isobaric fragility can be either signatures of a relation to the effect of

density on the relaxation time, or on the relation to the temperature dependence of

the relaxation time, or to a balanced combination of the two.

These criteria are used in the analysis of an extensive new set of data on the tem-

perature and pressure dependence of a number of different dynamical variables in

molecular and polymeric glass-forming systems. We particularly study the width of

the alpha relaxation by dielectric spectroscopy, the relative intensity of the boson

peak and the mean square displacement by neutron scattering and the nonergodicity

factor by inelastic X-ray scattering.

In the study of the width of the alpha relaxation as well as the relative intensity

of the boson peak we find that they do not relate to the effect of density on the

relaxation time, and that a physically meaningful correlation in these cases should be

a correlation to isochoric fragility rather than to the conventional isobaric fragility.

The mean square displacement is found to relate to a balanced combination of

temperature and density, while we suggest that the nonergodicity factor evaluated

at Tg is correlated with the relative effect of density on the viscous slowing down.
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Chapter 1

Introduction

A fundamental question in condensed matter science is to understand what governs

the increase of relaxation time, and ultimately the glass formation, in liquids upon

cooling. This transition from liquid to glass is intriguing because it is found in all

types of systems, yet it happens in a qualitatively different way from one system

to another: The increase of relaxation time and viscosity when the temperature is

lowered and the formation of a non-equilibrium solid state are universal in the sense

that it regards all types of materials ranging from metals to polymers. However,

the relaxation time has qualitatively different temperature dependencies in different

systems. This qualitative difference can be quantified via the notion of “fragility”,

which is a measure of departure from Arrhenius temperature dependence [Angell,

1991]. The fragility concept has become a darling in the community because it

captures the notion of universal and specific at the same time. There is something

universal we want to understand; namely, the viscous slowing down, particularly

the super-Arrhenius temperature dependence of the relaxation time. Yet there is

something specific to each system that we need to capture - this is embodied in the

variations of fragility. The central question in the field - “what controls the viscous

slowing down?” - can therefore be rephrased as “what governs the fragility of a

system?”

The attempts to answer this question has spread in abundant jungle of empirical

and theoretical results. Though the starting point of the studies is the same they

branch out in each their direction. The aim of this work is to make contact between

two of these branches: To test if the results found are consistent with each other,

and to try to gain more understanding of one by imposing the consequences of the

other.

Within the past decades a lot of experimental effort has been put into correlating
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2 Introduction

fragility with other properties of the liquid and the glass. These correlations all

refer to the conventional fragility measured at constant atmospheric pressure, that

is the isobaric fragility at atmospheric pressure. But glasses can also be formed

along isobars at elevated pressure, at constant density by isochoric cooling, or by

compression along isotherms. There has been an explosion in the amount of data on

the viscous slowing down under pressure within the last couple of years. But what

happens to the correlations with fragility when we study the liquid at high pressure?

Do the properties we try to correlate with fragility share the pressure dependence

of the isobaric fragility? How about isochoric fragility? Is it possible to extract a

consistent picture? Can the pressure/density dependence of the dynamics help us

understand the physical meaning of the correlations?

The primary aim of this thesis is to address the above questions. Our starting point

is hence two types of empirical results

• Based on studies of relaxation in liquids under pressure it appears to be general

that the relaxation time can be expressed as a function of e(ρ)/T . [Alba-

Simionesco et al., 2002; Tarjus et al., 2004 a; Dreyfus et al., 2004; Casalini and

Roland, 2004]. It follows from this scaling law that the isochoric fragility is

independent of density.

• Fragility has been shown (or suggested) to correlate large number of proper-

ties in the liquid and the corresponding glass. We shall focus on correlations

between fragility and other dynamical properties. We consider the following

four properties which have been suggested to correlate to larger fragility (i)

a stronger deviation of the relaxation functions from an exponential depen-

dence on time (a more important “stretching”) [Böhmer et al., 1993], (ii) a

lower relative intensity of the boson peak [Sokolov et al., 1993, 1997], (iii)

a larger temperature dependence of the short time mean square displacement

just above Tg [Buchenau and Zorn, 1992; Dyre, 2004; Ngai, 2000] (iv) a smaller

ratio of elastic to inelastic signal in the X-ray Brillouin-spectra [Scopigno et al.,

2003].

The questions are addressed partly by a general analysis of the consequences one can

draw by combining the two (types of) results and partly by extensive experimental

studies of the pressure and temperature dependence of the properties i-iv.

Previous studies on boson peak, mean square displacement and X-ray Brillouin

under pressure are very scarce. Our results therefore not only shed light on the

proposed relations to fragility but also deals with understanding the respective role
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of temperature and density for these dynamical properties themselves. It is espe-

cially the combination of the density dependence of different dynamical quantities

presented here which is unique and interesting.

The report is structured as follows: Chapter 2 gives an introduction to the glass

transition phenomenology as studies at atmospheric pressure, including a short in-

troduction to the correlations that are considered in the later chapters. The phe-

nomenology of the alpha relaxation when studied under pressure is reviewed in the

first part of chapter 3, and the second part of chapter 3 deals with formulating how

pressure can be used to test correlations between fragility and other properties. The

principles of the experimental techniques, dielectric spectroscopy inelastic neutron

and inelastic X-ray scattering are found in chapter 4 where we also present the

background results used for treating the data. Chapters 5 to 8 present the experi-

mental results on the temperature and pressure dependences of different dynamical

properties. Each of these chapters has a section devoted to the proposed correlation

between the property in question and the fragility. Chapter 5 presents a study of the

relaxation time and spectral shape the alpha relaxation probed by dielectric spec-

troscopy. Chapter 6 contains a study of the high Q collective modes measured by

inelastic X-ray scattering. The mean square displacement at the nanosecond time

scale measured by neutron backscattering is presented in chapter 7. The effect of

pressure on the boson peak is presented in chapter 8. The results of chapters 3 to 8

are finally combined, discussed and concluded on in chapter 9.

The samples we have used in the different experiments include a number of different

organic molecular liquids as well as polyisobutylene of different molecular weights.

The characteristic of the samples including their equation of state, data on fragility

and related dynamical properties are given in appendix A.





Résumé du chapitre 2

De manière générale, les liquides cristallisent quand ils sont refroidis en dessous de

leur température de fusion. Cependant, si on les refroidit suffisamment rapidement,

il est souvent possible d’éviter la cristallisation et d’obtenir un liquide surfondu.

Quand on abaisse encore la température leur viscosité augmente énormément jusqu’à

ce que les molécules ne puissent plus bouger : tous les mouvements sont alors dits

“gelés”. A température plus basse, le liquide se comporte comme un solide et on dit

que l’on a formé un verre. Cette transition entre le liquide et le verre s’appelle la

transition vitreuse.

Dans ce chapitre, on introduit la transition vitreuse et les grandeurs dynamiques qui

nous intéressent. Les premiers paragraphes sont consacrés à la dynamique lente : ils

traitent de la transition vitreuse, de la fragilité et du caractère étiré de la relaxation.

On présente ensuite une définition de la dynamique rapide et on discute la relation

entre la dynamique rapide dans le liquide et la dynamique qui reste active dans

le verre. Les corrélations proposées dans la littérature entre les caractéristiques

dynamiques d’un liquide vitrifiable et sa fragilité sont présentées dans le dernier

paragraphe de ce chapitre.





Chapter 2

Slow and fast dynamics

2.1 The glass transition

By cooling a liquid at sufficiently high rates it is possible to avoid crystallization and

to form a supercooled liquid; a thermodynamical metastable equilibrium state with

a higher free energy than the crystal. We will in general refer to the supercooled

liquid as the equilibrium liquid, even if it is metastable, because the important point

is that all properties are unique functions of the state point, for example defined by

the temperature and the pressure.

The volume (and enthalpy) of a given liquid in general decreases with decreasing

temperature, meaning that whenever the temperature is decreased by some amount,

the volume will decrease by some amount given by the expansivity. However, the

volume does not reach its new equilibrium value instantaneously, rather the liquid

equilibrates in some way over time. This process is called structural relaxation and

the associated characteristic time is the structural relaxation time or the alpha re-

laxation time. The alpha relaxation is what we refer to as the slow dynamics of the

system. The alpha relaxation time is closely related to the viscosity of the liquid,

and as the viscosity grows upon cooling so does the time required to reach equilib-

rium. The increase of relaxation time and viscosity, the viscous slowing down, is a

dramatic phenomenon at low temperatures because changes of the temperature by

a few percent leads to changes in the relaxation time by several orders of magnitude.

The viscous slowing down has the consequence that there is a temperature, the glass

transition temperature Tg, at which the volume can no longer reach its equilibrium

value within the time scale of a given cooling experiment. At lower temperatures

the liquid will no longer be an equilibrium liquid because the structural relaxation

of the liquid is frozen in. The non-equilibrium solid formed in this way is called a

7



8 Slow and fast dynamics

glass. The volume of the glass is also dependent on temperature, but its temperature

dependence is weaker than that of the liquid. This is so because the molecules in

the liquid rearrange upon cooling while the glass contracts only due to a decrease

in the distance between the molecules. The difference between the liquid and the

glass responses to temperature changes gives rise to an abrupt change in slope on a

T − V plot. A typical plot is shown in figure 2.1. The change in the temperature

dependence of the volume gives rise to a discontinuity in the expansivity when pass-

ing Tg. The heat capacity and other thermodynamical derivatives have equivalent

discontinuities at Tg. If the glass is kept below Tgthe liquid approaches equilibrium,

though it happens slowly, and the volume and other properties are therefore time

dependent; the glass ages. This means that strictly speaking the thermodynamic

derivatives are not strictly well defined in the glass. It also leads to hysteresis in

the system. The hysteresis is seen in the re-heating curve which is also indicated in

figure 2.1.

The relaxation time increases very rapidly in the vicinity of Tg; this means that the

aging processes are very slow already a few degrees below Tg. When considered at

times shorter than the relaxation time the glass behaves like a solid in all senses.

It is therefore possible to measure and assign meaningful “apparent” values to the

properties of the glass, including the thermodynamical derivatives (figure 2.1).

Temperature

V
  o

r 
 H

Temperature TgTg

α
P

or
c P

Figure 2.1: Illustration of the temperature dependence of volume, enthalpy and their
temperature derivatives when passing the glass transition.

The freezing in of the liquid at Tg has the consequence that the structure of the

glass is that of the liquid when it fell out of equilibrium at Tg. The glass is hence

a disordered solid, and it cannot be distinguished from a liquid from a structural

point of view.

A liquid has a Tg that depends on the cooling rate (lower cooling rates give lower Tg).
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Cooling at very high rates is called quenching. The glasses formed by quenching have

larger specific volume because their properties are frozen in at a higher temperature

and a corresponding higher volume. The term Tg is traditionally used about the

temperature at which the liquid falls out of equilibrium when cooled at standard

experimental rates [Ediger et al., 1996]. This in practice happens at the temperature

where the viscosity is 1012 Pas ∼ 1013 Pas and the alpha relaxation time (τα) is of

the order 100 s ∼ 1000 s. The criterion τα = 100 s is often used as a definition of

the glass transition temperature.

The traditional route to glass-formation is to cool the liquid at constant atmo-

spheric pressure. However, the characteristic alpha relaxation time also increases

when pressure is increased along an isotherm. This leads to a freezing in of the

structural relaxation at a given pressure Pg, where the relaxation time has reached

100 s ∼ 1000 s. The effects of pressure and temperature on the viscous slowing down

can be considered jointly by describing the alpha relaxation time as a function of the

two: τα(P, T ). Based on this function it is possible to determine lines of constant

alpha relaxation time in the parameter space defined by pressure and temperature.

We shall refer to lines of constant relaxation time as isochrones and consider the

Tg(P ) line as a special case of an isochrone.

It has been suggested that the viscous slowing down observed at atmospheric pres-

sure is due to the decrease of the specific volume which follows from cooling [Cohen

and Turnbull, 1959]. However, measurements of the relaxation time as a function

of temperature and pressure have clearly shown that volume alone does not control

the relaxation time. One way to illustrate this is by showing that the isochrones are

not parallel to the isochores in the T − P diagram.

The other extreme would be a situation where the relaxation time is only tem-

perature dependent. The simplest model of the temperature dependence would be

an activated behavior, where the viscosity or relaxation time is controlled by some

temperature independent activation energy (Ea, measured in units of temperature).

This would lead to an Arrhenius temperature dependence:

η = ηp exp

(

Ea

T

)

and τ = τ0 exp

(

Ea

T

)

, (2.1.1)

where ηp and τ0 are the high temperature limits of the viscosity and the alpha

relaxation time respectively. Arrhenius behavior is actually (almost) followed by

some systems (see below), but this is not the general case. The dependence on

temperature is usually super-Arrhenius, i.e. stronger than the Arrhenius form. It

is possible to keep the notion of an activated behavior by allowing the activation
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energy in equation 2.1.1 to be temperature dependent. In most cases, it also appears

that this activation energy is density (or pressure) dependent. Such an activation

energy can formally be defined from the equation:

τα(ρ, T ) = τ0 exp

(

E(ρ, T )

T

)

, (2.1.2)

or a similar expression for the viscosity.

Within the last ten years there has been a lot of progress in mapping out the tem-

perature and pressure (or T and density) dependences of the alpha relaxation time

particularly in terms of the temperature and density dependences of E(ρ, T ). This

approach is central to the present work. However, before presenting the findings in

this field we shall take a step back and introduce some of the other central concepts

and findings in the field. These latter are originally based on studies performed at

constant atmospheric pressure.

In chapter 3 we return to the temperature and density dependence of the dynamics

and at this point we will commence the central aim of the present thesis, namely

to revisit (discuss and test) results obtained at atmospheric pressure by combining

them with our knowledge of the influence of pressure on the dynamics of glasses and

glass-forming liquids.

2.2 Fragility

The glass transition is, as described above the passage from a thermodynamic

(metastable) equilibrium state to a non-equilibrium state. This transition is a nat-

ural consequence of the fact that the relaxation time of the system surpasses the

timescale on which we are able to perform observations. In our opinion the main

question is therefore not to understand the glass transition itself, but rather to

understand why the relaxation time increases so dramatically when the liquid is

cooled.

While the viscous slowing down is universal, there are still large variations to be

found when comparing the temperature dependences seen in different liquids. The

classification and description of systems according to this difference play a major

role in the attempt to understand the universal features of the slowing down.

The concept of “fragility” [Angell, 1991] has become a standard scheme for char-

acterizing the temperature dependence of the relaxation time (or viscosity) of a

liquid. Fragility is a measure of how much this temperature dependence deviates
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from Arrhenius form; characterizing a large departure from Arrhenius behavior as

fragile and Arrhenius behavior as strong. This concept of “fragility” is usually illus-

trated by a so-called Angell plot (figure 2.2) in which the logarithm of the relaxation

time (or viscosity) is shown as a function of the inverse temperature normalized by

the glass transition temperature. An Arrhenius temperature dependence, that is a

strong behavior (equation 2.1.1), yields a straight line with slope log(τg/τ0) in this

type of plot, while a fragile behavior corresponds to a concave curve.

Several different measures have been suggested in order to quantify the fragility.

They are essentially equivalent, but they also express slightly different interpreta-

tions of the concept itself.

Figure 2.2: The logarithm of the viscosity as a function of the inverse temperature
normalized by the glass transition temperature. Arrhenius temperature dependence,
that is a strong behavior (equation 2.1.1) yields a straight line with slope log(τg/τ0)
in this type of plot, while a fragile behavior corresponds a concave curve. This type
of plot is often called an Angell plot. The figure is taken from Angell [1991].

The most common measure of fragility is the steepness index, which measures the

low temperature limit of the slope of the curve in the Angell plot [Angell, 1991].

The steepness index is given by

m =
d log10(τ)

dTg/T
(T = Tg). (2.2.1)

m equals 16 for strong liquids if it is assume that log10 τ0 = −14 and increases with
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increasing fragility, with m ∼ 80 being a typical value for a fragile molecular liquid.

Another possible approach is to fragility is to use master curves, actually fitting

formulae, for the temperature dependence of the relaxation time. The most common

formula is the Vogel-Fulcher-Tammann (VTF) function [Vogel, 1921]

log10(τ) = AV F +
B

(T − T0)
(2.2.2)

where AV F , B and T0 are constants. The three constants give (as far as the fit is

good) a characterization of the global temperature dependence and as a result of

the fragility. More specifically, fragility is characterized by a unique dimensionless

parameter D = B/T0, a small D characterizing a fragile system and a large one a

strong system (formally when T → 0 one recovers an Arrhenius behavior and D →

∞). A similar characterization has been proposed on the basis of the frustration

limited domain theory, fragility being then measured by a unique dimensionless

parameter related to the frustration strength [Kivelson and Tarjus, 1998]. The

connection between these fragility parameters and the steepness index is found by

differentiation of the expression for the relaxation time: (m = BTg(Tg − T0)
−2) in

the case of equation 2.2.2. The VTF-function is useful for interpolating data over

several decades in relaxation time, but it is rarely found to give a good fit over the

total range from τ0 to τg. The fragility so determined will therefore depend quite

strongly on the range of data included when fitting (see also section 5.2).

On the other hand, one can consider the fragility as something that changes with

temperature (or relaxation time). From figure 2.2 it is clear that even the liquids

which become non-Arrhenian at low temperatures have an essentially Arrhenius

temperature dependence at high temperatures. This change in temperature depen-

dence can hence be considered as a transition from a strong to a fragile domain for

a given liquid.

The steepness index is originally defined at Tg but it can in principle be evaluated

at other times, leading to a more general definition, in which the steepness index

becomes relaxation time dependent

m(τ) =
d log10 τ

dTτ/T
(2.2.3)

where τ(Tτ ) = τ defines Tτ .

Inserting the Arrhenius temperature dependence (equation 2.1.1) we get the time
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dependent steepness index of a strong liquid,

mstrong(τ) = log10 (τ/τ0) (2.2.4)

which takes the value mstrong(τ = 100s) = 16 (assuming τ0 = −14) and decreases

to mstrong(τ = τ0) = 0 as relaxation time is decreased. The steepness index is

thus relaxation time dependent even for a strong system and the steepness index is

therefore an inconvenient measure of the relaxation time dependent departure from

Arrhenius. A measure more adapted for studying the fragility at different times is

the index introduced by Olsen [Dyre and Olsen, 2004].

I(τ) = −
d log E(T )

d log T
(T = Tτ ) (2.2.5)

where E(T ) is a temperature dependent activation energy defined by E(T ) = T (ln τ−

lnτ0). The Olsen index will take the value 0 at all relaxation times in a system where

the relaxation time has an Arrhenius temperature dependence. Systems with a typ-

ical fragile behavior have I = 0 at high temperatures (short relaxation times) where

they follow an Arrhenius behavior and an increasing I as the temperature depen-

dence starts departing from Arrhenius. Typical values of I at Tg(τ = 100s) are

ranging from I=3 to I=8 corresponding to steepness indices of m=47 to m=127.

There is a one to one relation between the steepness index and the Olsen index

[Dyre, 2006], and one finds that the Olsen index essentially is the relaxation time

dependent steepness index normalized to its value in a strong liquid,

I(τ) =
m(τ)

log10

(

τ
τ0

) − 1 =
m(τ)

mstrong(τ)
− 1, (2.2.6)

where the last equality follows from inserting equation 2.2.4. This type of normalized

fragility measure has also been suggested by Granato [2002].

In this work we mostly use the conventional shorthand of referring to the steepness

index evaluated at Tg as the fragility of a given system. We also use the Olsen index,

mainly conceptually, in some situations where it is particularly convenient.

2.3 Non-Debye relaxation

The understanding of the super-Arrhenius temperature dependence of the alpha

relaxation discussed above is maybe the main question in the research field of glass-

forming systems. Another key question is to understand the characteristics of the
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(linear) relaxation itself.

Simple Debye (exponential) relaxation is very rarely found in viscous liquids, hence

the relaxation is non-Debye. Instead the relaxation function is found to be broader

than a Debye relaxation. This can either be described as a superposition of Debye

processes or by one of the numerous phenomenological fitting functions which are

used in the area (see section 5.3 for details).

The most general question, concerning non-Debye relaxation in macroscopic quanti-

ties, is whether it is due to an intrinsic non-Debye relaxation or whether the macro-

scopic departure from Debye relaxation is due to heterogeneous dynamics. In a

homogeneous relaxation all the relaxation entities have relaxations identical to the

average relaxation. In a heterogeneous scenario every entity behaves differently, and

in this case it is possible that the individual relaxation is Debye. In this case the

non-Debye average relaxation stems from the fact that it is an average. [Richert,

2002]

In the last decade there has been extensive studies, using different experimental

techniques and simulations, of the heterogeneity of viscous liquids. The most com-

mon conclusion is that the liquid is structurally homogeneous but that the dynamics

is heterogenous. This means that different parts of the liquid move in different ways

at a given time. [Richert, 2002]

A stronger deviation of the relaxation functions from an exponential dependence

on time (a more important “stretching”) has been found to correlate with larger

fragility Böhmer et al. [1993]. The reported correlation between the two is one of

the bases of the common belief that both fragility and stretching are signatures of

the cooperativity of the liquid dynamics. We discuss this correlation in chapter 5.

2.4 Energy landscape

The most detailed question we could ask regarding the dynamics of the liquid is of

course the following: Where are all the molecules as a function of time? That is,

we ask the time dependence of 3N coordinates (N being the number of particles).

But these 3N values are of course not accessible (except in computer simulations)

and moreover it is difficult, if not impossible, to interpret such an overwhelming

amount of information. It is, however, very common in glass physics to think and

argue in terms of the potential energy landscape. The energy landscape is a hyper-

surface which describes the potential energy of the system as a function of the 3N

configurational coordinates. The dynamics of the liquid is viewed as an exploration
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of this landscape. This view of the liquid dynamics was introduced by Goldstein

[1969] and it has been used extensively in the last decade as a tool in computer

simulations, theoretical work, as well as in the interpretation of experimental results.

In the temperature interval just above Tg, it is generally agreed on that the structural

relaxation is dominated by hopping between energy minima, whereas short time

dynamics can be viewed as vibrational modes around the minima. The structural

relaxation and its timescale are thus governed by the typical barrier heights between

the minima (directly related to the notion of the activation energy discussed in the

preceding section), while the vibrations are governed by the shape of the minima.

The characteristic time scales of the vibrations is ∼ 10−13 s while the alpha relaxation

at temperatures close to Tg has a characteristic time of seconds, which means that

there is a tremendous separation between the relevant time scales.

2.5 Fast dynamics and glassy dynamics

The vibrations mentioned above are also present in the glass, after the structural

relaxation has been frozen in. This means that the dynamics of the liquid at short

times is directly related to the dynamics in the glass. However, for the purpose

of later discussions we would like to make a distinction between the fast (or high

frequency) dynamics of the equilibrium liquid and the dynamics in glass.

2.5.1 Fast dynamics in equilibrium

At short times the liquid behaves like a solid in the sense that the particles appear

to be just vibrating around equilibrium positions. At longer times the particles

will start diffusing. The characteristic time defining the transition from solid-like

behavior to liquid-like behavior is the structural (alpha-) relaxation time discussed

in section 2.1. If the alpha relaxation time is very short, as it is the case at high

temperatures in non-viscous liquids, then it is not possible to make this separation

in different dynamic regimes.

Another way of picturing the separation of time scales in viscous liquids is to con-

sider the response to an external perturbation. If the liquid is subjected to, say

an instantaneous hydrostatic pressure, then it will be compressed by some finite

quantity (quasi) instantaneously. This response is solid-like; it corresponds to the

movements of all the particles against an effective spring constant at their current

position. As time is increased the particles have time to rearrange, the liquid relaxes,

and a new equilibrium is obtained.
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The dynamics with characteristic time shorter than the alpha relaxation time is

what we refer to as fast dynamics or equivalently high frequency dynamics.

Measurements at a fixed frequency or fixed time scale naturally do not probe the

time dependence of the dynamics. What they see is the dynamics on the time scale

they are sensitive to. This means that a measurement with a timescale considerably

shorter than the alpha relaxation time (or a frequency larger than the inverse alpha

relaxation time) only probes the fast dynamics of the viscous liquid.

The fast (linear) dynamics are, like any other property of the (viscous) liquid, de-

pendent on the thermodynamic state determined by temperature and pressure. This

means that properties characterizing fast dynamics, such as high frequency moduli,

short time mean square displacement, etc. depend (sometimes strongly) on pres-

sure and temperature. Fast dynamics are sometimes referred to as glassy dynamics

because it is the dynamics at times faster than the structural relaxation, which

governs the glass transition. However, fast dynamics measured in viscous liquids

in their thermodynamic (metastable) equilibrium state are equilibrium properties.

This means that they are not history nor path dependent, but uniquely determined

by the thermodynamic state of the liquid.

2.5.2 Glassy dynamics

The glassy state is, as described in section 2.1, a non-equilibrium state obtained

when the alpha relaxation becomes so long that it is not possible to wait for the

liquid to reach its thermodynamic equilibrium. All dynamical processes happening

on the alpha relaxation time scale are consequently frozen in. However the particles

keep moving in a solid-like manner, hence the fast dynamics stay active, and these

remaining dynamical processes are what we refer to as glassy dynamics. The impor-

tant distinction between the fast dynamics in the equilibrium liquid and the glassy

dynamics is that the former is a well defined equilibrium quantity while the latter is

a property of the non-equilibrium glassy state. The properties characterizing glassy

dynamics are therefore in principle path and time dependent, as is characteristic for

properties in non-equilibrium systems.

It turns out that the path and time dependence of the glassy properties is only seen

when the glass is subjected to quite extreme treatments such as very long waiting

times, quenching or compression in the liquid and decompression in the glass. When

the glass is cooled under “normal” isobaric conditions, not much happens under

cooling. When the glass is formed the structure is frozen in, and this has the

phenomenological consequence that most properties have very weak temperature
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dependence in the glass. This is also true for the glassy dynamics, which as we

shall see in many cases just correspond to the fast dynamics in the liquid measured

at Tg. From the phenomenological point of view it is thus found that the major

difference between glassy dynamics and fast dynamics in the liquid is that the former

is virtually temperature independent while the latter can depend on temperature.

Figure 2.3 illustrates how the glassy dynamics correspond to the fast dynamics.

2.5.3 Time scales - the actual phenomenology

In the above we have considered dynamics happening at two different timescales.

The actual phenomenology of glass-forming liquids is somewhat more complicated

and also system dependent. The structural relaxation often bifurcates in two sep-

arate relaxations when the structural relaxation time is lower than approximately

10−5 s. The process which appears in addition to the alpha process is faster and it

has lower intensity as well as weaker temperature dependence. It is referred to as

the slow beta-relaxation or the Johari Goldstein (JG) beta relaxation. The position

of the bifurcation point differs by several decades from system to system (and from

one experimental probe to another). Moreover, there are also numerous systems

where this separation in two relaxations is not detectable. The JG-beta relaxation

is faster than the alpha relaxation and it also stays active when the glass is formed.

As such it is part of the fast as well as of the glassy dynamics. We shall deal a bit

with the JG-process when discussing the interpretation of dielectric spectroscopy in

chapter 5. However, the fast dynamics studied and discussed in this work occurs on

a still faster time scale, namely in the pico-nanosecond range.

2.6 Fragility and other properties

The fragility introduced in section 2.2 is the central point in our description of slow

dynamics, and the main problem addressed here is to understand which properties

(if any) relate to the fragility. The ultimate goal is to look for causal relations and

to use them to understand what governs the viscous slowing down.

We have already mentioned in section 2.3 that the fragility has been suggested to

correlate to the departure from Debye relaxation. This correlation is just one among

a large body of properties that have been suggested to correlate to the fragility.

The excess in entropy of the liquid as compared to that of the glass has been found

to decrease faster as a function of decreasing temperature in fragile liquids than
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Figure 2.3: The left figure shows an idealized illustration of the temperature depen-
dence of the compressibility measured at two different time scales, a high frequency
ω2 and a low frequency ω1 (with the latter corresponding to the timescale of the
cooling rate). The right figure shows the corresponding frequency dependent com-
pressibility at different temperatures. The jump in level is the signature of the
temperature dependent alpha relaxation. The probe frequencies are indicated with
vertical lines. The figure illustrates three domains. At temperatures above T2 the
two probes measure the same low frequency compressibility - its value decreasing
with decreasing temperature. At temperatures lower than T2 but higher than T1 the
high frequency probe measures the high frequency value of the compressibility while
the low frequency probe measures the low frequency value. Both high frequency
and low frequency compressibility depend on temperature, but not a priori with
the same temperature dependence. At temperatures lower than T1 both probes see
the high frequency compressibility. This is so because the alpha relaxation time
has become longer than the time scale of both probes. The alpha relaxation is also
longer than the characteristic time of cooling - meaning that liquid is frozen in its
glassy state. This freezing in also has the consequence that the measured compress-
ibility does not change significantly with decreasing temperature. The value of the
compressibility in the glass corresponds to the high frequency compressibility at Tg

when the liquid is frozen in.
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in strong liquids. This correlation is originally rationalized in terms of the Adam-

Gibbs model [Adam and Gibbs, 1965]. The Adam-Gibbs model is based on the

notion of cooperative dynamics that demand larger and larger cooperative regions

as the temperature is lowered. It is moreover assumed that the activation energy is

proportional to the volume of the rearranging region. The fundamental assumptions

of the model have been questioned several times, but the model continues to play an

important role in the community and it has also re-derived from different starting

points [Kirkpatrick et al., 1989; Bouchaud and Biroli, 2004]. The related idea, that

there is a dynamical length scale in the liquid which grows in the liquid as it is

cooled, is widely believed to play an important role for understanding the viscous

slowing down. The existence of dynamical length scales have been demonstrated

by several techniques [Ediger, 2000; Berthier et al., 2005], but it remains unclear if

they are all interrelated and if the length scale or its evolution with temperature is

related to fragility.

In this work we focus on results which suggest a relation between the viscous slowing

down and other dynamical properties of the liquid or the glass. We particularly

consider four situations, namely: the correlation between fragility and stretching

of the alpha relaxation [Böhmer et al., 1993] in chapter 5, the correlation between

fragility and a smaller ratio of elastic to inelastic signal in the X-ray Brillouin-spectra

[Scopigno et al., 2003] in chapter 6, the correlation between fragility and the short

time mean square displacement, its absolute value [Ngai, 2000] and its temperature

dependence [Dyre and Olsen, 2004; Buchenau and Zorn, 1992] in chapter 7, and

the correlation between fragility and a lower relative intensity of the boson peak

[Sokolov et al., 1993] in chapter 8. Other correlations which might be related but

which we do not treat directly are the correlation between fragility and a larger

Poisson ratio [Novikov and Sokolov, 2004] and the correlation between fragility and

a stronger temperature dependence of the elastic shear modulus, G∞, in the viscous

liquid [Dyre, 2006].

The different correlations are in most cases not understood and their validity is often

controversial [Yannopoulos and Papatheodorou, 2000; Yannopoulos et al., 2006 a;

Huang and McKenna, 2001].

The aim is to use these empirical correlations between mP and glassy properties in

testing and developing models and theories of the dynamics in viscous liquids. The

correlations are mostly found empirically as correlations to the fragility measured

under isobaric conditions. In the other hand, the interpretation of the correlations

is always that the property which correlates to fragility is related to the temperature

dependence of the relaxation times. In the same vein computer-simulation as well
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as theoretical attempts to understand these correlations, and fragility in general,

mainly consider isochoric conditions, hence taking only into account the effect of

temperature (e.g. [Parisi et al., 2004; Bordat et al., 2004; Srivastava and Das, 2001;

Ruocco et al., 2004]).

2.7 Relation between fast and slow dynamics

The correlations regarding the stretching, which was introduced in section 2.3, re-

lates different aspects of the alpha relaxation in the liquid to each other. The three

other correlations, which we shall consider, fall in a category of results in which

glassy or short time dynamics are related to the viscous slowing down. The hypoth-

esis that there is a relation between fast and slow dynamics is based on striking

empirical results reported in literature over the last decade [Novikov and Sokolov,

2004; Scopigno et al., 2003; Ngai, 2004; Sokolov et al., 1993, 1997; Dyre and Olsen,

2004; Buchenau and Wischnewski, 2004; Buchenau and Zorn, 1992]. A number of

these results (and earlier related results) are reviewed and combined by Dyre [2004,

2006]. Also, Novikov and Sokolov [2004] and Novikov et al. [2005] discuss a variety

of this type of results and suggest that they are intimately connected to each other.

In the following we shortly define the high frequency and glassy properties that have

been suggested to relate to the viscous slowing down. More technical details as well

as discussions of the interpretations are given in chapters 6 to 8 where we study

these properties, and particularly how they depend on pressure.

2.7.1 Nonergodicity factor

Scopigno et al. [2003] define the nonergodicity factor from the ratio of the central

line intensity over the total intensity of the frequency dependent dynamical struc-

ture factor measured by inelastic X-ray scattering (IXS). The authors look at the

temperature dependence of this quantity in the low temperature limit of the glass

phase and find that the stronger this temperature dependence the more fragile the

liquid (see also section 4.3.7 and chapter 6). This result indicates that a prop-

erty measured deep in the glass holds information about the viscous slowing down.

The intensity of the side peaks (figure 2.4) is governed by the characteristics of the

vibrational modes (see section 4.3.7) and as a result by the curvature of the vis-

ited minima of the energy landscape. The correlation therefore suggests that the

shape of the minima is related to other properties of the energy landscape [Scopigno

et al., 2003]. However, it is also possible to take a different view on the correlation
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Figure 2.4: Dynamical structure factor measured by inelastic X-ray scattering (IXS).
The nonergodicity factor is defined by the ratio of the central intensity over the total
intensity.

Figure 2.5: Correlation between fragility and the parameter α [Scopigno et al.,
2003]. α is a measure of the temperature dependence of the nonergodicity factor.
See section 6.4.1.
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and suggest that it is related to the intensity of the central peak [Buchenau and

Wischnewski, 2004]. The central peak is a measure of the density fluctuation that

are frozen in when the alpha relaxation is arrested at the glass transition. Hence,

this view on the correlation points to a relation between the amplitude of the alpha

relaxation at Tg and the temperature dependence of the alpha relaxation.

2.7.2 Mean squared displacement

The mean squared displacement is classically proportional to temperature in the

harmonic approximation, where the shear and bulk moduli are constant. This linear

behavior is often followed in the glass, but the temperature dependence of the short

time mean squared displacement becomes stronger at temperatures above Tg (see

figure 2.6). Moreover, the temperature dependence of the mean square displacement

above Tg has been found to be stronger the more fragile the system is [Ngai, 2004].

In this situation it is therefore the high frequency (and not the glassy) dynamics

of the equilibrium liquid that is related to fragility. Some of the interpretations of

the finding are however very close to some of the notions suggested to understand

the above result concerning the nonergodicity factor: namely, that the shape of the

minima in the energy landscape are related to the energy barriers. In this view

it is assumed that the vibrations stay essentially harmonic above Tg but that the

curvature of the potential around the minima visited by the system changes as a

function of temperature once the alpha relaxation becomes active. The change of

curvature is expected to also change the barrier height and thereby the temperature

dependence of the alpha relaxation time itself [Dyre and Olsen, 2004].

Another interpretation of the change in the temperature dependence of the mean

square displacement is that it is related to the setting in of fast relaxational processes

[Buchenau and Zorn, 1992; Ngai, 2000]. These processes are thought to serve as

precursors of the alpha relaxation, with the alpha relaxation being faster the larger

the amplitude of these relaxations.

There is in both views a subtle suggestion of a two way causality. A larger amplitude

of the mean square displacement gives rise to a faster alpha relaxation, and the alpha

relaxation itself changes the liquid structure and thereby changes the properties

which govern the mean square displacement.
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Figure 2.6: The mean square displacement of selenium as a function of temperature.
It is clearly seen that there is a qualitative change in behavior at Tg. The authors find
that the temperature dependence of 〈u2〉loc (indicated in the figure) is proportional
to the temperature dependence of the logarithm of the alpha relaxation time, ln(τα).
[Buchenau and Zorn, 1992]

2.7.3 Boson Peak

The low energy (<10 meV) vibrational modes in crystals are in general well described

by the Debye model1. However, in glasses it is found that there is an excess in the

vibrational density of states as compared to the Debye prediction. The origin of

these extra modes is still controversial and has led to numerous experimental and

theoretical studies (see also section 8.2). The boson peak is considered to be a

characteristic feature of disordered solids. It is therefore common to the attempts

made for explaining the boson peak to associate it with the “disorder strength” in

the amorphous solid, even if the notion of disorder is different in different models.

The structure of a glass is, as earlier described, the frozen-in structure of the liquid.

If the characteristics of the viscous slowing down occurs in terms of fragility, is

either governed by structure or gives a signature in the structure, then it will lead

to a different structure of liquids with different fragilities. This difference will be

carried into the glass and leave a signature of the fragility in the structure of the

glassy state. However, structure factor of amorphous solids describes the structure

on a level where most features besides nearest-neighbor correlations are averaged

out. Subtle aspects of the structure in glasses, such as possible heterogeneities, can

therefore be detected only by indirect means.

1The Debye model is based on simple arguments in which the number of plane waves that “fit” in
the Q-space are counted. It is described in introductory books on solid state physics and statistical
physics, e.g. [Kittel, 1996; Bairlein, 1999].
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The boson peak modes have an energy corresponding to the plane waves with

nanometer wavelength. This leads to the expectation that it is the disorder on

this length scale which will be determining for the boson peak. Similar length scales

are often associated with the cooperative dynamics of the alpha relaxation close to

the glass transition. [Leonforte et al., 2006]
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Figure 2.7: Incoherent dynamical structure factor measured by inelastic neutrons
scattering (INS). It is illustrated of how to determine the ratio R which gives a
measure of the relative boson peak intensity.

The most direct relation suggested between the boson peak in the glass and the slow

dynamics in the liquid is the correlation between the relative boson peak intensity

and fragility proposed by [Sokolov et al., 1993, 1997] (see figures 2.7 and 2.8). It is

speculated that this correlation means that strong systems have a larger degree of

disorder than the fragile ones when the system is frozen in and the glass is formed

[Novikov et al., 2005].

Figure 2.8: Correlation between mP and relative boson peak intensity. The left
figure shows the inverse boson peak intensity in terms of its amplitude over the
Debye density of states g(ω)/gD(ω), the right figure shows the parameter R found
as illustrated in figure 2.7. Both figures are from [Novikov et al., 2005].
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2.7.4 Other results

We shall shortly discuss two other results relating fast or glassy dynamics to the

alpha relaxation. These results are not discussed nor tested in detail in this work,

but are included here for completeness and because they have been suggested to

relate to the results discussed above. Both these results concern the high frequency

shear modulus of the liquid.

The shear modulus of a liquid goes to zero in the high temperature or low frequency

limit while the bulk modulus is non-zero under all conditions. This means that

longitudinal sound waves always are present in liquids, whereas shear modes exist

only at low temperatures or short times, such that the probe frequency is faster

than the alpha relaxation time τα > 1/ωprobe. The non-zero shear modulus is thus

a signature of being in a domain where the structural relaxation is frozen.

Shoving model

The shoving model [Dyre et al., 1996] suggests that it is the high frequency shear

modulus which controls the activation energy (equation 2.1.2). The rationale for

suggesting that a high frequency property governs the alpha relaxation is that while

the alpha relaxation is slow, the actual rearrangements (the hops in the energy

landscape) happen on a short time scale. The choice of the shear modulus stems from

a macroscopic elasticity theory calculation in which it is assumed that a local volume

expansion is needed for the rearrangement to be possible. Such an expansion will in

the simplest case of a spherical geometry be governed by the shear modulus. The

shoving model is in one approximation2 equivalent to a model where the activation

energy is proportional to temperature over mean square displacement, E(ρ, T ) ∝

T/〈u2〉. We follow Dyre [2006] and refer to the model in this form as the elastic

model. We discus the elastic model in our study of the mean square displacement

in chapter 7.

Poisson ratio

Novikov and Sokolov [2004] found from comparing about a dozen different glass for-

mers that there is a correlation between fragility and the ratio of the bulk to the shear

2The equivalence follows from the fact that the shear modulus dominates over bulk modulus in
determining the temperature dependence of the mean square displacement, see [Dyre and Olsen,
2004] for details.
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modulus3 K/G, meaning that a glass corresponding to a fragile liquid sustains bulk

deformation better than shear deformation. The glassy moduli correspond to the

high frequency moduli of the liquid at the glass transition (see section 2.5) and the

correlation can therefore be expressed as a correlation to the ratio K∞/G∞ between

the high frequency moduli in the liquid at Tg [Novikov et al., 2005]. The authors

moreover suggest that this correlation is directly related to the correlation suggested

by Scopigno et al. [2003]. The argument is based on assuming that difference be-

tween high frequency and low frequency bulk moduli is much smaller than the high

frequency shear modulus, K∞ − K0 ≪ G∞. However, this assumption is not found

to hold [Scopigno, 2007], rather the two are of similar size (e.g. [Barlow et al., 1969;

Christensen, 1994]). Lastly, it is worth mentioning that the correlation has been

tested on a much larger set of glass-formers by Yannopoulos and Johari [2006] and

Johari [2006], who demonstrated that different types of glass formers have different

behaviors. The correlation does however seem to hold when comparing systems of

the same class of glass-formers.

3The ratio K/G is larger the larger is the Poisson ratio σ = 3K/2G−1
3K/2G+1

, so this correlation implies
a correlation between fragility and the Poisson ratio.



Résumeé du chapitre 3

Traditionnellement on forme un verre par refroidissement à pression atmosphérique,

c’est à dire dans des conditions isobares. Le refroidissement isobare a deux effets

simultanés sur le liquide : l’énergie thermique diminue et la densité augmente. La

possibilité de former un verre soit par refroidissement isochore soit par compression

isotherme montre bien que ces deux effets contribuent tous deux au ralentissement

visqueux. Pour mieux comprendre le ralentissement visqueux et la transition vit-

reuse, il est donc important de pouvoir séparer l’effet de l’énergie thermique et l’effet

de la densité. Ce type de séparation est uniquement possible si on a accès aux temps

de relaxation (ou aux viscosités) et aux données PVT pour un même système. Du-

rant les dix dernières années, de nombreuses études sur ce sujet ont permis d’aboutir

à l’existence d’une loi d’échelle universelle.

Dans le premier paragraphe de ce chapitre, on introduit le formalisme nécessaire

à la description de la dépendance en température et en densité du temps de re-

laxation. Le deuxième paragraphe résume l’émergence de cette loi d’échelle et ses

conséquences.

Les corrélations proposées dans la littérature entre les caractéristiques dynamiques

d’un liquide vitrifiable et sa fragilité ont toujours été proposées sur la base de données

expérimentales mesurées à pression atmosphérique. Le but principal de cette thèse

est de tester si les corrélations sont robustes en pression et d’utiliser la séparation

entre effet de température et effet de densité pour mieux comprendre le sens physique

de ces corrélations. Dans le dernier paragraphe de ce chapitre, on développe des

arguments généraux dens ce sens, qui seront utiles dans les quatre chapitres suivants.





Chapter 3

What we learn from pressure

experiments

In this chapter we first introduce earlier results on density and pressure dependence

of the alpha relaxation (section 3.1 and 3.2) and next develope a framework in order

to better understand different types of correlations with fragility (section 3.3 and

3.4).

The steepness index is mostly used as a measure of fragility, but the results and

arguments, hold for other types of fragility criteria, e.g. the Olsen index just as

well.

3.1 Isochoric and isobaric fragility

The measures of fragility which we introduce in section 2.2 are in their original form

(implicitly) defined at constant atmospheric pressure because this is where most

experiments are performed. For instance the steepness index is actually

mP =
∂ log10(τ)

∂ Tτ/T

∣

∣

∣

∣

P

(T = Tτ ) (3.1.1)

where the derivative is to be evaluated at Tτ . Tτ is defined as being the temperature

at which the relaxation time reaches the value τ , e.g. τ = 100 s. The conventional

fragility is hence the atmospheric pressure isobaric fragility. However, the relaxation

time can also be measured as a function of temperature along other isobars. This

is illustrated in figure 3.1 where it can also be seen that the Tτ (P ) increases when

pressure increases. Isobaric fragility is well defined at any point on the isochronic

29
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Tτ -line and isobaric fragility evaluated at a given relaxation time can be consid-

ered as a function of pressure. Empirically, it is most often found that isobaric

fragility decreases with pressure, but it can also be increasing or virtually pressure

independent [Roland et al., 2005].

In addition to the isobaric fragility, it is also possible to define an isochoric fragility:

mρ =
∂ log10(τ)

∂ Tτ/T

∣

∣

∣

∣

ρ

(T = Tτ ). (3.1.2)

The isochoric fragility is a measure of how much the temperature dependence of

the relaxation time departs from Arrhenius when the liquid is subjected to iso-

choric cooling. Isochoric cooling is often performed in simulations which makes this

distinction particularly important when comparing experimental and simulation re-

sults. Experimentally, it is difficult to perform isochoric cooling, but the isochoric

derivative is nonetheless a well defined quantity.

The two fragilities are straightforwardly related by the chain rule of differentiation:

mP =
∂ log10(τ)

∂ Tτ/T

∣

∣

∣

∣

ρ

(T = Tτ ) +
∂ log10(τ)

∂ρ

∣

∣

∣

∣

T

∂ρ

∂ Tτ/T

∣

∣

∣

∣

P

(T = Tτ ) (3.1.3)

= mρ +
∂ log10(τ)

∂ρ

∣

∣

∣

∣

T

∂ρ

∂ Tτ/T

∣

∣

∣

∣

P

(T = Tτ ) (3.1.4)

when both are evaluated at the same thermodynamic state point, e.g. at a given

pressure P1 defining (Tτ (P1), ρ(P1, Tτ (P1))). Expressed in this way the effects leading

to the slowing down when cooling along an isobar is separated in two contributions:

(i) the slowing down due to the decrease of temperature itself, and (ii) the contri-

bution from the increase of density which follows as a consequence of decreasing

temperature [Ferrer et al., 1998].

Equation 3.1.3 can be rewritten to

mP = mρ(1 − αP /ατ ) (3.1.5)

where αP is the isobaric expansivity αP = −1
ρ

∂ρ
∂T

∣

∣

∣

P
while ατ = −1

ρ
∂ρ
∂T

∣

∣

∣

τ
is the

isochronic expansivity; that is a measure of volume changes as a function of temper-

ature along an isochrone (a line where the alpha relaxation time is constant) [Ferrer

et al., 1998]. We want to stress that equation 3.1.5 is exact. It only builds on the

definitions introduced and some standard differential algebra1.

1The equivalence between equation 3.1.3 and 3.1.5 can be shown from the relation
∂ log10(τ)

∂ Tτ /T

˛

˛

˛

ρ

∂Tτ /T
∂ρ

˛

˛

˛

τ

∂ρ
∂logτ

˛

˛

˛

T
=-1.
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Equation 3.1.5 shows that the difference between mP and mρ is determined by the

ratio of two expansivities, ατ and αP . However, the difference is not determined

by thermodynamics alone because ατ contains dynamical information as well, since

it is necessary to know the slope of the isochrone (e.g. the glass transition line) in

order to evaluate it.

Turning now to the phenomenology, it is well known that αP is positive2; ατ on the

other hand is negative because density increases as with increasing temperature when

moving along an isochrone (see figure 3.1 a). By inserting these simple empirical

facts in equation 3.1.5 can be seen that the isobaric fragility is larger than the

isochoric fragility.

3.2 Empirical scaling law and some consequences

Within the last decade a substantial amount of relaxation time and viscosity data

has been collected at different temperatures and pressures/densities, mainly by the

use of dielectric spectroscopy. On the basis of the existing data it is relatively well

established that the temperature and density dependence of the relaxation times

can be expressed as first suggested by Alba-Simionesco et al. [2002], as

τ(ρ, T ) = F

(

e(ρ)

T

)

. (3.2.1)

The result is empirical and has been supported by the work of several groups for a

variety of glass-forming liquids and polymers [Alba-Simionesco et al., 2002; Tarjus

et al., 2004 a; Casalini and Roland, 2004; Roland et al., 2005; Dreyfus et al., 2004;

Reiser et al., 2005; Floudas et al., 2006]. See also chapter 5 in this work.

3.2.1 The result and its history

The scaling can also be expressed in terms of the activation energy defined in equa-

tion 2.1.2. In fact is was first proposed in its general form from the idea of reducing

the influence of density on the slowing down to a single density dependent activation

energy scale [Alba-Simionesco et al., 2002; Alba-Simionesco and Tarjus, 2006]:

E(ρ, T )

E∞(ρ)
= Φ

(

T

E∞(ρ)

)

. (3.2.2)

2Except for tetrahedral systems at certain temperatures, eg. water below 4◦C.
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Figure 3.1: Typical PVT diagram for a glass-forming liquid. The glass transition
line is the line where the structural relaxation time reaches τ = 100s; the glass
transition line is thus a specific example of an isochrone. The system is out of
thermodynamical equilibrium on the left hand side of the glass transition line and the
density is therefore path dependent. The thin dashed-dotted lines indicate typical
glassy isochores corresponding to a density obtained by cooling isobarically after
crossing the Tg line. The thin dashed lines illustrate two isochoric cooling paths in
the liquid, while the bold dashed lines illustrate two isobaric cooling paths (Patm

and P2 > Patm). b) top: typical temperature dependence of the relaxation time
when followed at different isobars. It is illustrated that this temperature dependence
persists after scaling with Tg(P ) leading to a pressure dependence in mP . The open
symbols correspond to the highest pressure (P2). b) bottom: typical temperature
dependence of the relaxation time when followed along different isochores. The
density dependence is canceled by scaling with Tg(ρ) which means that mρ is density
independent. The open symbols correspond to the highest density (ρ2 > ρ1).
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The index ∞ refers to “T → ∞” because Alba-Simionesco et al. [2002] associate

E∞(ρ) with the activation energy in the high-temperature liquid regime where the

relaxation time has an Arrhenius temperature dependence.

Prior to this, partial results indicative, or compatible with, the above expression

had been found. For instance, Tölle [2001] had shown that the relaxation time in

liquid oTP at the nanosecond time scale measured at different pressures could be

superimposed when comparing sets of temperature and pressure that correspond to

the same value of Γ = ρT−1/4. This was motivated by the model of soft spheres

in which the liquid is described by a single control parameter Γ = ρT−3/n, with

n being the exponent of the repulsive pair potential r−n [Hansen and McDonald,

1986]. Dreyfus et al. [2003] extended this finding for oTP in the viscous regime with

relaxation times obtained from light scattering data.

The formulation by Tölle can be recast in the form proposed by Alba-Simionesco

et al. [2002] if the density dependence of E∞(ρ) is a power-law with exponent 4 as

first demonstrated by Tarjus et al. [2004 a]. This can be seen from inserting equation

3.2.2 in equation 2.1.2 (τ(ρ, T ) = τ0 exp(E(ρ, T )/T )):

τ(ρ, T ) = τ0 exp

(

E∞(ρ)

T
Φ

(

T

E∞(ρ)

))

(3.2.3)

τ(ρ, T ) = F1

(

E∞(ρ)

T

)

, (3.2.4)

which is equivalent to equation 3.2.1 and further inserting a power-law E∞(ρ) = Cρx

τ(ρ, T ) = F1

(

C
ρx

T

)

= F2

( ρ

T 1/x

)

. (3.2.5)

where F1 is a system specific scaling function and F1(X) = F2(X
1/x).

[Chauty-Cailliaux, 2003] [Alba-Simionesco et al., 2004] checked the above scaling on

the dielectric data of several glass-forming polymers. In such system for which one

does not have access to the high-temperature regime, hence to E∞(ρ), they used

different simple functional form for describing the density dependence of E∞(ρ) or

e(ρ) (see equation 3.2.1), a linear and a power-law dependence, finding a similar

quality of data collapse with the two functions. Casalini and Roland [2004] tested

the power-law scaling on dielectric spectroscopy data in a number of different systems

and found it to work provided the exponent 4 specific to oTP was allowed to become

material dependent. They found it to vary from 0.13 for sorbitol up to more than

8. Dreyfus et al. [2004] did a similar compilation including also light scattering

data. The scaling has since been tested on numerous systems (around 40) by several
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different groups [Roland et al., 2005; Reiser et al., 2005; Floudas et al., 2006]. The

power law dependence is fulfilled to a good approximation for many systems, but

the range in density is often too small to distinguish from other functional forms

[Dreyfus et al., 2004]. For DBP which we study in this work (chapter 5), we find

significant deviations from the power-law form.

There are some differences in views regarding the physical interpretation of the

scaling law, particularly regarding the meaning of the exponent x Tarjus et al. [2004

a,b]; Roland and Casalini [2004]. In this work we do not deal with the explanation

of the scaling but rather consider its consequences when interpreting other results.

It is therefore important to stress that, despite the controversies, there is agreement

on the phenomenology, so far as to say that equation 3.2.1 gives a good description

of the density and temperature dependences of the relaxation time.

If the density dependent energy E∞(ρ) is determined from the high temperature

Arrhenius behavior, then it is given in absolute units - and it is associated with a

specific physical interpretation. However, most of the data leading to the scaling

is obtained in the low temperature non-Arrhenius regime, and the energy is only

obtained up to a multiplicative constant. We have therefore chosen the notation

e(ρ) rather than E∞(ρ).

Most of the data supporting the scaling-law is from dielectric measurements in the 0.1

Hz-MHz range. Another limitation of the result is that all the data are on molecular

liquids, Van der Waals bonded or hydrogen bonded or on polymers. Hence, strong

glasses and inorganic glasses in general have not been studied so far. Nevertheless,

the scaling law serves as a general description of the density and the temperature

dependences of the alpha relaxation time in molecular liquids and polymers in the

viscous regime where the super-Arrhenius behavior is seen. Note that if strong

glasses have a strictly Arrhenius behavior, then equations 3.2.1 and 3.2.2 trivially

apply with probably a weak or negligible dependence on density at least for moderate

pressures.

3.2.2 The consequences on fragility

It can be seen directly from equation 3.2.1 that X(ρ, T ) = e(ρ)/T , evaluated at

Tτ (ρ) has the same value at all densities (Xτ = e(ρ)/Tτ (ρ)) if Tτ (ρ) is defined

as the temperature where the relaxation time has a given value (e.g. τ = 100s).

Exploiting this fact, it is easy to show [Tarjus et al., 2004 a; Alba-Simionesco and

Tarjus, 2006] that the scaling law has the consequence that the isochoric fragility

will be independent of density when evaluated at a Tτ corresponding to a given
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relaxation time:

mρ =
d log10(τ)

dTτ/T

∣

∣

∣

∣

ρ

(T = Tτ ) = F ′(Xτ )
dX

dTτ/T
(T = Tτ ) = XτF

′(Xτ ). (3.2.6)

The physical meaning is that temperature Tτ changes as a function of pressure, but

the relaxation as a function of temperature will have the same degree of departure

from Arrhenius along different isochores. We illustrate this situation in figure 3.1.

The fact that the relaxation time τ is constant when X is constant means that the

isochronic expansion coefficient ατ is equal to the expansion coefficient at constant

X. Using this and the general result
(

∂ρ
∂T

)

X

(

∂X
∂ρ

)

T

(

∂T
∂X

)

ρ
= −1, it follows that

1

ατ
= −T

d log e(ρ)

d log ρ
, (3.2.7)

which inserted in equation 3.1.5 leads to

mP = mρ

(

1 + αP Tτ
d log e(ρ)

d log ρ

)

, (3.2.8)

where mP and mρ are again evaluated at a given relaxation time τ .

This expression illustrates that the relative effect of density on the slowing down

upon isobaric cooling, i.e., the second term in the parentheses, can be decomposed

into two parts: the temperature dependence of the density measured by TταP =

− ∂ log ρ
∂ log T

∣

∣

∣

P
(T = Tτ ) , and the density dependence of the activation energy, which is

contained in d log e(ρ)
d log ρ .

Since mρ is constant along an isochrone, it follows from equations 3.1.5 and 3.2.8

that the change in mP with increasing pressure is due to the change in αP /ατ =

αP Tτ
d log e(ρ)
d log ρ .

Tτ increases with pressure, αP Tτ (P ) decreases, whereas d log e(ρ)
d log ρ = x is often to

a good approximation constant in the range of densities accessible3. The most

common behavior seen from the data compiled by Roland et al. [2005] is that the

isobaric fragility decreases or stays constant with pressure, with few exceptions. This

indicates that the decrease of αP Tg(P ) usually dominates over the other factors.

3The DBP case at high density discussed in section 5.2.1 is one exception.
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3.3 Correlations with fragility

As described in section 2.6 there is a flourishing variety of correlations between

fragility and other properties of the liquids or its corresponding glass. These corre-

lations hold a lot of empirical information which should be useful as guidelines and

tests in the development of models and theories of the dynamics in viscous liquids.

However in order for this to be possible, it is important to clarify if the correla-

tions result from, and consequently unveil information on, the effect of density on

the relaxation time, the intrinsic effect of temperature on the relaxation time, (or

a balanced combination of the two). In the following we provide a framework for

analyzing correlations between fragility and other properties of the liquid or glass

by disentangling temperature and density effects [Niss and Alba-Simionesco, 2006;

Niss et al., 2007]. The arguments presented in this section are not relevant for corre-

lations between fragility and the temperature dependence in the liquid of some other

property. These types of correlations are specifically considered in section 3.4

3.3.1 Pressure and isobaric fragility

The correlations between fragility and other properties that have been suggested in

literature all refer to the standard isobaric fragility. They are obtained empirically

by plotting the property in question as a function of fragility (measured at Tg, τ ≈

100 s -1000 s). The plots obtained in this way are mostly very scattered, which is

to be expected, because specific characteristics of the system can affect either the

fragility or the property which is suggested to correlate with fragility.

Assuming that there is nothing special about atmospheric pressure (from the point

of view of the liquid), then a strict correlation to mP should follow this pressure

dependence, where the property correlating to mP is to be evaluated at the same

pressure. Consequently, the simplest way in which pressure can be used to test

this type of correlation is to view pressure as a smooth way to change the isobaric

fragility without changing the chemistry of the system. The correlation between

isobaric fragility and some chosen property can then be scrutinized by measuring

both quantities as a function of pressure.

If the property in question has a pressure dependence which is consistent with the

correlation then the situation would be the one illustrated in figure 3.2. This type

of agreement would suggest that the property in question is sensitive to the same

factors as the isobaric fragility, mP .
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Figure 3.2: An illustration of how a correlation between a property and isobaric
fragility could be most simply tested with pressure experiments (section 3.3.1).

3.3.2 Isochoric fragility

The existence of a correlation with fragility is always interpreted as indicating that

the property in question is related to the effect of temperature on the structural

relaxation. Moreover, computer simulations and theoretical attempts to understand

these correlations, and viscous slowing down in general, mainly consider isochoric

conditions, hence taking into account only the effect of temperature, see e.g. [Parisi

et al., 2004; Bordat et al., 2004; Srivastava and Das, 2001; Ruocco et al., 2004].

However, when a liquid is cooled isobarically the thermal energy decreases and the

density increases at the same time and the isobaric fragility contains, as we have

seen, information on both these effects.

According to the discussion in section 3.2.2, a property which is related to the pure

effect of temperature should be correlated to the isochoric fragility. From equation

3.2.8 it can be seen that mP contains mρ, and it has consistently been found by

including a large amount of fragile and intermediate systems that mρ correlates to

the ambient pressure mP [Casalini and Roland, 2005 a]. It is therefore very possible

that the correlations which have been proposed as correlations to the conventional

isobaric fragility are in fact reminiscences of a more fundamental correlation to mρ.

The scaling described equation 3.2.1 must be taken as an empirical result and despite

the variety of systems for which it has been shown to hold, there is no guarantee

that it is universal. However, the scaling gives a rationalized picture of the pressure

and temperature dependence of the relaxation time in the data obtained so far on

polymers and molecular liquids. The emerging picture is that mρ is intrinsic to the

system in the sense that it is density independent. A quantity correlating to the
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pure temperature dependence of the relaxation time as it is measured by mρ should

then possess the same intrinsic characteristic and be independent of pressure along

the Tg-line. This means that the pressure dependence of a property can help clarify

if it is fundamentally correlated to the intrinsic effect of temperature as measured by

mρ or rather to the pressure dependent combined effect of density and temperature

as measured by mP .

3.3.3 The relative effect of density

In section 3.3.1 we have considered the pressure dependence of a correlation between

a given property and the isobaric fragility without taking the consequences of the

scaling law into account. If we now incorporate the scaling it follows that mρ is

density independent and that the pressure dependence of mP (P ) is due to a pressure

dependence of αP /ατ (equation 3.1.3). This term is a measure of the relative effect

of density on the viscous slowing down. This underlines that if a correlation follows

the pressure dependence of mP then it is because the property in question is not

just related to the effect of temperature but also to the relative effect of density on

the viscous slowing down.

A last situation which should also be considered is that the correlations suggested

between mP and other properties could in fact be a reflection of the effect of density

on the relaxation time. That is they could fundamentally be correlations to αP /ατ .

In general it is found, as mentioned above, that mρ is the dominating term governing

mP , which makes such a proposition appear unlikely. However, some of the most

archetypal glass formers, glycerol, salol and oTP who cover a range of mP ≈ 50

to mP ≈ 80, have a very similar isochoric fragility ranging only from mρ ≈ 38

to mρ ≈ 45 (see appendix B). Hence, the difference in isobaric fragility found

at atmospheric pressure when comparing these three liquids is not related to an

intrinsically different response to temperature but rather to a different effect of the

change in density upon isobaric cooling (just as it is the case for the change of mP (P )

when changing pressure). If a property is related to the relative effect of density on

the viscous slowing down, then it is expected to correlate with the ratio αP /ατ . This

implies that the property in question should also follow the pressure dependence of

αP /ατ , and as a consequence usually decrease with increasing pressure.

3.3.4 How to evaluate pressure dependence in the glass ?

The properties that are correlated to fragility are often considered at Tg. This is for

example true for the stretching parameter βKWW and for the boson peak intensity
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measured in terms of the parameter R (see figure 2.7). The liquid is at (metastable)

equilibrium at Tg and the quantity measured is thus a unique function of the state

point. The fragilities mP and mρ as well as the ratio αP /ατ are likewise uniquely

defined at these state points. The comparison of the pressure dependence of a

property and the fragilities is therefore naturally done by monitoring the relevant

quantities along the glass transition line Tg(P ).

The situation is slightly more difficult when the considering a correlation between

fragility and a property in the glass, because the glassy properties under pressure

are path dependent [Chauty-Cailliaux, 2003]. We propose that the relevant path is

the one followed by compressing in the equilibrium liquid and subsequently forming

the glass by cooling. The glass formed in this way has a history equivalent to the

glass formed at atmospheric pressure and the structure in which it is frozen is that

corresponding to the equilibrium liquid at the same pressure. Secondly, one could

in principle distinguish isobaric and isochoric cooling in the glass itself. However,

the expansion coefficient in the glassy state is very small so that this difference can

probably be ignored at least insofar as the dynamics appear to be harmonic.

3.3.5 Temperature dependence of a correlation

In the above we have focused on the pressure dependence of fragility and we have

suggested that a correlation to fragility should be expected also to hold under pres-

sure. A related question is the relation between dependence on the relaxation time

(or equivalently on temperature) of the chosen property and of the fragility. Should

a property correlated to fragility at Tg also be expected to have the same evolu-

tion as the fragility when temperature is raised? And what is the relevant high

temperature-limit in the regime where the liquid follows the Arrhenius behavior?

These questions are hardly meaningful if the property correlated to fragility is a

glassy property. On the other hand they are relevant questions for a property in

the liquid which correlates to fragility. In deed Tg is an arbitrary point and if a

correlation is reported at Tg it should also be valid at other temperatures, at least

when the liquid stays viscous and equilibrated. Extrapolation of the correlation to

high temperatures and microscopic times may however be meaningless.

3.4 Temperature dependences

The fragility is sometimes suggested to correlate to the temperature dependence of

another property in the liquid. In other words this means that the temperature
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dependence of the alpha relaxation is suggested to relate to the temperature de-

pendence of some other property. These types of correlations are typically based

on simple models, e.g. the Adam Gibbs entropy model and the shoving model, but

there are also purely empirical results of this type. Correlations between tempera-

ture dependence of a given property and fragility are somewhat different from the

correlations discussed above. This is because the temperature dependence of a given

property can also be considered both along isochoric paths and along isobaric paths.

The natural expectation is then that the isobaric temperature dependence should

relate to the isobaric fragility whereas the isochoric temperature dependence should

relate to the isochoric fragility. For this scenario to be consistent one hence expects

that the isochoric temperature dependence of the property in question should be

the same along different isochores, corresponding to the fact that isochoric fragility

is density independent.

We now specifically consider the case where the correlation is based on a model in

which the alpha relaxation is considered to be activated with a temperature and

density dependent activation energy which is governed by the property in question,

namely

E(ρ, T ) ∝ G(ρ, T ) with τ = τ0 exp

(

E(ρ, T )

T

)

. (3.4.1)

where G(ρ, T ) is the property suggested to govern the activation energy, for instance

the high frequency shear modulus or the inverse configurational entropy.

The first observation is that such models predict that

G(ρ, T )

T
= constant along an isochrone, (3.4.2)

with the isochrone being Tg(P ) or any other line of constant alpha relaxation time.

Secondly, it follows that there is a direct relation between the temperature depen-

dence of G and the fragility. In terms of the Olsen index, this can be expressed

as

d log G

d log T

∣

∣

∣

∣

P

(T = Tτ ) = IP (τ) and
d log G

d log T

∣

∣

∣

∣

ρ

(T = Tτ ) = Iρ(τ). (3.4.3)

The prediction holds at any given relaxation time and for isobaric and isochoric

conditions alike.

The predictions presented so far (equation 3.4.2 and 3.4.3) are direct consequences

of equation 3.4.1 without any further assumptions. If we now make the additional
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assumption that the empirical scaling law (equation 3.2.1) holds, it moreover follows

that the temperature and density dependence of G should be described in terms of

an equivalent scaling law. This is most easily seen by inserting equation 3.4.1 in

equation 3.2.2 (where Φ′ below is proportional to Φ) :

G(ρ, T ) = e(ρ)Φ′

(

T

e(ρ)

)

(3.4.4)

where e(ρ) is the same as in (equation 3.2.1). See also [Alba-Simionesco and Tarjus,

2006] for similar ideas.

3.5 Summary

Fragility involves a variation with temperature that a priori depends on the thermo-

dynamic path chosen, namely constant pressure (isobaric) versus constant density

(isochoric) conditions. On the other hand, many quantities that have been correlated

to fragility only depend on the thermodynamic state at which they are considered.

It has been found empirically that the isochoric fragility is intrinsic in the sense that

it is independent of pressure when evaluated along an isochrone. Based on these

observation we conclude that a property which is related to the “pure” effect of

temperature on the relaxation time, should correlate to the isochoric fragility (when

comparing systems), and that it should possess the same type of intrinsic character;

that is, they should be constant along an isochrone for a given system. Properties

related to a combined effect of temperature and density are on the other hand ex-

pected to correlate with isobaric fragility and to have a pressure dependence that

corresponds to its pressure dependence - that is most often decrease with increasing

pressure. The ideas put forward in this chapter are a central part of the work and

serve as a reference point for a large part of the analysis in the proceeding chapters.





Résumé du chapitre 4

Au cours de ce travail, on a étudié la dynamique des liquides vitrifiables et des

verres par trois méthodes expérimentales : la spectroscopie diélectrique, la diffusion

inélastique de neutrons et la diffusion inélastique de rayons X. Les principes de base

de ces trois techniques sont présentés dans ce chapitre.

La spectroscopie diélectrique repose sur la mesure de la polarisation d’un échantillon

lorsqu’il est soumis à un champ électrique. On mesure la fonction de réponse, qui

est le rapport entre le champ électrique et la polarisation de l’échantillon. Les

expériences effectuées au cours de cette thèse ont été réalisées en fréquence. Le

champ électrique appliqué est alors sinusöıdal et la réponse est mesurée en fonction

de la fréquence.

La diffusion inélastique repose sur l’interaction entre un faisceau incident, d’énergie

et de vecteur d’onde bien définis, et l’échantillon. On mesure ensuite les modi-

fications de l’énergie et du vecteur d’onde, qui dépendent des caractéristiques de

l’échantillon. Si on travaille en diffusion neutronique incohérente, on a principale-

ment accès au facteur de structure incohérent, donc à la fonction d’auto-corrélation.

Lors des expériences de diffusion inélastique de rayons X, on mesure en revanche, le

facteur de structure cohérent, et on sonde donc la dynamique collective de l’échantillon.





Chapter 4

Experimental techniques and

observables

We have so far discussed dynamics in rather loose terms as the relaxations and

vibrations taking place in the liquid. This notion will be precised in this chapter,

where we introduce the dynamical variables we have studied, namely the dielectric

response function and the dynamical structure factor. In this chapter we also present

the basic principles for measuring these quantities while the experimental details

related to the specific methods are given in the beginning of the respective chapters.

4.1 Linear response and two-time correlation functions

The dielectric response we study is the linear response and the dynamical structure

factor is a two-time correlation function. Linear response and two time correlation

function are related via the fluctuation dissipation theorem (FD-theorem), and they

therefore probe the same type of information. We shall not consider other types of

dynamical properties, even if non-linear response and four (or more) time correlation

functions are also considered important for understanding the dynamics in viscous

liquids.

4.1.1 Linear response

When a change of conditions is imposed on a system its equilibrium is changed

and other properties will therefore adjust to this new equilibrium. Such a change in

condition is called an input and the time dependent readjustment of other properties

45
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is the output response. The input could for example be a change in pressure and the

response considered could be the change in volume, as discussed when describing

the glass transition in section 2.1.

If the input is small then the output will depend linearly on the input, and the

response is then in the linear response regime. It can be described by

B(t) =

∫ t

−∞
µ(t − t′)h(t′)dt′ =

∫ ∞

0
µ(t′)h(t − t′)dt′. (4.1.1)

with B(t) being the time dependent output and h(t) the applied input. µ(t) is called

the memory function, as it describes how the system remembers its past.

The time (domain) response function, R(t) is defined as the output of a Heaviside

step input1, H(t) ,:

B(t) =

∫ t

−∞
µ(t − t′)H(t′) dt′ =

∫ t

0
µ(t′)dt′ = R(t), (4.1.2)

from which it is seen that the memory function µ is the time derivative of the time

response function. It is also seen that R(t) = 0 for t < 0.

Alternatively, the linear response can be considered in the frequency domain. The

input will in this case be a harmonic oscillating function, h(t) = h0e
iωt. Its linear

output oscillates with the same frequency and can be described by the relative

amplitude and phase with respect to the input. The ratio between the input and

the output is called the frequency dependent response function R(ω):

B0e
iωt+Φ = R(ω)h0e

iωt. (4.1.3)

Combining this definition with equations 4.1.1 and 4.1.2 it follows directly that the

relation between the time domain response function and the frequency response

function is given by

R(ω) =

∫ ∞

0

dR(t)

dt

∣

∣

∣

∣

t=t′
e−iωt′dt′ (4.1.4)

1The Heaviside input is defined by

H(t) =

(

0 t ≤ 0

1 t > 0

.
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4.1.2 Two time correlation and FD-theorem

The special interest in linear response stems from the fact that it is directly related

to the thermally driven fluctuations which are present when the system is at ther-

modynamic equilibrium. The fluctuations can be described by two time correlation

functions, the simplest case being a self correlation function,

CBB(t) = 〈B(t)B(0)〉, (4.1.5)

where the brackets denote ensemble average.

The FD-theorem gives the relation between linear response and time correlation

functions

dR(t)

dt
= −

1

kBT

d

dt
〈B(t)B(0)〉 . (4.1.6)

The correlation functions are also considered in the frequency domain, namely in

terms of their Fourier transforms

CBB(ω) =
1

2π

∫ ∞

−∞
CBB(t) exp(−iωt)dt. (4.1.7)

Note that this definition is slightly different from the definition of the frequency

dependent response function (equation 4.1.4). This difference in convention has the

consequence that the frequency dependent response function and the frequency do-

main correlation function look differently even if they contain the same information.

A relaxation process with a characteristic time τ will for example give a peak in the

imaginary part of R(ω) at ωmax ∼ 1/τ , while the signature in CBB(ω) is a peak

centered at ω = 0 with a width given by ∆ω ∼ 1/τ .

4.2 Dielectric spectroscopy

Dielectric spectroscopy is one of the most employed techniques in the study of liq-

uids close to the glass transition. The advantage of the technique is that it routinely

covers 9 decades of frequency (or time) and can be extended to cover up to 18

decades [Lunkenheimer and Loidl, 2002]. The principle of the dielectric measure-

ment is simple, which makes it relatively easy to employ control external parameters,

such as temperature, cooling rates, or pressure. These factors have made dielectric

spectroscopy indispensable in the study of both the temperature dependence of the

relaxation time and the frequency (or time) dependence of the relaxation function in
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viscous liquids. Particularly the studies of relaxation time as a function of pressure,

which have lead to the scaling law presented in section 3.2 are to a very high degree

obtained by dielectric spectroscopy. The drawback of dielectric spectroscopy, is that

the exact relation between the macroscopic measured quantity and the microscopic

dynamics is not totally understood. Also the relation between dielectric relaxation

and other more fundamental macroscopic properties, such as the frequency depen-

dent shear response remains unresolved.

In this section we present the basic principle of the dielectric spectroscopy as well as

give a brief discussion of the physical interpretation. The details of our experimental

setup are given in section 5.1.1.

4.2.1 Basic principle

The basic principle of dielectric spectroscopy is the measurement of a frequency de-

pendent capacitance of a capacitor filled by the sample. The measuring capacitance

is usually made up of two equally sized parallel plates. This gives the following

capacitance of the empty capacitor,

C0 =
ǫ0A

d
, (4.2.1)

where ǫ0 is the vacuum permittivity, A is the area of the electrodes and d is the

distance between the plates. The capacitance of the capacitor filled sample with

sample is given by

C(ω) = ǫ(ω)
ǫA

d
= ǫ(ω)C0 (4.2.2)

where ǫ(ω) is the frequency dependent dielectric constant of the sample. Hence,

ǫ(ω) is determined by dividing the frequency dependent capacitance of the filled

capacitor by the capacitance of the empty capacitor.

The dielectric constant, ǫ, of a sample is defined from the ratio between the applied

electric field, E, and the displacement field, D,

P = ǫ0χEm, D = P + ǫ0Em = ǫ0(χ + 1)Em = ǫ0ǫEm, (4.2.3)

where P is the polarization per unit volume. Thus, ǫ(ω) is the response function (see

section 4.1.1), when the applied macroscopic field is the input and the displacement

field is the output.

The experiments reported and discussed in this study are all performed with low
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fields strengths and the response is therefore linear. However, non-linear dielectric

spectroscopy also has applications in the study of the viscous slowing down [Schiener

et al., 1997; Bouchaud and Biroli, 2005].

The polarization stems from two physical processes: polarization of the molecules

due to a change in the electron distribution and reorientation of the permanent

dipoles2. The adjustment of the electron cloude of the electrons happens essentially

instantaneously and does not contribute to the frequency dependence of the signal.

It is the reorientation of the molecules that gives rise to the frequency dependence

and the measurement therefore give information of the fluctuations of molecular

orientation of the equilibrium liquid (see also section 4.1).

4.2.2 Typical frequency dependence

At low frequencies the dielectric constant will approach its equilibrium value, ǫeq,

asymptotically. At higher frequencies the molecules will no longer be able to adjust

their orientation to the field and the real part of the dielectric constant approaches a

new lower plateau value ǫh. The difference between high frequency and low frequency

plateau value of the dielectric constant is called the dielectric relaxation strength of

the sample. It is essentially governed by the dipole moment of the molecules.

Between the equilibrium value and the high frequency plateau the dielectric constant

exhibits a loss peak because the motion of the dipolar molecules is out of phase

with the applied field. The position of the peak corresponds to a characteristic

time τ = 1/ωmax which is associated with the alpha relaxation time of the liquid.

The peak height is roughly proportional to the dielectric strength and thereby the

dipole moment of the sample. This means that the larger the dipole moment of the

molecule is, the more precise is dielectric spectroscopy. This frequency dependence

is a signature of the alpha relaxation process as we have described it earlier.

4.2.3 Macroscopic versus microscopic

Dielectric spectroscopy is not sensitive to molecular motions which turn around the

axis of the dipole. Moreover, in molecules with internal degrees of freedom it is very

possible to imagine a situation, where the dipole is only related to some modes of

motion, while others are totally decoupled from the dipole. This type of situation

can lead to a big difference between dielectric relaxation and other macroscopic

response functions [Olsen, 2006].

2If the molecule in question is not totally non-polar.
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A more general problem with dielectric spectroscopy is the so-called local field prob-

lem, which we shall shortly discuss in the following. The problem has minor im-

portance for the present work, we therefore refer to textbooks for more details (e.g.

[Böttcher, 1973]). The specific implications of the local field problem on the inter-

pretation of dielectric relaxation in viscous liquids is moreover discussed in [Niss and

Jakobsen, 2003; Fatuzzo and Mason, 1967; Daz-Calleja et al., 1993].

The microscopic response corresponding to the dielectric susceptibility is the polar-

izability, α, given by3

p = αEl, (4.2.4)

where p is polarization of a molecule and El is the field strength applied over the

dipole. The macroscopic polarization is given by the sum of the microscopic po-

larizations,
∑

p = P . However, the relation between the macroscopic field in the

sample and the field “seen” by a molecule is more complicated. This is because

the field of the molecule itself is part of the macroscopic field while it is not part

of the local field. The most common description of the local field is the Lorentz

field, which leads to the Clausius-Mossotti approximation. The Lorentz field is the

field in a spherical imaginary vacancy in the liquid. By imaginary is meant that the

polarization of the rest of the liquid is calculated as if the dipole was there. This

description includes the polarization of the surroundings due to the dipole, and the

fact that this polarization gives rise to a field acting back on the dipole. Only the

field from the dipole itself is excluded from the calculation of the local field.

The Lorentz field is given by

El =
(

1 +
χ

3

)

Em =
ǫ + 2

3
Em. (4.2.5)

and inserting this in equation 4.2.4, combined with
∑

p = P and equation 4.2.3

gives the Clausius-Mossotti relation

χ

χ + 3
=

ǫ − 1

ǫ + 2
=

Nα

3ǫ0
. (4.2.6)

In deriving the Lorentz field it is assumed that the macroscopic field and the polar-

ization of each molecule are always parallel. A general field, without this assumption

is given by Onsager [1936]. However the Onsager field is not adequate when the re-

sponse is frequency dependent, because the derivation assumes that the field and

3The polarizability should in general be a tensor quantity as field and polarization are not
necessarily parallel. However, the average polarization 〈p〉 will in isotropic material be parallel to
the average local field 〈El〉, and this leads to a meaningful definition of α as a scalar.
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the polarization are in phase. Fatuzzo and Mason [1967] propose a solution to this

situation.

The most important problem with the conversion from microscopic polarizability to

macroscopic susceptibility can already be anticipated from equation 4.2.6, namely

that the two are not proportional. This has the consequence that the frequency

dependence of characteristic time of α(ω) will not be the same as the characteristic

time of χ(ω). Moreover, this difference will systematically depend on the strength of

the dielectric relaxation, meaning that it will have a different consequence depending

on the size of the molecular dipole moment. However, the differences are still smaller

than the type of differences which are always found depending on which experimental

probe one uses to study the liquid [Daz-Calleja et al., 1993; Niss and Jakobsen,

2003]. In this work we shall not attempt to extract microscopic information from

the dielectric relaxation, rather we follow the convention of taking the macroscopic

dielectric relaxation time as a signature of the structural alpha relaxation.

4.3 Inelastic Scattering Experiments

Neutron and X-ray scattering have several common features and we therefore intro-

duce them at the same time. We start from neutron scattering and generalize to

X-ray scattering by comments at relevant places.4

We start by describing the principle of an inelastic scattering experiment and con-

tinue by discussing some practical limitations, regarding the energy and Q-domain

that can be accessed by different probes. We subsequently give some general results

which we shall later use in the analysis of our data. More technical information on

the experimental methods is given in the relevant chapters.

4.3.1 The basic principle

The basic principle inelastic scattering experiment is to let an incoming beam of

probe with a well defined energy and wave vector hit a sample and to measure the

wave vector and energy of the scattered beam. The difference in momentum and

energy between the incoming and the out coming beam has been lost to (or gained

from) the sample. This exchange of energy and momentum will in the limit where the

interaction between the probe and the sample is weak only depend on the properties

of the sample (linear response). The property which is measured is called the cross

4Standard references for neutron scattering are [Lovesey, 1984; Squires, 1978], while inelastic
X-ray scattering, is relatively new technique which is not yet treated in text books.
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section, ∂2σ
∂Ω∂E . It is given by the number of out coming neutrons (or photons) per

energy interval per solid angle per flux of the incoming probe. The cross section

is a function of the transferred energy and angle at which the probe is scattered.

The basic idea is illustrated in figure 4.1. Scattering where there is no transfer of

energy is called elastic scattering. Scattering where there is an exchange of energy

between the sample and the probe is called inelastic scattering. Contributions to

the inelastic scattering which have their maximum at zero energy transfer are called

quasi-elastic scattering.

The transfer in momentum is given by

Q = Qout − Qin (4.3.1)

and the transfer in energy is given by5

~ω = Eout − Ein (4.3.2)

The relation between the scattering angle, 2θ, and the transfer of momentum is for

elastic scattering given by Q = 2Qinsin(θ), while the general relation is

Q = (Q2
in + Q2

out − 2QinQoutcos(2θ)) (4.3.3)

Neutrons do not interact with the electrons but only with the nucleus of the atoms6.

Q

Qout

Qin

Qout

Q

Qin

2θ

Inelastic scattering: Qin 6= Qout

2θ

Elastic scattering: Qin=Qout

Figure 4.1: Illustration of the principle of a scattering experiment. The scattering
is called elastic if there is no transfer of energy between the probe and the sample.

The interaction is extremely short ranged as compared to the distances we are

interested in. The corresponding potential is therefore described by a Dirac delta

function, the Fermi pseudo-potential V (r) = bδ(R − r) where R is the position of

5In this chapter we refer to ω as a quantity of dimension inverse time. However, the difference
between angular velocity and energy is just a ~. The actual measurement is a measure of the
transferred energy, and we measure ω units of energy (meV) in chapters 6 to 8.

6Ignoring the magnetic interaction between the neutron and the electron, because it plays no
role in the type of systems we consider.
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the neutron and r is the position of the nucleus. b is the scattering length of the

nucleus, this quantity depends on the spin state of the nucleus and can hence differ

for different atoms of the same species.

The calculation of the scattering cross section is based on the following assumptions.

(i) That the neutron can always both before and after scattering, be described by

a plane wave. (ii) That the neutron is only scattered once by the sample (iii) The

probability of a transition where the neutron goes from state Q to Q′ and the sample

goes from λ to λ′ is given by first order perturbation theory “Fermis Golden rule”,

meaning that it is proportional to the matrix element |〈Q′λ′|V |Qλ〉|2.

The result is the basic expression for the partial differential cross-section

∂2σ

∂Ω∂E
=

Qout

Qin

1

2π~

∑

i,j

bibj

∫ ∞

−∞
〈exp(−iQ · ri(0)) exp(iQ · rj(t))〉 exp(−iωt) dt.

(4.3.4)

where the sums over i and j are to be taken over all the atoms in the system.

In the case of photons it is the interaction with the electrons that strongly domi-

nates over the interaction with the nucleus. The dominating term is due to Thomson

scattering which describes the coupling between the electronic current and the elec-

tric photon field7. When using photons in the study of the structure and dynamics

on an intermolecular scale it is assumed that the electrons have a fixed position

with respect to the nucleus (the adiabatic approximation). By doing so it becomes

possible to factor out the relative positions of the electrons in a form factor. (The

expression for the cross section is given the next section). The form factor then plays

a role similar to that of the scattering length in neutron scattering. The two major

differences between the scattering length and the form factor is (i) the form factor is

Q-dependent and this leads to an intrinsic decrease of intensity as Q increases. (ii)

the magnitude of the form factor is proportional to the number of electrons meaning

that larger atoms give larger contribution to the scattering.

4.3.2 Coherent and Incoherent Scattering

The scattering length b depends on the spin state of the nucleus interacting with

the neutron beam. Since we consider scattering from a large system bibj is replaced

by its average value bibj . Assuming that bi and bj are statistically independent it

7Considering only Thomson scattering means that we again ignore magnetic interactions.
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follows that

bibj = b
2

for j 6= i and bibj = b2 for j = i. (4.3.5)

consequently

∑

i,j

bibj =
∑

i6=j

b
2
+
∑

j

b2 (4.3.6)

=
∑

i,j

b
2
+
∑

j



b2 −
∑

j

b
2



 (4.3.7)

where the second equality follows from adding and subtraction the term
∑

j b
2
.

Based on this, one defines the coherent and the incoherent scattering cross sections

as

σcoh = 4πb
2

and σinc = 4π
(

b2 − b
2
)

. (4.3.8)

Using these expressions it is possible to separate the sum in equation 4.3.4 in two

terms.

∂2σ

∂Ω∂E
=

(

∂2σ

∂Ω∂E

)

coh

+

(

∂2σ

∂Ω∂E

)

inc

(4.3.9)

where

(

∂2σ

∂Ω∂E

)

coh

=
σcoh

4π

Qout

Qin

1

2π~

∑

i,j

∫ ∞

−∞
〈exp(−iQ · ri(0)) exp(iQ · rj(t))〉 exp(−iωt) dt.

(4.3.10)

and

(

∂2σ

∂Ω∂E

)

inc

=
σinc

4π

Qout

Qin

1

2π~

∑

j

∫ ∞

−∞
〈exp(−iQ · rj(0)) exp(iQ · rj(t))〉 exp(−iωt) dt,

(4.3.11)

In the case of X-ray scattering we replace the scattering length by the form factor,

|f(Q)|, which is the same for all the molecules of a given species. A sample consist-

ing of only one species therefore only gives rise to coherent X-ray scattering. The
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expression for the cross section reads

(

∂2σ

∂Ω∂E

)

Xray

=

(

e2

4πǫ0mec2

)2

(ein · eout)
2|f(Q)|2

Qout

Qin

1

2π~
(4.3.12)

∑

i,j

∫ ∞

−∞
〈exp(−iQ · ri(0)) exp(iQ · rj(t))〉 exp(−iωt) dt.

where e and me is the charge and mass of the electron, c is the speed of light, ǫ0 and

ein and eout are the polarizations of the incoming and outgoing beams respectively.

4.3.3 X-ray and Neutrons in Practice

Scattering cross sections

In the above we have already touched upon one difference between neutron and

X-ray scattering. Namely that the intensity of X-ray scattering is given by the form

factor, which yields purely coherent scattering (in mono component systems) and

which gives rise to stronger scattering the larger the atom is. The neutron scattering

length on the other hand, is dependent on the spin state of the nucleus the variation

of which differs from atom to atom. The systems we study are organic systems

which have a large amount of hydrogens. Hydrogen has an incoherent cross section

which is an order of magnitude larger than the total cross section of the other atoms

in our systems. We therefore neglect the coherent contribution to the scattering and

consider our neutron scattering data to be incoherent.

Transmission and multiple scattering

One of the assumptions in deriving the expression for the scattering cross section is

that the probe is not scattered more than once before it leaves the sample. How-

ever, the scattering probability for neutrons in hydrogenated samples is high. It is

therefore necessary to use samples of submillimeter thickness in order to have less

than 10% of the neutrons be scattered.

4.3.4 The dynamical range

The maximal Q-value which can be studied by elastic scattering from a given probe

is given by 2Qin. The smallest value is given by Qmin = Qinsin(2θmin), where

θmin is the smallest angle at which the outgoing neutrons are detected. This means

that the Q-range studied will be of same order of magnitude as the Q-value of the
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probe used. Thermal neutrons and X-ray in the keV range both have Q-vectors

of the order of magnitude 1 Å−1 such that 1/Q is comparable to the characteristic

distances between nearest neighbors in condensed matter. Both probes are therefore

well suited for studying structure in matter unlike for example visible light, which

probes Q values that are 3 orders of magnitude smaller.

The energy loss of the probe is of course limited by the energy of the probe itself,

the neutron can not loose more energy than it has. There is moreover for a given

Q-value an additional limitation because the transfer of energy and momentum are

interdependent. This is the so called kinematic limitation. It is anticipated from

inserting the relation between energy and momentum in equation 4.3.3. This relation

is not the same for neutrons and photons. For neutrons we have

Eneutron =
~

2Q2
neutron

2mneutron
(4.3.13)

while the relation for photons is

Ephoton = ~ c Qphoton, (4.3.14)

where c is the speed of light. The difference between the expressions above lead to

different kinematic limitations, even if there are kinematic limitations in both cases.

However, kinematic limitation does not have any practical importance for inelastic

X-ray scattering because the energy transfers of interest when studying dynamics

on an intermolecular scale is of the order of magnitude meV while the energy of the

X-ray is in the keV range. Inelastic X-ray scattering has therefore given access to a

domain in energy-Q-space which where not accessible by neutrons.

The transfer of energy in a real experiment is always given by a certain resolution.

The resolution function is the actual measured signal in a situation where an ideal

experiment would have given a delta function. The measured signal is therefore in

general given by a convolution of the ideal signal and the resolution function. The

shape and width of the resolution is in most cases determined empirically. It depends

on the scattering geometry, the characteristics of the beam (monochromation and

collimation) and on how precisely the change in energy can be measured. The total

energy of thermal neutrons is of the same order of magnitude as the transfer of

energy and this is why neutron scattering is the classical technique for this type of

study. The relative resolution needed in X-ray scattering is on the other hand of

the order of magnitude 10−7. The achievement of such a high resolution is amazing,

however the resolution in absolute values is still far from matching that obtained by

high resolution neutron scattering.



4.3. Inelastic Scattering Experiments 57

4.3.5 Correlation functions

The intermediate scattering function is defined as8

Icoh(Q, t) =
1

N

∑

i,j

〈exp(−iQ · ri(0)) exp(iQ · rj(t))〉 (4.3.15)

and its time Fourier transform is called the dynamical structure factor

Scoh(Q, ω) =
1

2π~

∫ ∞

−∞
Icoh(Q, t) exp(−iωt) dt. (4.3.16)

Equivalent definitions are used for the incoherent scattering yielding the following

expression for the total scattering cross section.

∂2σ

∂Ω∂E
= N

Qout

Qin

σcoh

4π
Scoh(Q, ω) + N

Qout

Qin

σinc

4π
Sinc(Q, ω). (4.3.17)

For X-ray scattering it follows from equation 4.3.12 that the cross section is given

by

(

∂2σ

∂Ω∂E

)

Xray

= N
(

e2

4πǫ0mec2

)2
(ei · ef )2|f(Q)|2 Qout

Qin
Scoh(Q, ω) (4.3.18)

4.3.6 General Results - limiting behavior

In this work we study the temperature dependence of the elastic and the integrated

scattered intensity both in the coherent and the incoherent case. In the following

section we therefore spend some time on the details of the information that can be

extracted from these quantities. Particularly the differences between the coherent

and the incoherent cases are considered. Results that hold for both the coherent

and the incoherent case are given without the subscript coh or inc.

Short time limit

The static structure factor, S(Q), is defined as the integral over energy of the dy-

namic structure factor. Combining this definition with equation 4.3.16, it is seen

that the static structure factor is equal to the intermediate scattering function at

time zero, S(Q) = I(Q, t = 0):

8The correlation functions which we introduce in this section are also described in [Lovesey,
1984] and [Squires, 1978]. Solids are not so treated in this frame in introductory textbooks, because
the spatial crystalline solids leads to a simpler description. Relevant references on the liquid state
include [Egelstaff, 1994; Hansen and McDonald, 1986; Boon and Yip, 1980].
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S(Q) =

∫ ∞

−∞
S(Q, ω) d~ω

=

∫ ∞

−∞

1

2π~

∫ ∞

−∞
I(Q, t) exp(−iωt) dt dω

=

∫ ∞

−∞
I(Q, t)

1

2π~

∫ ∞

−∞
exp(−iωt) d~ω dt

=

∫ ∞

−∞
I(Q, t)δ(t) dt = I(Q, t = 0). (4.3.19)

The coherent static structure factor holds information of the structure of the sys-

tem, it is in fact the space Fourier transform of the pair correlation function. The

incoherent structure factor on the other hand, does not hold any information as it

is always equal to one:

Sinc(Q) = Iinc(Q, t = 0) = 〈exp(−iQ · rj(0)) exp(iQ · rj(0))〉 = 1. (4.3.20)

Long time limit

Consider now the case where I(Q, t) has a finite value in its long time limit. It can

then be expressed as a sum of a time independent and a time dependent term

I(Q, t) = I∞(Q) + It(Q, t) where It(Q, t) → 0 for t → ∞. (4.3.21)

Fourier transforming this to get the dynamical structure factor yields

S(Q, ω) =
1

2π~

∫ ∞

−∞
I∞(Q) exp(−iωt) dt +

1

2π~

∫ ∞

−∞
It(Q, t) exp(−iωt) dt

= I∞(Q)δ(~ω) +
1

2π~

∫ ∞

−∞
It(Q, t) exp(−iωt) dt. (4.3.22)

From this, it is seen that the dynamical structure factor will have a peak at ω = 0

and that the intensity of this peak is given by the long time value of the intermediate

scattering function, I∞(Q). Note that the second term does not have strictly zero

intensity at ω = 0.

4.3.7 Simple model - solid

Consider a solid, disordered or crystalline. There is no diffusion in the system, which

means that the particles are essentially vibrating (harmonic or not) around a fixed

position in space. In the case of a crystal, this position is the equilibrium position
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in the lattice. In the case of the disordered solid this position is less well defined.

However, it is in both cases possible to describe the time dependent position of the

particle by a sum of a time dependent and a time independent term:

ri(t) = ri,eq + ui(t) (4.3.23)

where ui(t) has a finite maximum value corresponding to the furthest distance of

the particle from its “equilibrium” position, ri. For the incoherent intermediate

scattering this gives

Iinc(Q, t) = 〈exp(−iQ · {ri,eq + ui(0)}) exp(iQ · {ri,eq + ui(t)})〉

= 〈exp(−iQ ·ui(0)) exp(iQ ·ui(t))〉 exp(−iQ · {ri,eq − ri,eq})

= 〈exp(−iQ ·ui(0)) exp(iQ ·ui(t))〉. (4.3.24)

Here we again see that the incoherent signal holds no information of the structure

of the system, as it depends only on the dynamic part, ui(t), of the particle position

ri(t).

The coherent intermediate scattering function following from equation 4.3.23 is given

by

Icoh(Q, t) =
1

N

∑

i,j

〈exp(−iQ · {ri,eq + ui(0)}) exp(iQ · {rj,eq + uj(t)})〉

=
1

N

∑

i,j

〈exp(−iQ · {ri,eq − rj,eq}) exp(−iQ ·ui(0)) exp(iQ ·uj(t))〉.

One can now define a structure factor corresponding to the structure of given by the

“equilibrium” position of the particles. We call this structure factor the inherent

structure structure factor Sis,coh(Q)

Sis,coh(Q) =
1

N

∑

i,j

〈exp(−iQ · {ri,eq − rj,eq})〉 =
∑

i

〈exp(−iQ · r′
i,eq)〉 (4.3.25)

where r′
i,eq = ri,eq − rj,eq and the 〈 〉 denote ensemble average. Note that inherent

structure structure factor differs from the actual structure factor of the system,

Sis,coh(Q) 6= I(Q, t = 0) = S(Q) because

ui(0) 6= uj(0) and therefore exp(−iQ ·ui(0)) exp(iQ ·uj(0)) 6= 1. (4.3.26)

There is a difference between the static structure factor Scoh(Q) which describes the

particles in a snapshot where they will be displaced from their equilibrium position
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and the inherent structure factor Sis,coh(Q) which describes the structure when the

particles are at their equilibrium position. In the incoherent case on the other hand,

we compare the position of one particle to its own position and Sinc(Q) = 1 because

a particle is in the same position as itself at time t = 0, while Sis,inc(Q) = 1 because

a particle has the same equilibrium position as itself.

Long time limit - Gaussian solid

The displacement ui(0) and ui(t) of the same particle at different times, which

appear in the expression for the incoherent scattering function (Eq. 4.3.24), will

obviously be correlated at short times. The same is true for the displacements of

different particles ui(0) and uj(t). In this latter case the correlations will moreover

depend on the displacement between the two particles (ri − rj) which is the reason

why the inherent structure factor cannot be taken outside as a factor in equation

4.3.25. In the long time limit we may assume that all these correlations are lost.

Moreover, we may assume that the average long time dynamics of all particles are

the same (eliminating the difference between ui and uj) and that the system is

time homogeneous such that the ensemble average 〈u(t)〉 is independent of time.

Combining these assumptions we get for the incoherent case:

lim
t→∞

Iinc(Q, t) = 〈exp(2Q ·u)〉, (4.3.27)

The factor 〈exp(2Q ·u)〉 is called the Debye Waller factor. Since the total intensity

Sinc(Q) = 1 at all Q-values (and under all conditions) it follows that the ratio of

the elastic to the total intensity is also equal to exp(−2W ). The coherent analogue

to equation 4.3.27 reads:

lim
t→∞

Icoh(Q, t) = Sis,coh(Q)〈exp(2Q ·u)〉 (4.3.28)

It is seen that the elastic intensity is given by exp(−2W )Sis,coh(Q)δ(ω). This result is

exploited when determining the structure of materials, particularly crystals in which

case the Q-dependence of Sis,coh(Q) is a sum of delta functions - Bragg peaks.

By making additionally two assumptions we may give a more explicit expression for

the Debye Waller factor. In disordered systems and cubic Bravais crystals we more-

over have that the average of Q ·u is independent of the direction of Q. We assume

that this is true and include also the assumption that the probability function of

the displacement u is Gaussian. This last assumption holds for harmonic vibrations
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(see also section 4.3.8). Combining all this we get

lim
t→∞

Iinc(Q, t) = exp

(

−
Q2〈u2〉

3

)

. (4.3.29)

We use the above expression in order to calculate the mean square displacement

from measured elastic intensities in chapter 7. The analogous result in the coherent

case reads

lim
t→∞

Icoh(Q, t) = Sis(Q) exp

(

−
Q2〈u2〉

3

)

. (4.3.30)

The incoherent intermediate scattering function goes from Iinc(Q, t = 0) = 1 to

Iinc(Q, t = ∞) = exp(−2W ). The coherent intermediate scattering function goes

from Icoh(Q, t = 0) = Scoh(Q) to Icoh(Q, t = ∞) = exp(−2W )Sis,coh(Q) (see figure

4.2). The inherent structure factor, Sis,coh, contains only structural information,

the Debye Waller factor, exp(−2W ), contains only dynamical information, while

the structure factor, Scoh(Q) depends on both on the structure and the dynamics

of the system.

The long time limit of the normalized coherent intermediate scattering function is

called the nonergodicity factor, fQ, (figure 4.2), because it measures the relative

intensity of the correlations which survives in the long time limit. It has a non-

trivial Q-dependence. It also has a non-trivial dependence of the structure because

it contains both dynamical and structural information. If the structure is somehow

changed, then the nonergodicity factor also changes even if the amplitude of the

vibrations is kept constant.

One phonon scattering

In the approximation where only the harmonic part of the forces in a solid are taken

into account then the displacements of each particle can be described by the sum

of displacements due to the normal modes of the system. Each normal mode is

associated with an eigen-vector and a frequency. The harmonic modes give rise to

harmonic oscillations in the time dependence of Icoh(Q, t) and hence to delta peaks

in its Fourier transform Scoh(Q, ω). The contribution to the coherent dynamical

structure factor is for plane waves in the one-phonon approximation given by

Scoh,inel(Q, ω) =
exp(−2W )

4πMN

∑

i,s

exp(−iQ · ri)
(Q · es)

2

ωs

∫ ∞

−∞
[exp(−i(Q · ri − ωst))〈ns + 1〉

+exp(i(Q · ri − ωst))〈ns〉] exp(−iωt)dt (4.3.31)



62 Experimental techniques and observables

a) b)

log t

I c
o
h
(Q

,t
)/

S
(Q

)

1

fQSis(Q)exp(−2W )

S(Q)

log t

I c
o
h
(Q

,t
)

c)

log t

1

exp(−2W )

I i
n
c
(Q

,t
)

Figure 4.2: Illustration of the time evolution of the intermediate scattering functions
in a solid. a) The coherent intermediate scattering function, b) The normalized

coherent intermediate scattering function, c) The incoherent intermediate scattering
function, which is intrinsically normalized.

Where ωs is the frequency of the modes s with wave vector Q and es is the corre-

sponding polarization vector. The summation over i gives a delta function in the

wave vector dependence δ(Q), meaning that only the modes with wave vector Q

will contribute. For a disordered state one will measure the ensemble average over

the different inherent structures. The terms 〈ns〉 is the bose factor, which gives the

occupation number of the mode. The bose factor is given by

〈ns〉 =

(

exp

(

~ω

kBT

)

− 1

)−1

, 〈ns + 1〉 =

(

exp

(

~ω

kBT

)

− 1

)−1

+ 1 (4.3.32)

which in the classical limit ~ → 0 gives

〈ns〉 = 〈ns + 1〉 =
kBT

~ω
, (4.3.33)

from which it is seen that the intensity of the one-phonon contribution (after nor-

malization with the Debye Waller factor) is proportional to the temperature T .
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Combining this observation with equation 4.3.28 it follows that the temperature

dependence of the non-ergodicity factor is given by

f(Q, t) =
exp(−2W )Sis(Q)

exp(−2W )Sis(Q) + exp(−2W )aT
=

1

1 + a′T
(4.3.34)

where the factor a encompasses all the Q-dependent prefactors in equation 4.3.31

and a′ = a/Sis(Q). This temperature dependence is the starting point for the

definition of the parameter α which is studied in section 6.4.

The one-phonon contribution to the incoherent structure factor is not dependent on

the wave vector of the modes but only on their frequency. The dynamical structure

factor is given by an expression similar to equation 4.3.31

Sinc,inel(Q, ω) =
exp(−2W )

2MN

∑

s

(Q · es)
2

ωs
[〈ns + 1〉δ(ω − ωs) + 〈ns〉δ(ω + ωs)]

where the sum over s is to be taken over all modes independent of their wave vector.

It is conventional (and convenient) to introduce the vibrational density of states,

g(ω), and to replace the sum over the modes by an integral:

Sinel,inc(Q, ω) =
1

2M
exp(−2W )Q2 n(ω)

ω
g(ω). (4.3.35)

Here (Q · es)
2 is replaced by its averaged over all modes with frequency ωs, which

in a cubic Bravais crystal or an isotropic system is given by Q2/3. This expression

is used for analyzing the data presented in chapter 8.

4.3.8 Simple models for liquids

In this work we do not study “normal” non-viscous liquids, but a notion of the

dynamics in this high temperature limiting case is useful in the interpretation of the

dynamics in highly viscous systems. Liquids are traditionally modeled as classical

systems. The comparison between the result of models and experimental data is

made by adjusting the result of the model to obey the principle of detailed balance

[Squires, 1978];

S(ω) = exp

(

~ω

2kBT

)

Sclassic(ω). (4.3.36)

Liquids are disordered and therefore isotropic on average. This means that the struc-

ture factor and the intermediate scattering function depend only on the magnitude

of the Q-vector, not on its direction.
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Coherent - linearized hydrodynamics

At small wave vectors and long times the liquid can be described as a continuum,

this limit is called the hydrodynamic limit. When dealing with fluctuations it is

sufficient to consider the linearized form of the equations.

The collective dynamics splits up in two uncorrelated parts, one is due to entropy

fluctuations, which are modes with no particular frequency giving rise to a central

peak in Scoh(Q, ω). The other part corresponds to the sound waves in the liquid and

is due to pressure fluctuations. Each sound wave has a well defined frequency and

wave vector, and they therefore give rise to Brillouin peaks at non-zero ω-values in

Scoh(Q, ω). The sound modes are damped due to the viscosity of the liquid and this

leads to a broadening of the corresponding Brillouin peaks.

Coherent - compressibility

The static structure factor S(Q) is a measure of the amount of density fluctuation

seen on the wavelength 2π/Q. In the limit of Q → 0 this becomes the macro-

scopic density fluctuations, (〈ρ2〉 − 〈ρ〉2)/ρ. The macroscopic density fluctuations

are related to the macroscopic isothermal compressibility, κT , via the fluctuation

dissipation theorem. This yields

lim
Q→0

S(Q) = ρκT kBT. (4.3.37)

The ratio between the integral of the Brillouin peaks and the total integral S(Q) is

in the zero Q limit given by the so called Landau Placzek ratio:

lim
Q→0

Ibrill(Q)

S(Q)
=

κs

κT
=

v2
T

v2
s

, (4.3.38)

where κs is the adiabatic compressibility and vT and vs are respectively the isotherm

and adiabatic sound speeds.

Combining equation 4.3.38 with equation 4.3.37 it follows that the intensity in the

Brillouin peaks is proportional to the adiabatic compressibility, κs, while the in-

tensity in the central peak is proportional to the difference between adiabatic and

isothermal compressibility; κT −κs. This difference is small in solids while it is large

in liquids particularly close to critical points.
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Incoherent - diffusion

The intermediate scattering function is for a classical system given by

Iinc(Q, t) = 〈exp(−iQ · ri(0)) exp(iQ · ri(t))〉 = 〈exp(iQ · r(t))〉 (4.3.39)

where the definition of the displacement r(t) is r(t) = ri(t)−ri(0). If the probability

function of r(t) is a Gaussian and if the system is isotropic (average displacement is

the same in all directions) then it follows that

Iinc(Q, t) = exp

(

−Q2〈r2〉(t)

6

)

. (4.3.40)

To arrive at this equation it was assumed that the system was classical, Gaussian

and isotropic, but no particular assumptions about the time dependence of 〈r2〉(t)

were included. This means that the equation also could describe the incoherent

intermediate scattering function in a solid. The mean squared displacement, 〈r2〉(t),

in a solid has a finite value in its long time limit. This leads to a plateau in Iinc(Q, t)

and the above result is equivalent to equation 4.3.29. The physical explanation

difference of the factor 6 vs 3 in the denominator arises from the difference of the

definition of 〈r2〉(t) which is the mean squared displacement from a position at t = 0

while 〈u2〉 is the mean distance from an equilibrium position in the solid.

If the time evolution is given by diffusion then one has 〈r2(t)〉 = 2Dt which leads to

an exponential decay of the intermediate scattering function:

Iinc(Q, t) = exp

(

−Q2Dt

3

)

, (4.3.41)

and correspondingly a Lorentzian line shape of the dynamical structure factor.

4.3.9 Glasses and viscous liquids

One of the most characteristic features of the dynamics on highly viscous liquids is

the separation of time scales which was also discussed in section 2.5. This means

that the correlation functions on short time scales are similar to those of solids while

they on long times decay to zero as in liquids. When describing and interpreting the

dynamics in viscous liquids and glasses it is therefore useful to “lend” and generalize

both the description used for solids and hydrodynamics.
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Incoherent case

Relaxations in systems close to the glass transition are never found to follow the

exponential behavior seen in liquids (equation 4.3.41) but are stretched (see section

2.3). This means that the relaxation does not give rise to a Lorentzian central peak.

However the qualitative relation between the relaxation and the dynamical struc-

ture factor is still the same. Meaning that the shorter time scale the relaxation has,

the wider and lower is the peak associated to it. In addition to the alpha relaxation

which decays the correlations to zero in the long time limit, there can also be fast re-

laxations. These have a limited amplitude meaning that the intermediate scattering

function has a finite long time limit (if the alpha relaxation does not set in at longer

times) and hence that the dynamic structure factor has an elastic contribution in

addition to the quasi-elastic contribution associated with the relaxation.

The dynamics will be dominated by vibrations, at shorter times than the relax-

ations. The vibrational contribution to the dynamical incoherent structure factor

is described by 4.3.35. In the simplest approximation the relaxation and the vi-

brations can be considered to give additive contributions to the dynamic structure

factor [Frick and Richter, 1993].

Coherent

The coherent modes we study in this work are at high frequency and large wave

vectors where hydrodynamics fail to work even in simple liquids, because the prop-

erties governing the dynamics become wave vector dependent in this regime. It is

convenient to describe the inelastic part of the signal by the Damped Harmonic

Oscillator (DHO), which in its normalized form is given by

Scoh,inel(Q, ω) =
1

π

Ω2Γ(Q)

(ω2 − Ω2(Q))2 + ω2Γ2(Q)
. (4.3.42)

This function has two peaks at positions ±Ω(1 − (Γ2/2Ω2)) with the width given

by Γ. The model can describe the hydrodynamic Brillouin peaks if the right Q

dependence of the parameters are inserted, and it can describe the delta-shaped

Brillouin peaks seen in crystalline solids in the limit where Γ → 0. We use the DHO

model to fit the IXS spectra presented in chapter 6.

The actual measured Brillouin peaks in the Q-regime we study (>2nm−1) are rela-

tively broad9 in the glass and in the liquid. The physical reason for the broadening

9By relatively broad we mean that Γ and Ω are of similar order of magnitude.
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is highly controversial and we shall not enter in this discussion. Suggestions are that

it is due to disorder, fast relaxation or that it is a signature of the fact that the

normal modes of the systems are not plane waves. [Ruocco et al., 2000; Ruffle et al.,

2003; Matic et al., 2004]

One of our main interest in the current study of the coherent dynamical structure

factor is the nonergodicity factor. The nonergodicity factor is in principle the long

time limit of the intermediate scattering function but it is operationally defined

as the ratio of the central peak over the total coherent intensity. The intensity

of the central peak is associated with the correlations that decay slower than the

Brillouin frequency considered. It follows from equation 4.3.38 that this ratio in the

hydrodynamic limit will be given by

fq = 1 −
v2
T

v2
s

. (4.3.43)

The difference between the adiabatic and isothermal sound speeds is small in viscous

liquids close to the glass transition. However, the relevant adiabatic sound speed

is the sound speed at the Brillouin frequency, while the isothermal sound speed is

the low frequency equilibrium sound speed. The generalization of this result in the

viscoelastic liquid (still in the low Q limit) is therefore

fq = 1 −
v2
0

v2
∞

. (4.3.44)

We apply this interpretation of the measured fQ in section 6.3.3.

4.3.10 Long time limit and the resolution function

The measured intensity in a scattering experiment includes a convolution with the

experimental resolution function, R(ω). The delta function in equation 4.3.22 there-

fore becomes a broadened central peak in the experimental result

Sexp(Q, ω) = R(ω) ⊗ I∞(Q)δ(ω) + R(ω) ⊗
1

2π~

∫ ∞

−∞
It(Q, t) exp(−iωt) dt

Sexp(Q, ω) = R(ω)I∞(Q) + R(ω) ⊗
1

2π~

∫ ∞

−∞
It(Q, t) exp(−iωt) dt. (4.3.45)

R(ω) is normalized and the long time limit of the intermediate scattering function,

I∞(Q), can therefore be found from the integral over the central peak

I∞(Q) =

∫ ∆ω

−∆ω
Sexp(Q, ω) dω. (4.3.46)
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In the above we ignore the non-zero contribution of the second term in equation

4.3.22. Another approach which we shall actually use in chapter 6 is to separate

the elastic and the inelastic part of the intensity by fitting the total result to a

sum of two functions. This latter approach requires some assumption regarding the

dynamics of the system in order to choose a proper function for the inelastic part of

the signal.

The experimental intermediate scattering function, Iexp(Q, t) found from the inverse

Fourier transform of the experimental dynamic structure factor, decays to zero at

t ≈ ∆ω, where ∆ω is the width of the resolution function. This effect can in principle

be corrected by deconvolution with the resolution function

I(Q, t) =
I(Q, t)

R(t)
where R(t) =

∫ ∞

−∞
R(ω) exp(iωt) dt (4.3.47)

but we can never get any reliable information about dynamics slower than 1/(∆ω).

The resolution function therefore determines the timescale of the experiment. Figure

4.3.10 illustrates how two different dynamical structure factors which cannot be

distinguished with a given experiment, because the difference is on a timescale which

is not accessed with the given resolution.

I(Q, t)

experimental

I(Q, t)

I(Q, t)
experimental

I(Q, t)

sample

sample

S(Q, ω)

experimental

S(Q, ω)

experimental
S(Q, ω)

S(Q, ω)
sample

sample

Figure 4.3: The figure illustrates two different dynamical structure factors which
cannot be distinguished with a given experiment, because the difference is on a
timescale which is not accessed with the given resolution. The left figure shows the
dynamical structure factor at fixed Q as a function of temperature. The right figures
show the intermediate scattering function at fixed Q as a function of logarithm of
the time. Upper figures: The dynamical structure factor of the sample has a a delta
function at zero energy transfer and the actual intermediate scattering function of
the sample never decays to zero. Lower figures: There is a slight broadening of
the central peak seen in dynamical structure factor and the intermediate scattering
function decays to zero at long times.



Résumé du chapitre 5

La relaxation structurale dans la m-toluidine et le DBP à été mesurée par spectro-

scopie diélectrique en fonction de la température et de la pression. Les expériences

et les résultats sont présentés dans ce chapitre.

Une cellule de haute pression permettant des expériences jusqu’à 400 MPa a été

conçue et fabriqueé au laboratoire pendant cette thèse. Cette cellule permet de faire

des mesures à la fois quand on augmente et quand on diminue la pression, on peut

ainsi vérifier la réversibilité des mesures.

La relaxation du DBP a été etudiée sur 4 isothermes et 2 isobares et celle de la

m-toluidine a été etudiée sur une isotherme. Les résultats obtenus ont été combinés

avec des données de temps de relaxation et des données PVT de la littérature. Ils

sont cohérents avec la loi d’échelle, ce qui implique une fragilité isochore constante.

On constate que la forme de la relaxation structurale (facteur d’étirement) reste

inchangée pour des temps de relaxation identiques.

Sur la base du schéma developpé dans le chapitre trois, on discute l’effet respectif

de la température et de la densité sur une corrélation possible entre l’étirement de

la fonction de relaxation et la fragilité du liquide. On suggère que la fragilité à

considérer dans le cadre d’une corrélation avec l’étirement est la fragilité isochore.





Chapter 5

Alpha Relaxation

The two most distinctive features of the slow dynamics of liquids approaching the

glass transition is the non-Arrhenius temperature dependence of the alpha relaxation

time characterized by the fragility (section 2.2) and the non-Debye character of the

alpha relaxation time (section 2.3) [Angell et al., 2000]. It could even be claimed

that “understanding the glass transition” essentially means understanding these two

phenomena [Dyre, 2006]. The hypothesis that they might be correlated, is therefore

appealing. Böhmer et al. [1993] correlates larger (isobaric) fragility with larger

deviation from Debye relaxation, with the latter measured in terms of stretching

and the paper has been cited 703 times, which is one illustration of the impact of

this idea.

In this chapter we present a study of the pressure and temperature dependence

of the dielectric alpha relaxation time and peak shape in two molecular liquids.

We rationalize the temperature and density dependence in terms of the scaling law

presented in section 3.2 and determine isobaric and isochoric fragility.

We combine our data with data from the literature to revisit the proposed correlation

between stretching and fragility. We do this in terms of the ideas developed in

section 3.3.

5.1 Dielectric spectroscopy

5.1.1 Experimentals

The dielectric measurements were performed at the laboratory, LCP, in Orsay on a

homebuilt setup. The pressure environment was developed prior to this work, while
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the dielectric cell and the details of the electric connections were developed during

the course of this work. The specifications of the setup are not reported elsewhere,

and we will therefore present it in some detail below.

The cell and sample environment

The setup is depicted in figure 5.1. The pressure environment is based on liquid

compression using a commercial piston-and-cylinder device connected to the home-

built autoclave in which the dielectric cell is placed. The autoclave is cylindrical

with a diameter of 4 cm and a length of 15 cm. It has a wall thickness of 4 cm

and is made of metal . The dielectric sample cell is entered into the autoclave from

the end opposite the entrance of the compression fluid. Sealing of the autoclave is

accomplished with a metallic threaded conical piece and a system of metallic and

rubber o-rings. One of the major difficulties is to lead the electrical connections

of the dielectric cell out of the autoclave. This is done by leading two thin wires

through the metal closing piece. The wires are isolated from the metal by thin cones

of rezine. The pressure setup can resist pressures up to slightly above 400 MPa.

The pressure is measured using a strain gauge connected to the compression liquid

system.

Cooling is performed by flow of thermostated cooling liquid running inside the metal-

lic walls of the autoclave. The temperature and the temperature stability are mon-

itored by two Pt100 sensors. One is placed in the wall of the autoclave; the other

is emerged in the compression liquid and is at a distance of maximum 0.3 cm from

the sample. The connections to the second temperature control are led through

the walls of the autoclave with rezine isolation of the same kind as that used for

the electric connections of the dielectric cell. The temperature is held stable within

±0.1 K for a given isotherm. The temperature during the time it takes to record

a spectrum is stable within ±0.01 K. The accessible temperature range is 210 K to

340 K.

The capacitor used for the dielectric measurements is totally immersed in the sample

liquid, which is isolated from the compression liquid by a flexible Teflon cell. The

Teflon cell is cylindrical and closed with a threaded lead and a rubber o-ring. The

electric contacts to the electrodes are forced through the Teflon cell will which is ap-

proximately 1 cm at this point. In this system no mixing occurs between the sample

liquid and the compression liquid. The Teflon cell has the additional advantage that

the electrodes are electrically isolated from the metallic walls of the autoclave. The

Teflon cell is surrounded by the compression liquid from all sides and it has one end
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with a thickness of 0.5 mm in order to ensure that the pressure is well transmitted

from the compression liquid to the sample liquid.

Figure 5.1: The experimental setup for dielectric spectroscopy under pressure at
Orsay. The Teflon parts shown in grey to distinguish from the metal. The length
of the autoclave is ∼ 30 cm, the Teflon cell is 5 cm long. The parts are shown
separately in appendix C.

The advantage of this setup, compared to other setups for dielectric spectroscopy

under pressure, is that it ensures a hydrostatic pressure because the sample is com-

pressed from all sides. It is moreover possible to take spectra both under compression

and decompression, and it can hence be verified that there is no hysteresis in the

system.

The capacitor used for the measurement is composed by two gold coated electrodes

separated by small Teflon spacers. The distance between the capacitor plates is

adjustable and the area is 5.44 cm2. We report data measured with a plate distance

of 0.3 mm giving an empty capacitance of 16 pF. The strength of the measured

signal is proportional to the area and inversely proportional to the distance between

the plates. It is therefore an advantage, especially for measurements on systems

with small dipole moments, to maximize the area and minimize the plate distance.

Although the area is limited by the dimensions of the pressure cell, the distance

could in principle be smaller; however it is crucial that the plates do not touch, even

when the pressure is applied, as this would lead to an electrical short cut.
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Measuring the capacitance.

The capacitance is measured using a HP 4284A LCR-meter which covers the fre-

quency range from 100Hz to 1MHz. The LCR-meter gives the complex capacitance

directly as output. The measurement is based on a four point method. This means

that the signal of the wires leading to the sample is eliminated. In order to exploit

this advantage to its maximum it is important that the connection point of the wires

is as close as possible to the dielectric cell, and it is therefore placed right outside

the conical closing piece.

The low frequency range from 100Hz to 1Hz is covered using a SR830 lockin. The

lockin measures the amplitude and phase of output voltage with respect to an input

voltage at a specified frequency. The sample capacitor is connected with a grounded

known resistance. The frequency dependent capacitance of the sample is calculated

based on the known characteristics of this network.

The experiments

Liquid m-toluidine was measured on one isotherm at 216.4 K. DBP was measured

along 4 different isotherms: 205.5 K, 219.3 K, 236.3 K and 253.9 K, at pressures up

to 4 kbar. DBP was moreover measured at different temperatures along two isobars:

atmospheric pressure and 230 MPa. [Niss et al., 2007] (See appendix A for details

on the samples).

The pressure was continuously adjusted during the experiment along the 230 MPa

isobar in order to compensate for the decrease of pressure which follows from the

contraction of the sample due to decreasing temperature. It is of course always

possible to reconstruct isobars based on experiments performed under isotherm con-

ditions. However, such a procedure mostly involves interpolation of the data, which

is avoided by performing a strictly isobaric measurement. For DBP we have obtained

relaxation-time data at times shorter than 10−6.5 s by using the high-frequency part

of the spectrum and assuming time-temperature and time-pressure superposition

(TTPS). Although TTPS is not followed to a high precision (see section 5.3.2), the

discrepancies lead to no significant error on the determination of the relaxation time.

This is verified by comparison to atmospheric-pressure data from the literature (see

figure 5.2). Data were in all cases taken both by compression and decompression.

By doing so we have verified that there was no hysteresis in the pressure depen-

dence of the dynamics. This serves to confirm that the liquid has been kept at

thermodynamical equilibrium at all stages.
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Data treatment

The relaxation time is determined from a polynomial fit of the logarithm of the loss

as function of the logarithm of the frequency. The fit is performed over less than a

decade around the top. The further treatment, e.g. evaluation of the fragility and

analysis of the spectra shape, is discussed in detail in the course of the chapter.

5.2 Relaxation time

5.2.1 Dibutyl phtalate

The relaxation time of DBP at atmospheric pressure is shown in figure 5.2 along

with literature results. Tg(Patm) = 177 K, when defined as the temperature where

τα = 100 s. We also present the data taken at P = 230 MPa in this figure. It is clearly

seen that Tg increases with pressure. An extrapolation of the data to τα = 100 s

gives Tg = 200 K for P = 230 MPa, corresponding to dTg/dP = 0.1 K.MPa−1. This

corresponds well to the pressure dependence of Tg (at τα = 1 s) reported by Sekula

et al. [2004], based on measurements taken at pressures higher than 600 MPa. It

is however a stronger pressure dependence than dTg/dP = 0.06 K.MPa−1 reported

by Fujimori et al. [1997] based on isothermal calorimetry. This indicates that the

calorimetric and the dielectric relaxation may have somewhat different dependence

of density.

In figure 5.3 we illustrate the determination of Tg and of the fragility mP for the

atmospheric-pressure data, using the part of the atmospheric-pressure data of figure

5.2 where the relaxation time is longer than a millisecond. Along with the data

we show the VTF fit (equation 2.2.2) from Sekula et al. [2004] extrapolated to low

temperatures, which gives Tg = 177.4 K and mP = 84. We have also performed

a new VTF fit restricted to the data in the 10−6 s−102 s region. The result of

this fit yields Tg = 176.6 K and mP = 82. Finally, we have made a simple linear

estimate of log10 τα as a function of 1/T in the temperature range shown in the

figure. This linear slope fits the data close to Tg better than any of the VTF fits.

The corresponding glass transition temperature and fragility are Tg = 176 K and

mP = 70. This illustrates that the determination of Tg is rather robust while this

is less so for the fragility. This latter depends on how it is obtained, and the use of

extrapolated VTF fits can lead to an overestimation. (Of course, a VTF fit made

over a very narrow range, e.g. 10−2s − 102 s, will agree with the linear fit, because

the VTF becomes essentially linear over the relevant range.) The fragility of DBP
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Figure 5.2: Temperature dependence of the alpha-relaxation time (from dielectric
measurements, τα = 1/ωpeak) of liquid DBP at atmospheric pressure and at 230
MPa (Arrhenius plot). Data from other groups are also included: unpublished data
from Nielsen et al. [2006], the VTF fit of Sekula et al. [2004] shown in the range
where it can be considered as an interpolation of the original data, and data taken
from figure 2(a) [Dixon et al., 1990].
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Figure 5.3: Atmospheric-pressure data of figure 5.2 with relaxation times longer
than a millisecond. Also shown are the VTF fit of Sekula et al. [2004] extrapolated
to low temperatures (dashed-dotted line), a new VTF fit made by using data in the
10−6 s −102 region (dashed line), and estimated slope of the data in the long-time
region (full line). The Tg’s estimated from these three methods are very similar,
whereas the fragility varies significantly from m = 65 to m = 85.
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has earlier been reported to be mP = 69 by Böhmer et al. [1993] based on the data

of Dixon et al. [1990]. We take mP = 75 as a representative value.
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Figure 5.4: Alpha-relaxation time of DBP (from dielectric measurements, τα =
1/ωpeak) as a function of pressure along 4 different isotherms, (log-linear plot).

The relaxation-time data along four different isotherms are displayed as a function

of pressure in figure 5.4. Figure 5.5 shows the density dependence of the relaxation

times along the same four different isotherms, along with data from the atmospheric

pressure isobar and the 230 MPa isobar (see appendix A regarding the determination

of density.). We have also included the room-temperature dielectric data of Paluch

et al. [2003 a]. The viscosity data and the dielectric relaxation time do not decouple

under pressure for DBP [Sekula et al., 2004], and we have therefore also included

the room-temperature viscosity data of Cook et al. [1993].

In figure 5.6 we show the data of figure 5.5 plotted as a function of the scaling

variable ρx/T , choosing for x the value that gives the best collapse for the data

of this work. This corresponds to testing the scaling in equation 3.2.1 assuming

that e(ρ) is a power law. The data taken at low density collapse quite well using

x = 2.5, while this is not true for the data of Paluch et al. [2003 a] taken at densities

higher than approximately 1.2 g/cm3. The absence of collapse in figure 5.6 cannot

be explained by errors in estimating the PVT data: this is discussed in more detail

in appendix A.

To test the more general version of the scaling we construct the function e(ρ) from the

following procedure. The 100 s isochrone is described using an adapted form of the fit
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for the 1 s isochrone in [Paluch et al., 2003 a]. Along this 100 s isochrone we calculate

ατ and determine d log e(ρ)
d log ρ from d log e(ρ)

d log ρ = 1/(Tg|ατ |). From this we determine

ln(e(ρ)) (up to an additive constant) by integrating d ln(e(ρ))
ln ρ d(ln(ρ)), and ln(e(ρ))

is finally converted by e(ρ) = exp(ln(e(ρ))). This gives e(ρ) with an arbitrary

multiplicative constant. The quality of the data collapse is independent of this

constant, as it only depends on the density dependence of e(ρ) not on its absolute

value. In figure 5.7 we show the data as a function of e(ρ)/T , using the e(ρ) found

from this construction. The constructed e(ρ) has an apparent “power-law” exponent

x(ρ) = dloge(ρ)/dlogρ that increases from 1.5 to 3.5 with density in the range

considered. It is seen that this makes the higher density data fall reasonably well

on the master curve and that gives an even better collapse in the low density region

than with the scaling with a simple power law.

As a last note regarding the e(ρ)/T -scaling in figure 5.7, we want to stress that we

cannot test the scaling (Eq. 3.2.1) in the density range above 1.25 g/cm3 where

there is only one set of data. Indeed, with a unique set of data in a given range of

density it is always possible to construct e(ρ) in this range to make the data overlap

with data taken in other density ranges.

We have determined the ratio between the isochoric fragility and the isobaric fragility

at atmospheric pressure by calculating ατ along the isochrone of 100 s and inserting it

in equation 3.1.5. This leads to mP /mρ ≈ 1.2, when mP is the atmospheric-pressure

fragility. In figure 5.8 we show the isobaric data taken at atmospheric pressure and

at 230 MPa scaled by their respective Tg(P ). No significant pressure dependence of

the isobaric fragility is observed when going from atmospheric pressure to 230 MPa,

which is consistent with the result of Sekula et al. [2004]. The pressure independence

of mP is connected to the relatively low value of mP /mρ = 1.2, (typical values

are 1.2-2 [Alba-Simionesco et al., 2002]); mρ is pressure independent and the ratio

mP /mρ cannot be lower than one (see Eq. 3.1.5), so that mP can at most decrease

by 20% from its atmospheric-pressure value. Moreover, the increase in d ln(e(ρ))
ln ρ with

density will tend to cancel the decrease in αP Tg, which is usually responsible for the

decrease in fragility with increasing pressure.

5.2.2 m-Toluidine

The glass transition temperature at atmospheric pressure is Tg = 187 K and the

isobaric fragility based on dielectric spectra is reported to be mP = 82±3 [Mandanici

et al., 2005; Alba-Simionesco et al., 1999]. (There has been some controversy on the

dielectric relaxation in m-toluidine at atmospheric pressure, see [Carpentier et al.,
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Figure 5.5: Logarithm of the alpha-relaxation time of DBP versus density (see the
text regarding the calculation of density). Included are data from this work along
with dielectric data from figure 3 in [Paluch et al., 2003 a], and viscosity data from
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Figure 5.7: The alpha-relaxation times shown in figure 5.5 plotted as a function of
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1.5 to 3.5 in the density range under study). We also display the power law giving
the best scaling, ρ2.5, at low density (full line).

2004; Mandanici et al., 2005] and references therein.)

In the inset of figure 5.9 we show the pressure-dependent relaxation time at 216.4 K.

Extrapolating the data to τα = 100 s leads to Pg = 340± 10 MPa, corresponding to

dTg/dP = 0.085 K.MPa−1. This value is, as we also saw it in the case of DBP, about

a factor 2 higher than the dTg/dP = 0.045 K.MPa−1 reported for the calorimetric

glass transition by Alba-Simionesco et al. [1997]. This could suggest that this type

of decoupling is common, however there are also examples where no such decoupling

is found [Chauty-Cailliaux, 2003].

In figure 5.9 we show the alpha-relaxation time as a function of density along the

atmospheric pressure isobar (data from Mandanici et al. [2005]) and the 216.4 K

isotherm (see appendix A regarding the determination of density). The data taken

at atmospheric pressure and the data taken along the 216.4 K isotherm cover two

different ranges in density. It is therefore not possible from this data to verify the

validity of the scaling in X = e(ρ)/T . Moreover, it is seen in figure 5.9 that there

is not complete agreement at ambient pressure between the two experiments. Our

data actually correspond better to the results of Carpentier et al. [2004] than those

of Mandanici et al. [2005]; it would be ideal to measure the high pressure and the
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Figure 5.8: Arrhenius plot of the alpha-relaxation time of DBP at atmospheric pres-
sure and at 230 MPa, when the temperature is scaled with the pressure dependent
Tg, Tg(Patm) = 176 K and Tg(230 MPa)=200 K. As in figure 5.2, data from other
groups are also included: unpublished data from Nielsen et al. [2006], the VTF fit of
Sekula et al. [2004] shown in the range where it can be considered as an interpolation
of the original data and data taken from figure 2 a) in [Dixon et al., 1990].

atmospheric pressure data in the course of the same experiment, in order to eliminate

the extra uncertainty from differences in absolute temperature scale and possible in

the purity of the sample.

We assume that the scaling is possible. Moreover, we describe e(ρ) by a simple

power law, e(ρ) = ρx. We find the exponent x by exploiting the fact that the scaling

variable X = e(ρ)/T is uniquely fixed by the value of the relaxation time; applying

this at Tg, namely setting Xg(Patm) =Xg(216K), leads to x = 2.3 and gives a ratio

of mP /mρ = 1.2.

5.3 Spectral shape

Our main aim in the study of the spectral shape is to analyze the possible correlation

between the degree of departure from Debye relaxation and the fragility (see also

section 2.3). In the end of this chapter we discuss this correlation in the frame
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Figure 5.9: Logarithm of the alpha-relaxation time of m-toluidine as a function of
density along the isotherm T = 216.4K (symbols). The VTF fit of the atmospheric
pressure data of Mandanici et al. [2005] is also shown in the range where the fit can
be considered as an interpolation of the data (dashed line). The inset shows the
alpha-relaxation time of m-toluidine as a function of pressure along the isotherm
T=216.4 K.

of analysis proposed in chapter 3, based on the data presented here as well as on

literature data. However, there is no consensus on how to best characterize the

shape of the relaxation spectrum of viscous liquids, and this of course complicates

the situation. In the first part of this section, we therefore review these procedures

and test different descriptions on one of our spectra. We more specifically look at

schemes for converting one type of description to another.

5.3.1 On the characterization of the spectral shape

The (normalized) Kohlrausch-William-Watts function or stretched exponential is

defined in the time domain by ϕKWW (t) = exp
[

−
(

t
τ

)βKWW
]

. Its equivalent in the

frequency domain is found by inserting in 4.1.4. We consider only the imaginary

part:

ϕ′′KWW (ω) =

∫ ∞

0
−

dϕKWW (t)

dt
. sin(ωt) dt (5.3.1)

The low-frequency behavior of this function is always a power law with exponent 1.

The high frequency behavior is a power law with exponent −βKWW [Lindsey and

Patterson, 1980]. βKWW is the only parameter describing the shape of the relaxation

function. Hence it controls both the exponent of the high frequency power law and

the width of the relaxation function.



5.3. Spectral shape 83

The Havriliak-Negami (HN) function,

ϕHN (ω) =
1

[1 + (iωτHN )α]γ
, (5.3.2)

gives a power law with exponent (−αγ) in the high-frequency limit and a power law

of exponent α in the low frequency-limit of its imaginary part.

The HN function reduces to Cole-Davidson (CD) one when α = 1. (In the case of

a CD function we follow the convention and refer to the γ above as βCD.) The CD

spectrum has the same general characteristics as the KWW one: a high-frequency

power law with exponent given by βCD and a low-frequency power law with exponent

one. However, the shape of the two functions is not the same. The CD function is

narrower for a given high frequency exponent (given β) than the KWW function (see

figure 5.10 a)). The best overall correspondence between the CD-function and the

KWW-function has been determined by Lindsey and Patterson [1980]. (see figure

5.10 b)).
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Figure 5.10: Log-log plots of the different showing the loss of different fitting func-
tions a) KWW-function with βKWW = 0.5 CD-function with βCD. Dashed lines
illustrate the high frequency power-law. b) KWW-function with with βKWW = 0.5
and the corresponding CD-function according to Lindsey and Patterson [1980] giv-
ing βCD = 0.367. Dashed lines illustrate the high frequency power law. c) KWW-
function with βKWW = 0.5 and the corresponding AAC-function.

No good correspondence exists in general between the HN and the KWW functions.

First of all because the former involves two adjustable shape parameters and the

latter only one (plus in both cases a parameter for the intensity and one for the time

scale). The KWW function always has a slope of one at low frequencies while the HN
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function has a generally nontrivial α. Nonetheless, Alvarez et al. [1991] numerically

found that the two functions can be put in correspondence by fixing the relation

between the two HN parameters γ = 1 − 0.812(1 − α)0.387 and choosing βKWW =

(αγ)(1/1.23). This restricted version of the HN-function is sometimes referred to

as the AAC-function [Gomez and Alegria, 2001]. The shape is described by one

parameter. However, it is clear that this function cannot correspond to the KWW

function in the frequency range where the loss can be described by power laws, as

it was also noted by Gomez and Alegria [2001]. The AAC function inherits the

behavior of the HN function; as a result it has a nontrivial exponent α at low

frequencies and an exponent −αγ at high frequencies, while the associated KWW

function has exponents one and −βKWW = −(αγ)(1/1.23) at low and high frequencies,

respectively (see figure 5.10 c).

Another approach is to describe the dielectric spectrum by a distribution of Debye

relaxations

(ǫ(ω) − ǫ∞)/∆ǫ =

∫ ∞

−∞
D(lnτ)

1

1 + iωτ
dlnτ, (5.3.3)

and to fit the shape of the distribution D(lnτ) rather than the spectral shape directly.

The following form has been suggested for the distribution function [Blochowicz

et al., 2003],

D(lnτ) = N exp (−β/α(τ/τ0)
α) (τ/τ0)

β

(

1 +

(

τσ

τ0

)γ−β
)

, (5.3.4)

where N is a normalization factor. The function above is known as the extended

generalized gamma distribution, GGE. The last term (and the parameters γ and

σ) describes a high frequency wing, corresponding to a change from one power-

law behavior (-β) to another (-γ). This term can therefore be omitted if no wing

is observed in the spectrum. This results in a simpler distribution; the generalized

gamma distribution (GG) whose shape is described by two parameters: α determines

the width and β gives the exponent of the high frequency power-law. The low

frequency is always a power law with exponent one.

Finally, it is possible to describe the spectra phenomenologically in terms of the full

width at half maximum, usually normalized to the full width at half maximum of a

Debye peak [Dixon et al., 1990] (W/WD, WD = 1.14 decade), and by the exponent

of the power-law describing the high frequency side. The power law exponent is not

always well defined, as there can be a high frequency wing or a secondary process

appearing at high frequencies. Olsen et al. [2001] therefore suggest to characterize

the alpha peak by the minimal slope found in a double logarithmic plot of the
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dielectric loss as a function of frequency. Note that this phenomenological description

requires two parameters to describe the shape of the relaxation spectrum, while the

commonly used CD and the KWW functions use only one shape-parameter.

In figure 5.11 we show one of the dielectric spectra of m-toluidine along with fits

to the functions described above. The minimal slope is −0.44 and W/WD = 1.56.

The best fits to the different functions are displayed in figure 5.11. The CD-fit

gives βCD = 0.42, which with the Patterson scheme corresponds to βKWW ≈ 0.55.

The direct fit with the Fourier transform of the KWW gives βKWW = 0.57. The

best AAC fit gives α = 0.85 leading to γ = 0.61 and βKWW ≈ (γα)1/1.23 = 0.59.

This shows that both the Patterson and the AAC approximations reasonably well

reproduce the βKWW value found from using KWW directly. Another point worth

noticing is that the βKWW value does not correspond to the actual high frequency

slope. This is because the overall agreement between the fit and the data is much

more governed by the width of the relaxation function than by its high frequency

slope, as it is also clearly seen for the KWW fit in figure 5.11. Note that the AAC

approximation for the relation between the HN parameters and βKWW only holds

when the HN parameters are fixed according to γ = 1 − 0.812(1 − α)0.387. The

original HN function has two adjustable parameters to describe the shape. The

best HN fit gives α = 0.95, and γ = 0.46. The Gamma distribution which also

has two free parameters gives α = 40 and β = 0.49. Finally we have fitted with

the GGE using the constraint β = 3γ (see [Blochowicz et al., 2006]), meaning that

the function has 3 free parameters to describe the shape, the values being α = 40,

β = 0.7 σ = 53 and γ = β/3 = 0.23. It is not surprising that the GGE with 3 free

parameters gives by far the best fit. However it is also striking that the CD with

only one parameter describing the shape gives a good fit over the whole peak, for

the temperature and sample considered, whereas this is not true for the KWW nor

for the AAC.

From the above we conclude the CD-function gives a good description of the shape

of the relaxation using only one parameter to describe the shape. We therefore use

this function to fit our data. The KWW exponent, βKWW , does not give a proper

measure of the high frequency slope, but it does give a reasonable one-parameter

measure of the overall shape of the dispersion. The KWW function is moreover the

function most commonly used in literature, which is the main reason for using it

when comparing broadening of the alpha relaxation to the temperature dependence

of the alpha relaxation (section 5.3.4).
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Figure 5.11: Log-log plot of the dielectric loss of m-toluidine at T=216.4K and
122MPa along with best fits to several common functional forms. Figure a) show
the fitting functions from below and up; CD, KWW, AAC. Figure b) shows from
below and up; HN, Gamma distribution, Generalized gamma distribution. CD,
KWW and AAC have 1 parameter characterizing the shape, HN and Gamma have
2, and Generalized gamma has been fitted using 3 adjustable parameters. The
dashed line shows the Gamma distribution corresponding to the generalized gamma
distribution. The curves are displaced along the y-axis by regular amounts.

5.3.2 Spectral shape DBP

The frequency-dependent dielectric loss for a selected set of different pressures and

temperatures is shown in figure 5.12. The first observation is that cooling and

compressing have a similar effect as both slow down the alpha relaxation and separate

the alpha relaxation from higher-frequency beta processes. The data depicted are

chosen so that different combinations of temperature and pressure give almost the

same relaxation time. However, the correspondence is not perfect. In figure 5.13

we have thus slightly shifted the data, by at most 0.2 decade, in order to make

the peak positions overlap precisely. This allows us to compare the spectral shapes

directly. It can be seen from the figure that the shape of the alpha peak itself is

independent of pressure and temperature for a given value of the alpha-relaxation

time (i.e., of the frequency of the peak maximum), while this is not true for the high-

frequency part of the spectrum, which is strongly influenced by the beta-relaxation

peak (or high-frequency wing). When comparing datasets that have the same alpha-

relaxation time one finds that the high-frequency intensity is higher for the pressure-

temperature combination corresponding to high pressure and high temperature.

In figure 5.14 we show all the datasets of figure 5.12 superimposed and we zoom on
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the region of the peak maximum. The overall shape of the alpha relaxation is very

similar at all pressures and temperatures. However, looking at the data in more

detail, one finds a significantly larger degree of collapse between spectra which have

the same relaxation time, and a small broadening of the alpha peak is visible as

the relaxation time is increased: see figure 5.14. At long relaxation times there is

a perfect overlap of the shape of the alpha-relaxation peaks which have the same

relaxation time. At shorter relaxation time, log10(ωmax) ≈ 5, the collapse is not as

good: the peak gets slightly broader when pressure and temperature are increased

along the isochrone. In all cases, the alpha peak is well described by a Cole-Davidson

shape. The βCD goes from 0.49 to 0.45 on the isochrone with shortest relaxation

time and decreases to about 0.44 close to Tg at all pressures. A KWW fit close to

Tg gives βKWW = 0.65.
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Figure 5.12: Log-log plot of the frequency-dependent dielectric loss of DBP. Red
dashed-dotted curve: T=253.9 K P=320 MPa; black dots: T= 236.3 K and, from
right to left, P=153 MPa, P=251 MPa, P=389 MPa; full blue line: T=219.3 K
and, from right to left, P=0 MPa, P=108 MPa, P=200 MPa, P=392 MPa; magenta
dashed curve: T=206 K and, from right to left, P=0 MPa, P=85 MPa, P=206 MPa.

5.3.3 Spectral shape m-toluidine

The frequency dependent dielectric loss of m-toluidine for several pressures along the

T=216.4 K isotherm is shown in figure 5.15. The data are then superimposed by

scaling the intensity and the frequency by the intensity and the frequency of the peak

maximum respectively: this is displayed in figure 5.16. When zooming in (figure 5.16

b) we still see almost no variation of the peak shape. For the present set of data

pressure-time-superposition is thus obeyed to a much higher degree than in DBP, and

the changes are too small to give any pressure dependence in the parameters when
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Figure 5.13: Same dielectric loss data as in figure 5.12 of DBP with a slight shift
of the peak frequencies (less than 0.1 decade) to make the data taken under quasi
isochronic conditions coincide precisely. The symbols are the same as in figure 5.12,
but the data at T=206 K and P=206 MPa and 219.3 K and P=392 MPa are not
shown.
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Figure 5.14: Same dielectric-loss data as in figures 5.12 and 5.13, with the frequency
and intensity now scaled by the values at the maximum. We show only a 1.5 decade
in frequency in order to magnify the details. Notice a small broadening as the
characteristic relaxation time increases: Blue dashed-dotted line are three different
data sets with log10νmax ≈ 2.6 (P=320 MPa,T=253.9 K and P=153 MPa,T=236.3
K and P=0 Mpa,T=219.3 K). Red full lines are three data sets with log10νmax ≈ 4.1
(P=251 MPa,T=236.3 K and P=108 MPa,T=219.3 K and P=0 Mpa,T=205.6 K).
Green dashed lines are three data sets with log10νmax ≈ 5.2 (P=339 MPa,T=236.3
K and P=200 MPa,T=219.3 K and P=85 Mpa,T=205.6 K).
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fitting the m-toluidine data. The Cole-Davidson fit to the m-toluidine gives βCD =

0.42 (see also section 5.3.1). Mandanici et al. [2005] have reported a temperature

independent value of βCD = 0.45 for data taken at atmospheric pressure in the

temperature range 190 K-215 K, a value that is compatible with ours.
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Figure 5.15: Log-log plot of the frequency-dependent dielectric-loss of m-toluidine
at T=216.4K and pressures 0 MPa, 59 MPa, 79 MPa, 105 MPa, 122 MPa, 142 MPa,
173 MPa and 191 MPa. The peak shifts left as pressure is applied. Lines are guides
to the eye.
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Figure 5.16: Same dielectric-loss data as in figure 5.15, now with the intensity and
frequency scaled by the values of the peak maximum. Figure b) shows a zooming in
of the data in a) to focus on the alpha relaxation region near the peak maximum.

5.3.4 Stretching and fragility

When Böhmer et al. [1993] suggested a correlation between fragility and the non

Debye character of the relaxation function, expressed in terms of the stretching

parameter βKWW , it was the isobaric fragility which was considered.

The data we report here confirm the earlier finding [Ngai et al., 2005] that the

spectral shape of the alpha relaxation does not vary when pressure is increased while
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keeping the relaxation time constant. If this finding is indeed general then it suggests

that the spectral shape of the alpha relaxation has the same intrinsic character as the

isochoric fragility, namely that it stays constant along an isochrone (chapter 3). The

isobaric fragility on the other hand will in general change when pressure changes.

Hence, the pressure dependence of the isobaric fragility and spectral shape is in

disagreement with the behavior expected from the correlation between the two.

This leads us to suggest that the stretching might/or better correlate to the isochoric

fragility than to the isobaric fragility.
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Figure 5.17: Isobaric fragility as a function of the stretching parameter. Circles
represent polymers, diamonds represent molecular liquids. See the table in appendix
B for numerical values and references.

To test this hypothesis we have collected data from literature reporting isobaric

fragility and stretching of the relaxation at Tg. We consider here the description

of the shape of the relaxation function in terms of the KWW stretching parameter

βKWW . This choice is made because it is convenient to use a description with only

one parameter for the shape and because βKWW is the most reported of the liquids

where mρ is also available (see section 5.3.1).

The compilation of this data is shown in figures 5.17 and 5.18 where both the

isochoric (figure 5.18) and isobaric fragility at atmospheric pressure (figure 5.17)

are plotted against the stretching parameter. There is a great deal of scatter in

both figures. There is however an observable trend, the fragilities decrease with the

stretching. The relative effect on the slowing down of the relaxation is characterized

by the term αP Tg
d log e(ρ)
d log ρ = mP /mρ −1. In figure 5.19 we show the ratio mP /mρ as

a function of βKWW . It is clear that no correlation is found between this ratio and

the stretching. This indicates that there is no relation between the effect of density

on the correlation time and the spectral shape (see chapter 3).

Based on the pressure dependence and the clear lack of correlation between stretch-

ing and the relative effect of density (seen in figure 5.19) we suggest that a possible
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Figure 5.18: Isochoric fragility mρ the stretching parameter βKWW . Circles repre-
sent polymers, diamonds represent molecular liquids. See the table in appendix A
for numerical values and references.
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Figure 5.19: The ratio between isochoric and isobaric fragility as a function of
the stretching parameter βKWW . Circles represent polymers, diamonds represent
molecular liquids. See the table in appendix A for numerical values and references.
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correlation between stretching and fragility should be interpreted as a correlation

between stretching and the isochoric fragility, while a correlation to isobaric fragility

is an indirect consequence hereof. This means that the stretching is related to the

“pure” effect of temperature on the relaxation time. This is consistent with the fact

that the fragility and the stretching both stay constant on an isochrone.

So far we have considered only fragility and stretching at the conventional glass

transition temperature, that is around τα = 100 s. However, the stretching de-

pends on the relaxation time and also the departure from Arrhenius temperature

dependence and hence the fragility depend on relaxation time (see sections 2.2 and

3.3.5). The general qualitative behavior is that the fragility decreases approach-

ing the strong limit when the relaxation time is decreased and the “normal” liquid

regime is approached. The decrease in relaxation time is also accompanied by a de-

crease in stretching (increase in βKWW ) and a Debye behavior is approached as the

liquid regime is reached. This gives support to the idea that the intrinsic (isochoric)

fragility of a liquid is correlated to the intrinsic stretching of the relaxation function.

5.4 Summary

We report dielectric relaxation data under pressure for two molecular liquids, m-

toluidine and DBP. We combine the relaxation time data with the available ther-

modynamic data and analyze the respective effect of density and temperature on

the dynamics. This result is consistent with a general picture in which the iso-

choric fragility is constant on an isochrone. The shape of the relaxation function

(eg. expressed by the stretching parameter βKWW ) is also found to be constant on

an isochrone. We use the framework in chapter 3 in order to discuss effect of density

on the possible correlation between the fragility and the stretching of the relaxation

function. We suggest that if the stretching correlates to fragility then it should be

correlated to isochoric rather than isobaric fragility.



Résumé du chapitre 6

Le facteur de structure cohérent a été mesuré dans le polyisobutylène pour différentes

masses molaires et dans le cumène en fonction de la température à pression atmo-

sphérique et à 300 MPa. Les expériences et les résultats sont présentés dans ce

chapitre.

L’effet principal de la pression est une augmentation du vitesse de son, tandis que

son amortissement reste plus ou moins le même.

Le facteur de non-ergodicité (rapport entre l’intensité élastique et l’intensité totale)

mesuré dans les verres (en dessous de Tg) ne varie pas avec la pression. Cela implique

une augmentation du paramètre α défini par Scopigno et al. [2003] du fait de la

dépendance en pression de la température de transition vitreuse. Le paramètre α

augmente aussi avec la masse molaire. L’évolution de α avec la pression comme celle

avec masse molaire ne suivent pas l’évolution attendue du fait de la correlation entre

α et la fragilité isobare.

Sur la base du schéma developpé dans le chapitre trois, on discute l’effet respectif

de la température et de la densité sur une corrélation possible entre α et la fragilité

du liquide. On suggère que la grandeur à considérer dans le cadre d’une corrélation

avec α n’est pas une fragilité mais la derivée d log e(ρ)
d log ρ . C’est-à-dire que α est relié à

l’effet de la densité sur le temps de relaxation plutôt qu’à l’effet de la température.





Chapter 6

High Q collective modes

In this chapter we present a study of temperature, pressure and molecular weight

dependence of the coherent dynamical structure factor measured by IXS in cumene

and PIB. The study of the molecular weight dependences allows to change macro-

scopic characteristics of the sample while the relaxing entity is kept the same. It

is in this sense analogous to pressure studies. The IXS spectra give information on

the collective modes in the Q-range 1-10 nm −1 which gives 1/Q ∼ 0.1-1 nm. This

means that we are studying “sound” at wavelengths so small that they are compa-

rable to the distance between the molecules (or the monomers of a polymer). The

modes in this Q region have frequencies of the same order of magnitude as the boson

peak frequency, and the information on their behavior is therefore relevant in order

to understand the meaning of the boson peak. Some of the results of this chapter

therefore play a central role in chapter 8 where we analyze the pressure dependence

of the boson peak in polyisobutylene.

The main focus of the analysis and discussion in this current chapter is the pressure

and temperature dependence of the nonergodicity factor as measured by IXS and

particularly to scrutinize the proposed correlation to fragility [Scopigno et al., 2003].

The correlation was briefly introduced in section 2.7.1 and more details will be given

in section 6.4.1.

6.1 Inelastic X-ray scattering

6.1.1 The experimental technique

The IXS experiment on cumene was performed on the IXS beamline ID16 at the

ESRF, while the experiment on PIB was performed on its sister beamline ID28. In

95
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this section we briefly describe the technique and give details regarding the specific

experiments in the following section.

The study of phonons by inelastic X-ray scattering (IXS) requires resolution of

the energy transfer in the meV range while the incoming photon has an energy in

the 10 keV range. This means that the relative resolution has to be in the 10−7

range. This is obtained by using higher order reflections of silicon crystals in a

backscattering geometry. The scan in energy is done by changing the temperature

of the crystal steps of ∼ 5 mK and hereby varying the lattice spacing .

The temperature changes are made at the monochromator, while the analyzers are

kept at a constant temperature, meaning that the scan in energy is done by changing

the incoming energy and keeping the outgoing energy constant. The (11 11 11)

reflection of the Si monochromator and analyzer crystals was used for the reported

experiments yielding an energy resolution of FMHW=1.6 meV.

There are 5 analyzers on a moving arm, with a fixed position with respect to each

other. This allows spectra to be recorded at 5 Q values simultaneously with a

difference of 3 nm−1 between them.

6.1.2 The experiment

The dynamical structure factor of cumene was recorded at different temperatures in

the glass and in the liquid at atmospheric pressure and at 300 MPa. See appendix

A for details on the sample. The analyzers were set to give the Q values 2 nm−1, 1

nm−1, 4 nm−1 7 nm −1 and 10 nm−1. The integration time per point was minimum

60 s per point and was increased by a factor 2 or 3 at lower temperatures where the

inelastic intensity is lower.

We measured the dynamical structure factor as a function of temperature at at-

mospheric pressure for four PIB samples, with different molecular weight: PIB680,

PIB1100, PIB3580 and PIB500k. See appendix A for details on the samples. The

PIB680 and PIB3580 samples were moreover studied at 300 MPa. The Q setting 2

nm−1, 5 nm−1, 8 nm−1 11 nm −1 and 14 nm−1 was used for all the samples under

all P-T conditions. Several additional Q settings were used at some conditions. The

integration time per point was 70 s.

The samples were in both experiments placed in a 10mm (or 20mm) long cylindric

pressure cell, which was sealed at both ends by 1 mm thick diamond windows. The

pressure was applied using a piston-and-cylinder device. The pressure was always

imposed above the (pressure dependent) glass transition temperature, and cooling

was done isobarically by adjusting the imposed pressure upon cooling.
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The experiment on PIB was performed using ethanol as the pressurizing medium.

Ethanol does not dissolve PIB (at ambient pressure). Moreover, we isolated the

sample from the ethanol by placing it in a 9.9 mm long Teflon cylinder closed in

both ends with a Teflon film. The Teflon cell was subsequently mounted in the

pressure cell.

The experiment on cumene was performed using the cumene itself as pressurizing

medium. Thus, more sample was added in the cell, and therefore in the beam, when

the pressure was increased.

6.1.3 Data treatment

Since the incoming photon looses less than a ppm of its initial momentum we can

neglect this change and take Qin = Qout. This means that the conversion from angle

to Q is given simply by Qout = 2Qinsin(θ) and the Qin/Qout factor in equation

4.3.10 is equal to one. Hence S(Q, ω) at a given Q is given directly by the measured

intensity as a function of energy at a given angle. Apart from the sample we also
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Figure 6.1: The figure illustrates a typical spectrum at Q = 2 nm−1 from raw data
along with the signal of the empty cell. The intensity of the empty cell is in the order
of magnitude 10% of the total signal. The red curve shows the resolution function
scaled in intensity to the empty cell signal. The resolution function collapses with
the cell signal and the cell signal can therefore be considered as purely elastic.

have the diamond window of the cell and the capton window in the beam. In the

PIB experiments we moreover had a thin teflon film and possibly ethanol (between

the teflon and the diamond window). The background gives rise to an elastic signal

of order of magnitude 10% of the total intensity of the sample (figure 6.1). This

background signal is subtracted from the measured elastic intensity. The subtraction

of the background does not affect the determination of the position of the side peaks

nor of their widths because the background intensity is purely elastic. However, it
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does influence the nonergodicity factor. This leads to a relatively larger systematic

error in the nonergodicity factor as compared to measurements at ambient pressure.

Fitting

The data are fitted by use of a damped harmonic oscillator for the inelastic signal

and a delta function for the elastic line

S(Q, ω) = S(Q)

(

f(Q)δ(ω) + [1 − f(Q)]
1

π

Ω2Γ(Q)

(ω2 − Ω2(Q))2 + ω2Γ2(Q)

)

. (6.1.1)

The normalization of the functions ensures that the integral
∫

S(Q, ω)dω = S(Q)

and
∫ ∆ω
−∆ω S(Q, ω)dω/S(Q) = f(Q). The wavelength studied is 2π/Q, Ω gives the

frequency of the mode in question, and Γ denotes the damping/attenuation of the

sound mode.

The above function is symmetric in ω. Detailed balance is obtained by multiplying

with the factor ~ω/(kBT )/(1 − exp(−~ω/(kBT ))). Note that the sample gain of

energy is taken as positive energy in this case. This is done to follow the convention

in the IXS community, however it is the opposite of the convention in neutron

scattering. The neutron convention is used in section 4.3 and in chapter 8. The last

point of the analysis is the convolution with the resolution function. The resolution

is obtained experimentally at the beamline by a measurement on a plexiglass sample.

The complete function used in the fitting procedure is hence

I(Q, ω) = A

∫

R(ω − ω′)
(

f(Q)δ(ω′)+ (6.1.2)

~ω′β

1 − exp(−~ω′β)
[1 − f(Q)]

1

π

Ω2Γ(Q)

(ω′2 − Ω2(Q))2 + ω′2Γ2(Q)

)

dω′.

Where A is a factor that contains S(Q) as well as the total number of scatterers,

scattering length etc., see section 4.3.2. The quality of the fits is generally very

convincing, this is illustrated in figure 6.2.

6.2 Sound speed and attenuation

6.2.1 PIB

Figure 6.3 shows the dispersion of the longitudinal sound modes in the Q-range

2 nm−1 to 20 nm−1 measured at ambient pressure and at 300 MPa, for the PIB680 at
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Figure 6.2: Scoh(Q, ω) of PIB3580 at Q =2 nm−1 at room temperature and ambient
pressure (left) and 300 MPa (right). The full red line illustrates the fit to equa-
tion 6.1.2. The black curve shows the inelastic signal before convolution with the
resolution function (second term of equation 6.1.1) .

room temperature. The qualitative behavior is the same at other temperatures and

with samples of other molecular weights. The dispersion is linear up to Q=2 nm−1

where it starts bending slowly off becoming flat around Q =5 nm−1. The result

corresponds to the dispersion generally seen for disordered materials [Ruocco and

Sette, 2001]: showing a maximum at about Qm/2, with Qm being the position of the

first structure factor maximum. Qm ≈ 10 nm−1 for PIB [Farago et al., 2002] (see also

figure 6.4). The effect of pressure is a shift of the Brillouin lines to higher frequency

(figure 6.2), corresponding to an increase in sound speed. The shift corresponds

to a change in sound speed from 2070 m/s to 2860 m/s for the PIB680 at room

temperature (the dispersion shown in figure 6.3).
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Figure 6.3: The dispersion of longitudinal sound modes of PIB680 measured by IXS
at room temperature at atmospheric pressure and 300 MPa.

The sound speed in the glass is temperature independent within error-bars, while the
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Figure 6.4: The static structure factor of PIB680 at room temperature at atmo-
spheric pressure and 300 MPa.s, measured on ID28.

sound speed decreases when temperature is increased above Tg. This is illustrated

by the data of PIB680 in figure 6.5. This change in temperature dependence of

the high frequency sound speed is a signature of the transition from glassy to high

frequency equilibrium dynamics according to the definitions given in section 2.5.
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Figure 6.5: The sound speed of PIB680 at room pressure and at 300 MPa as a
function of temperature (calculated from the excitation at Q=2nm−1). The sound
speed in the glass is temperature independent within error-bars, while the sound
speed decreases when temperature is increased above Tg. An equivalent behavior is
found for PIB3850 (not shown).

The sound speed increases with increasing molecular weight at ambient pressure

and room temperature, with a molecular weight dependence that levels off around

Mw=10000 g/mol. However, when comparing the (temperature independent) sound

speeds in the glass we see no molecular weight dependence (figure 6.6).
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Figure 6.6: The sound speed as a function of molecular weight at ambient pressure.
At room temperature and in the glass. The values are calculated from the excitation
at Q=2nm−1.

The relatively low sound speed of the PIB samples have the consequence that the

Brillouin peaks are very close to the central line and in some cases almost inside the

resolution function. There is consequently a large error on the determination of the

sound attenuation factor using the IXS technique. This is particularly a problem

for PIB680 in which case we had to fix the gamma value in order to get reasonable

fits of the data.

Figure 6.7 shows the temperature dependence of the sound attenuation at atmo-

spheric pressure and at 300 MPa for PIB3580 at Q=2 nm−1. It is seen that

sound attenuation is independent of pressure and of temperature and has the value

Γ = 2.5 meV± 0.5 meV at Q =2 nm−1.

The sound attenuation is best determined at high temperature, high molecular

weight and high pressure, because these condition gives a combination of high inten-

sity and high sound speeds, yielding the most prominent and well separated Brillouin

peaks in the raw data. This also means that we can get a reasonable fit at 1 nm−1

under this condition. Figure 6.8 shows the Q-dependence of Γ in this condition. The

functionality of Q-dependence cannot be separately extracted but is consistent with

a Γ ∝ Q2 behavior in the low Q range .

6.2.2 Cumene

The qualitative behavior is similar to that of PIB, and of other systems, with a

linear dispersion at low Q and a bend at around Qm/2. The dispersion appears to

stay linear in a longer range than in the case of PIB, being close to linear all the
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Figure 6.7: The sound attenuation at two different pressures as a function of tem-
perature. PIB3580, Q=2 nm−1.
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Figure 6.8: The sound attenuation of PIB500k room temperature at two different
pressures as a function of Q.
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way up to 4 nm−1, and bends after this (figure 6.2.2). Though this is difficult to

determine precisely with the relatively scarce number of Q-values.
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Figure 6.9: The dispersion of cumene at T=160 K at ambient pressure and at 300
MPa. The dashed lines are guides to the eye. A few of the spectra are shown in
figure 6.10.
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Figure 6.10: Scoh(Q, ω) of cumene at Q =4 nm−1 at T=160 K and ambient pressure
(left) and 300 MPa (right). The full blue line illustrates the fit to equation 6.1.2. The
red curve shows the inelastic signal before convolution with the resolution function
(second term of equation 6.1.1) .

In figure 6.11 we show the sound speed, calculated as ω/Q at Q=2 nm−1 and

Q=4 nm−1 respectively, as a function of temperature and at ambient pressure as

well as at 300 MPa. The figure confirms that the dispersion is close to linear almost

up to Q=4 nm−1. The speed seen at Q=4 nm−1 is systematically slightly lower, the

beginning of the deviation from linear dispersion, but the sound speed determined

from the two Q-values is the same within error-bars1.

The sound speed decreases with increasing temperature in the melt at atmospheric

pressure, while the sound speed at 300 MPa essentially is temperature independent

over the entire temperature range (figure 6.11). It is moreover striking that the

1The fit for cumene at 2 nm−1 T =142 K and atmospheric pressure appears to be unreliable. It
is an outlier and the result is not robust to a change of fitting program.
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Figure 6.11: Sound speed of cumene calculated at Q=2 nm−1 and Q=4 nm−1 re-
spectively, as a function of temperature at ambient pressure and at 300 MPa.

pressure dependence of the sound speed in the glass is very weak if present at all.
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Figure 6.12: Sound attenuation of cumene as a function of temperature. The results
are shown in terms of Γ/Q2, to illustrate that the data are consistent with a Γ ∝ Q2

behavior.

The sound attenuation is shown in figure 6.12. We do not determine the Q-dependence

of the sound attenuation directly since we, as in the case of PIB, have few Q values.

In figure 6.16 we plot Γ/Q2 at Q=2 nm−1 and Q=4 nm−1 respectively, as a function

of temperature and at ambient pressure as well as at 300 MPa. It is seen that Γ/Q2

is Q-independent, except in the melt at ambient pressure, meaning that the Q de-

pendence generally is consistent with the Γ ∝ Q2 behavior which is often found in

glasses [Ruocco and Sette, 2001]. It is moreover seen that the pressure dependence

of Γ is very weak, with only a slight shift to lower values at high temperatures,
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whereas there is no pressure dependence in the glass. Lastly a slight increase in Γ

is observed as temperature increases. The effect of temperature is most pronounced

at ambient pressure at Q=2 nm−1.

6.3 Nonergodicity factor

6.3.1 PIB

Before looking at the nonergodicity factor (the ratio of inelastic to total intensity)

we take a look at the total intensity itself (figure 6.13). The total intensity at low

Q, is weakly linearly increasing with temperature at 300 MPa while it is strongly

temperature dependent above Tg at ambient pressure (figure 6.13). Note that the

absolute values of the different molecular weights cannot be compared directly as

these will depend on the number of scattering centers in the beam. This depends

both on how the cell was filled and on how it was placed in the beam. However, the

experiments at different pressures where performed on the same samples without

moving the cell. It is significant that the total intensity decreases as pressure is

increased, particularly at high temperatures.
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Figure 6.13: The integrated intensity as a function of temperature at Q=2 nm−1.
Two molecular weights and two pressures. The lines are guides to the eye.

The nonergodicity factor evaluated at Q=2 nm−1 decreases with temperature, but

there is no pressure dependence within error-bars. This is seen in figure 6.14. On the

other hand, it is seen in the figure that there is a strong dependence on the molecular

weight, with the nonergodicity factor increasing with increasing molecular weight at

all pressures.
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Figure 6.14: The nonergodicity factor as a function of temperature. Two molecular
weights and two pressures.

The wave-vector dependence of the nonergodicity factor follows the expected oscil-

lation with the S(Q). That is, it is Q-independent in the low Q-region and increases

when approaching the structure factor maximum (figure 6.15).

6.3.2 Cumene

Unlike the case of PIB, there is a pressure dependence of the non ergodicity factor

of cumene. It is moreover non-trivial in the sense that it is different in the glass

as compared to the melt. The nonergodicity factor at Q=2 nm−1 increases with

increasing pressure in the melt while the effect is opposite in the glass (figure 6.16).

The latter effect is weak and maybe not significant compared to the error-bars.

The pressure dependence of the nonergodicity factor at Q=4 nm−1 is qualitatively

the same at all temperatures with an increase in fQ with increasing pressure. The

effect is most pronounced at high temperatures, while the difference between the

two temperatures essentially disappears in the glass.

6.3.3 Interpretation in terms of compressibility

In this section we rationalize the pressure dependence of the inelastic and the total

intensities of PIB3580 in terms of compressibilities. The nonergodicity factor is de-

termined from the ratio between the elastic intensity (total intensity minus inelastic

intensity) over the total intensity. The considerations presented here are therefore

directly relevant for understanding the nonergodicity factor, particularly its pressure

dependence is of interest.
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Figure 6.15: The nonergodicity factor, fQ, as a function of Q. PIB3580 at different
temperatures and pressures. It is seen that the Q dependence is leveling off at low
Q. Lines are guides to the eye.
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Figure 6.16: Nonergodicity factor of cumene as a function of temperature at atmo-
spheric pressure and 300 MPa. The left figure shows the result at Q=2 nm−1 and
the right figure shows data from Q=4 nm−1
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The low Q limit of S(Q) is given by kBTρκT (equation 6.3.1). This result is based on

the fluctuation dissipation theorem which relates the global density fluctuations to

the response function the ρκT . The energy dependent S(Q, ω) splits the compress-

ibility in two parts. One is the central line which contains the density fluctuations

that fluctuate slower than the time characteristic to the resolution, that is the re-

laxational part of the compressibility. The other part is the fluctuations which vary

at frequencies corresponding to the sound modes at the studied Q-value, these are

seen in the Brillouin lines. The fast density fluctuations are the phonons and the

compressibility related to these also governs the sound speed. This leads to the

following relations

lim
Q→0

S(Q) = kBTρκT (6.3.1)

AItot = TρκT (6.3.2)

AIinel(T, P ) = Tρ(T, P )κinf (T, P ) =
T

v2
l (T, P )

(6.3.3)

Where A is a factor that contains the total number of scatterers, the form factor

etc., see section 4.3.2.

The result above holds in the low Q limit (equation 6.3.1), while the measurements

are performed at a rather high Q-value, meaning that it is not a priori expected

to find agreement with the IXS data. Q=2 nm−1 is on the other hand in the

region where S(Q) as well as fQ are approaching their low Q plateaus and the

dispersion is still linear in this range. This observation suggests that an agreement

with the long wavelength behavior can be anticipated even in this region. Figure

6.17 shows that the consistency is in fact rather convincing. We show the total

and the inelastic intensities as a function of temperature at atmospheric pressure

as well as at 300 MPa. We moreover show TρκT calculated from the equation of

state (see appendix A) and T
v2

l (T,P )
calculated from the sound speed determined by

the position of the peaks in the IXS spectra2. The intensities are scaled by a factor,

A, to make numerical values comparable to the TρκT . The same factor is used

at all pressures and temperatures and for total and inelastic intensities alike. It

is seen that the differences in intensity are very well interpreted in terms of the

compressibilities: (i) The compressibility increases with temperature above Tg, and

this effect is much more pronounced at ambient pressure than at 300 MPa. (ii) The

compressibility is larger at ambient pressure than at elevated pressure. (iii) The

2This sound speed agrees with the sound speed at lower Q-values, see section 8.2.2.
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high frequency compressibility is roughly one third of the total compressibility. The

most marked discrepancy is the temperature dependence above Tg; here we find that

the temperature dependence of the measure I(Q) is weaker than the temperature

dependence of TρκT .
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Figure 6.17: Intensities and compressibilities as a function of pressure.

The interpretation above is restricted to temperatures above Tg because density

fluctuations are frozen in in the glass and there is no longer a correspondence be-

tween the density fluctuations measured by scattering and the compressibility one

would measure in a macroscopic experiment where the system is compressed. The

compressibility measured by volume changes as a function of applied pressure, will

as other thermodynamic derivatives be discontinuous at Tg. It is more over ill-

defined in the glass because the system is out of equilibrium and the values obtained

will depend on the thermodynamic path. S(Q) on the other hand does not change

abruptly when Tg is passed. S(Q) stays more or less constant in the glass. The in-

tensity decreases weakly due to the decreasing intensity of the inelastic signal, while

the elastic intensity is temperature independent.

The change of the nonergodicity factor with temperature in the glass is essentially

governed by the temperature population factor of the phonons. Neither the sound

speed nor the frozen in fluctuations seen in the elastic intensity change significantly

with temperature. This means that fQ inevitably decreases as temperature increases

in the glass. The pressure dependence is however more complicated. Pressure will

decrease the frozen in fluctuations and at the same time increase the glassy-modulus.

These two effects will have opposite effects on the nonergodicity factor. There is no

a priori reason why one of them should be the dominant effect.
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6.4 Nonergodicity factor and fragility

It has been found that the temperature dependence of the nonergodicity factor, fQ,

in the glass correlates to the fragility of the liquid [Scopigno et al., 2003]. In this

chapter we will discuss this correlation based on our pressure and molecular weight

dependent data. We will moreover include literature data and give a more general

discussion of how the correlation reflects the effect of temperature versus the effect

of density on the alpha relaxation time.

6.4.1 The proposed correlation

The nonergodicity factor is Q independent in the low Q-region (see the previous

section), and the result regards the nonergodicity factor in this low Q domain.

Scopigno et al. [2003] use Q=2 nm−1 as a reference Q-value when comparing systems,

and we follow this convention.

The temperature dependence of the nonergodicity factor can in the harmonic ap-

proximation be described by fQ(T ) = 1/(1 + aT ), where a is given by the eigen-

vectors and eigenvalues of the vibrational normal modes and the inherent structure

structure-factor (see section 4.3.7). In order to define a dimensionless parameter3,

α, to characterize the temperature dependence of the nonergodicity factor Scopigno

et al. [2003] introduce a scaling with Tg

fQ(T ) =
1

1 + α T
Tg

. (6.4.1)

The temperature dependence predicted from the harmonic approximation is always

found at low temperatures in the glass, and most often all the way up to Tg. The

parameter α can therefore easily be extracted as the low temperature slope of 1/fQ

as a function of T/Tg (see e.g. figure 6.18). By comparing 10 different glass-forming

systems Scopigno et al. [2003] find that α is proportional to the isobaric fragility

mP with mP = 135α.

If the linear dependence of 1/fQ holds up to Tg then there is a one to one corre-

spondence between fQ(Tg) and α [Buchenau and Wischnewski, 2004]:

fQ(Tg) =
1

1 + α
. (6.4.2)

3The parameter α is a measure of the temperature dependence of the nonergodicity factor in
the glass, it should not be confused with a thermal expansivity. We always give a subscript for the
latter, i.e. αP .



6.4. Nonergodicity factor and fragility 111

This means that the correlation between fragility and α hints that there could be

an anti-correlation between fQ(Tg) and fragility, and this has also been verified for

a number of glass formers [Buchenau and Wischnewski, 2004; Novikov et al., 2005].

However, the harmonic behavior is not always followed all the way up to Tg. Using

α determined from low temperatures rather than from equation 6.4.2 is therefore

not in general equivalent, and the difference appears to be larger the larger is the

fragility [Scopigno, 2007].

The liquid is in thermodynamic equilibrium at Tg and the low Q limit of fQ(Tg)

is therefore determined by the high frequency adiabatic longitudinal compressibil-

ity, 1/(ρv2
l,∞) and the equilibrium isothermal compressibility [Buchenau and Wis-

chnewski, 2004] (see also section 4.3.9);

fQ = 1 −
1

ρκT v2
l,∞

. (6.4.3)

In the previous section we showed that this interpretation in terms of compressibil-

ities appears to be relevant even at the relative high Q-value of 2 nm−1. In this

frame the correlation can be expressed in the following way: the larger the high

frequency compressibility is, compared to the isothermal compressibility, the larger

is the fragility.

6.4.2 Pressure and Mw dependence
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Figure 6.18: The inverse nonergodicity factor as a function of temperature normal-
ized to glass transition temperature. PIB3580 and PIB680 at ambient pressure and
300 MPa. Lines are fits to equation 6.4.1, the slope of the lines is equal to α.

Figure 6.18 shows the inverse nonergodicity factor as a function of temperature

normalized to glass transition temperature for PIB3580 and PIB680 at ambient
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pressure and 300MPa. Note first of all that the fQ(T ) = 1/(1 + aT ) behavior is

followed all the way up to Tg in this case, meaning that equation 6.4.2 is valid.
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Figure 6.19: The parameter α (see text) as a function of molecular weight. Q =
2 nm−1, ambient pressure.

It is clearly seen the slopes on figure 6.18 that α is larger for the larger molecular

weight. We have also determined α for the PIB1100 and the PIB500k samples (figure

6.19 a) and find a monotonous molecular weight dependence which levels off around

Mw=10.000 g/mol much like the sound speed in the liquid (figure 6.6) and other

dynamical properties. We do not have the fragility of the samples at intermediate

molecular weight, but the low molecular weight sample has considerably higher

fragility than the high molecular PIB (see appendix A). The molecular weight

dependence of α is thus opposite to what one expected from the correlation between

α and fragility. This is illustrated in figure 6.19 b).

From figure 6.18 we can also anticipate the pressure dependence of α; for the PIB3580

sample it is seen that α increases significantly when the pressure is increased from

atmospheric pressure to 300 MPa. The tendency is the same for the PIB680 sample

although the effect is much weaker (almost within the error-bars). We will return

to this result after considering the situation for cumene.

The temperature dependence of the inverse nonergodicity factor of cumene at atmo-

spheric pressure and 300MPa is shown in figure 6.20. The data is shown both on an

absolute temperature scale and as a function of T/Tg. The value of α increases when

pressure is increased from atmospheric pressure to 300MPa. The isobaric fragility

on the other hand decreases (see appendix A). The pressure dependence is hence

not consistent with a correlation between α and mP .

It is striking in figure 6.20 that there are deviations from the harmonic fQ(T ) =

1/(1 + aT )-behavior below Tg at atmospheric pressure. The harmonic behavior
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Figure 6.20: The inverse nonergodicity factor of cumene as a function of temperature.
Figure a) shows an absolute temperature scale while figure b) shows temperature
normalized to the pressure dependent glass transition temperature. Lines are fits to
equation 6.4.1 , the slope of the lines in figure b) is equal to α.

implies that the moduli are constant, but when looking back at figure 6.11 we see

that also the sound speed of cumene increases below Tg. From this we conclude that

there is a high frequency relaxation in the glassy cumene which brings down the

longitudinal modulus and the nonergodicity factor. There are no similar changes at

300 MPa, and it is why there is a crossover in the pressure dependence of fQ, seen

in figures 6.16 and 6.20 a).

The crossover in the pressure dependence has the consequence that while α deter-

mined from low temperatures is pressure dependent then fQ(Tg) is almost pressure

independent. Moreover the weak change in fQ(Tg) is consistent with an anti corre-

lation between fQ(Tg) and mP .

For the mean square displacement which relates to the single particle dynamics

seen from the incoherent scattering we find that the pressure dependence can be

scaled out by scaling temperature with Tg (section 7.3). For α it appears that the

situation is quite different. The pressure dependence seen in the 1/f(Q) versus

T/Tg is largely (PIB3580) or solely (PIB680 and cumene) due to the scaling of the

temperature axis by Tg as the isothermal pressure dependence of the nonergodicity

factor is weak (PIB3580) or non existing (PIB680 and cumene). IXS data taken

under pressure have earlier been performed on DBP by Mermet et al. [2002]. From

this experiment it is also reported that the nonergodicity factor does not change

as a function of pressure at constant temperature. The change in Tg with pressure

therefore makes α of DBP increase with increasing pressure. DBP is an example of

a liquid with no significant pressure dependence of the isobaric fragility while the
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isobaric fragility of cumene decreases as a function of temperature. Yet it seems

that the increase of α with increasing pressure is quite general.

6.4.3 Comparing different systems

In this section we consider the proposed correlation(s) between nonergodicity factor

and isobaric fragility in terms of isochoric fragility and in terms of the effect of

density on the relaxation time (see section 3.3). We shall in all cases consider α and

fQ(Tg) in parallel.

In figure 6.22 we show the isobaric fragility α and fQ(Tg) respectively. We show

only data points which correspond to samples for which the isochoric fragility is also

known, the original correlation is indicated with a line. The first observation is that

the originally proposed correlation to mP fails when considering this limited set of

data. It has been suggested that the correlation might fail if Johari Goldstein beta

relaxations or other fast relaxations contribute to the intensity of the central peak

[Scopigno, 2007]. This could explain the outliers lying above the line in figure 6.22

while it could not explain the outlier below the line4.
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Figure 6.21: The legends for the symbols used in figures 6.22 to 6.25. The value
of alpha is not known for PVAc, and we have therefore calculated it from fQ(Tg)
assuming equation 6.4.2. The value of fQ(Tg) is not published for salol and was
therefore calculated from α also assuming equation 6.4.2. These two values are
shown with small symbols in all the figures in order not to emphasize them.

4DBP, which is an outlier in figure 6.22, is an example of a systems where the JG-relaxation
is rather prominent. However, it is worth noticing that it still has an intensity which is orders of
magnitudes lower than the alpha relaxation, meaning that its contribution to the nonergodicity
factor probably can be neglected. This is illustrated in the plots below with dielectric data of

Nielsen et al. [2006].
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Figure 6.22: Isobaric fragility as a function of fQ(Tg) and α. The legend is found in
figure 6.21.

The next observation is that the correlation to mρ is even poorer (figure 6.23). This

indicates that the correlation proposed between f(Tg) and mP is not related to the

effect of temperature on the alpha relaxation time. However, there does seem to be

a correlation to the ratio mP /mρ (figure 6.24) implying a correlation between f(Tg)

and the effect of density on the relaxation time.
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Figure 6.23: Isochoric fragility as a function of fQ(Tg) and α. The legend is found
in figure 6.21.

To examine the significance of this further we start by noting that the scaling law

(equation 3.2.1) leads to the following relation

mP /mρ =

(

1 −
d log ρ

d log T

∣

∣

∣

∣

P

d log e(ρ)

d log ρ

)

. (6.4.4)

This expression clearly illustrates that the effect of density on the slowing down

upon isobaric cooling as measured by mP can itself be decomposed in two parts:

the temperature dependence of the density measured by d log ρ
d log T

∣

∣

∣

P
(T = Tg) = −TgαP
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[Alba-Simionesco et al., 2004; Casalini and Roland, 2004], and the density depen-

dence of the relaxation time, which is contained in d log e(ρ)
d log ρ .

0 0.2 0.4 0.6 0.8
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

α

m
P
/m

ρ

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

1

1.2

1.4

1.6

1.8

2

2.2

f(T
g
)

m
P
/m

ρ

Figure 6.24: The ratio between isochoric and isobaric fragility as a function of fQ(Tg)
and α. The legend is found in figure 6.21.

In figure 6.25 we show the fQ(Tg) value versus d log e(ρ)
d log ρ . The amount of data is

limited and the uncertainty on this type of data is large, but it is striking that we

obtain a new correlation. The smaller fQ(Tg) is the larger is d log e(ρ)
d log ρ . It is striking

most of all because d log e(ρ)
d log ρ can be determined from the dynamics of the non-viscous

liquid at high temperatures [Alba-Simionesco et al., 2002]. We contemplate that

the correlation proposed between fQ(Tg) and mP is a reminiscent signature of a

correlation between fQ(Tg) and d log e(ρ)
d log ρ . An excellent test case for this hypothesis

would be to measure fQ(Tg) on sorbitol which has a very high mP -value combined

with an exceptionally low value of d log e(ρ)
d log ρ [Roland et al., 2005].

It appears that the anti-correlation between d log e(ρ)
d log ρ and fQ(Tg) is better than the

correlation between d log e(ρ)
d log ρ and α. This is particularly true when considering the

pressure dependence of the quantities in the case of cumene; d log e(ρ)
d log ρ does not de-

pend on pressure and the pressure dependence of fQ(Tg) is weak whereas α has a

significant pressure dependence. It is difficult to know if the pressure independence

of fQ(Tg) of cumene is a coincidence or if this could be general for systems with con-

stant d log e(ρ)
d log ρ . fQ(Tg) decreases with pressure both in the case of PIB and DBP, the

correlation suggested from figure 6.25 therefore implies that d log e(ρ)
d log ρ should increase

with pressure. In section 5.2.1 we show that DBP is in fact a system where d log e(ρ)
d log ρ

increases with pressure, and PIB could be a similar system (see appendix A).

A physical significance of the correlation is that the larger the vibrational compress-

ibility is relative to the total compressibility the more sensitive to density is the
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Figure 6.25: The value of d log e(ρ)
d log ρ as a function of fQ(Tg) and α.

characteristic energy scale of the system.

6.5 Summary

The high Q sound modes have been measured in PIB of different molecular weights

and in cumene, as a function of temperature at atmospheric pressure and at 300

MPa.

The most pronounced effect of pressure is an increase in the measured sound speed.

This effect is much more pronounced in the liquid than in the glass. The sound

attenuation is pressure and temperature independent over the whole range measured

within the (relatively large) error-bars.

The pressure dependence of the nonergodicity factor appears to be non-universal.

It differs from system to system and can differ when passing from the glassy to the

liquid state of the same system. The pressure dependence of the nonergodicity factor

in the glass is always weak. The pressure dependence of the parameter α which

describes the evolution of the nonergodicity factor as a function of temperature

normalized to the glass transition temperature, Tg is therefore mainly due to the

pressure dependence of Tg.

The observed pressure dependence as well as the molecular weight dependence of α

are opposite to the evolution expected from the correlation between α and isobaric

fragility.

We have compared literature data of the α and fQ(Tg) to fragility in systems where

both isochoric and isobaric fragility is known. For this limited set of data we do not
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find any correlation to neither of the fragilities. However, it appears that there is a

correlation between nonergodicity factor and the effect of density on the relaxation

time, the most promising being a correlation between d log e(ρ)
d log ρ and fQ(Tg). This

hypothesis is based on limited data and more systems are needed to verify the

trend.

We find that fQ(Tg) at Q = 2 nm−1 is well interpreted in terms of compressibilities.

A physical interpretation of the correlation is that therefore the larger the vibrational

compressibility is relative to the total compressibility the more sensitive to density

is the characteristic energy scale of the system.



Résumé du chapitre 7

Dans ce chapitre on présente des mesures du déplacement carré moyen en fonction

de la température à l’échelle de la nanoseconde, obtenues en rétro-diffusion des

neutrons pour cinq liquides moléculaires. Les mesures ont été effectuées à pression

atmosphérique, on a par ailleurs realisé des mesures à pression élevée sur trois de

ces systèmes.

On observe que la dépendance en température du déplacement carré moyen au dessus

de Tg est plus forte dans les liquides fragiles, ce qui est cohérent avec la variation

attendue par le modèle élastique. Par ailleurs, l’importance de la dépendance en

température est du même ordre de grandeur que celle prédite par le modèle. Le

modèle élastique implique un critère de Lindemann, c’est-à-dire que le déplacement

carré moyen relatif à la distance entre les molécules au carré, soit universel à Tg.

Les résultats obtenus pour la série de systèmes étudiés ne sont pas cohérent avec

un critère de Lindemann. Par contre, il s’avère que la dépendance du déplacement

carré moyen normalisé par ρ(−2/3), en (T/Tg) ne change pas avec la pression. Cela

indique que les amplitudes des mouvements des molécules sont fortement corrélés

avec le temps de relaxation structurale.





Chapter 7

Mean squared displacement

In this chapter we report mean squared displacements at the nanosecond timescale

measured by neutron scattering. We study the mean squared displacement as a

function of temperature in 5 different molecular liquids at atmospheric pressure, 3

of these systems are also studied at elevated pressure. The liquids are chosen such

that they span a range from ∼ 45 to ∼ 150 in isobaric fragility. The mean square

displacement at this time scale has been shown to change its temperature depen-

dence in the vicinity of the calorimetric glass transition temperature. This is one

of the earliest observations of a relation between fast and slow dynamics [Buchenau

and Zorn, 1992], and several different scenarios have been suggested to explain it

[Angell, 1995; Ngai, 2000; Starr et al., 2002; Dyre and Olsen, 2004]. We discuss

these scenarios, the predictions one can draw from them and the agreement with

data in sections 7.3 to 7.5. A common feature of these scenarios is that they predict

a correlation between the temperature dependence of the mean square displacement

and the fragility. We therefore use the arguments developed in section 3.4 in order

to consider the effect of temperature and density.

7.1 Backscattering

7.1.1 Experimentals

The experiments were carried out on the back scattering instrument IN10 at the

ILL. The experiments performed where so called elastic scans, in which the elastic

scattering was measured as a function of temperature. This is done by using the

instrument in a mode where the incoming neutron has a fixed wavelength of 6.27 Å

and one measures the outgoing flux at the same energy. The outgoing neutrons were

121
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collected at 7 detectors, which for the experiments reported here were positioned

such that they spanned a range in angle (2θ) from 14◦ to 156◦ corresponding to a

Q range of 0.2 Å−1 to 2 Å−1.

The monochromation of the incoming beam as well as the scattered beam is done by

use of crystals in backscattering geometry. The use of backscattering geometry opti-

mizes the energy resolution. The (1 1 1) reflection of Si was used in our experiment

yielding an energy resolution of FWHM=1 µeV. This energy resolution corresponds

to a timescale in the order of a few nanoseconds. Hence, intensity corresponding to

processes that are slower than this, will contribute to the measured elastic intensity

(see section 4.3.10).

Cumene, m-toluidine, and DBP were studied at atmospheric as well as at elevated

pressure, while DHIQ was studied at atmospheric pressure only. See appendix A for

details on the samples.

The elastic scattering was measured as a function of temperature in a temperature

range of of 2 K to ∼ 1.5Tg ≈ 300 K. This was done in cooling in order to avoid

crystallization of the sample. The cooling rate was approximately 0.5 K/min.

The experiments at atmospheric pressure were performed using a standard cylin-

drical aluminum cell for liquid samples. This cell has about the size of the beam,

namely about 4 cm 2. The sample thickness was 0.05 mm. This yields a transmission

of roughly 95% for organic liquids, depending on density and the exact composition

of the sample.

The experiments at elevated pressure were performed using clamp cells (of slightly

different dimensions depending on pressure range). The cells had outer diameters

of 1 cm and a wall thickness of about 2 mm. The compression was in the case of

cumene performed in the pressure lab and the cell was subsequently sealed. How-

ever, we found that this method yields a large uncertainty on the pressure1. The

measurements on DBP were performed while applying in situ compression and read-

ings of the pressure. This allowed us to adjust the pressure during the cooling and

to have a more precise reading of the pressure.

The cell (and the sample) only cover a small part of the beam. We therefore placed

a cadmium mask in front of the sample in order to absorb the excess part of the

beam and thereby reduce the background signal.

We place a small cylindrical aluminum inset in the center of the cell in order to avoid

too thick a sample, since this leads to multiple scattering. The sample thickness was

1The actual pressure in the cell can be estimated from the point of fusion which is easily seen
in the raw data when heating.



7.2. Elastic intensity and mean square displacement 123

0.2 mm giving a transmission of about 80%. This value is lower than one would

prefer for this type of experiment. However, the signal was weak already under

these conditions (see below), and it was impossible to get a reasonable signal with

a reduced sample thickness.

Along with the data from IN10 we include non-published data on glycerol obtained

prior to this work on IN16 [Frick and Alba-Simionesco, 2003]. IN16 is also a backscat-

tering instrument with almost the same energy resolution as IN10. However, IN16

has a larger flux and finer grid in Q because of a larger number of detectors. Another

advantage of this experiment is that it was performed using a niobium pressure cell.

This cell only goes up to ≈ 3 kbar, but has a much lower background signal.

7.1.2 Corrections

The raw data are total measured elastic intensities at 7 different Q values. The

preliminary treatment of the data was performed using the standard ILL software

sqwel. sqwel takes care of correcting for the different detector efficiency by normal-

izing to the signal of a vanadium sample. sqwel moreover performs corrections for

sample self absorption and can subtract a measured background signal.

The aluminum cell gives a very small signal, and the subtraction of the empty cell

therefore has almost no effect on the final result. The situation for the pressure

cell, however, is quite different. The pressure cell gives as much elastic intensity as

the sample itself, and the cell subtraction procedure can lead to large errors in the

final result. We therefore subtracted the cell in an explicit procedure after using

sqwel. This allowed us to verify that the subtracted cell signal corresponded to the

total measured intensity at high temperatures where the sample liquid has no elastic

scattering. The high pressure data carries a low signal to noise ratio, due to the

relatively high intensity of the subtracted cell. The measured intensity of the sample

in the high pressure cell is moreover lower, because the sample exploits a smaller

part of the beam. Figure 7.1 illustrates the raw data (treated in sqwel, but with

no cell subtraction) from an atmospheric pressure and a high pressure experiment

respectively.

7.2 Elastic intensity and mean square displacement

The measured quantity, the elastic intensity, corresponds to the intermediate scatter-

ing function at a given timescale as explained in section 4.3.10. The characteristic

timescale of the experiment is 1/δω ∼ 1 ns. The scattering is dominated by the
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Figure 7.1: The raw data of cumene at ambient pressure in aluminum cell (diamonds)
and at 100 MPa in the high pressure clamb cell (triangles). The signal of the clamb
cell is also shown (circles). The signal of the aluminum cell is not shown, as it would
be almost invisible on this scale.

incoherent signal and it is consequently the incoherent intermediate scattering func-

tion at ∼ 1 ns which is probed. The measured intensity at a fixed Q gives direct

information on the pressure and temperature dependence of the dynamics on the

nanosecond timescale.

Figure 7.2 shows the temperature dependence of the measured intensity of DBP at

atmospheric pressure and at 500 MPa at Q = 1.96 Å. The curves are in both cases

normalized, to start in Int=1 at T = 0 K, which corresponds to assume that the

molecules have no zero-point movement.

At both pressures we see the measured intensity decreasing to essentially zero in

the high temperature limit. This corresponds to a situation where the intermediate

scattering function is totally decayed, Iinc(Q, t) = 0, at the nanosecond timescale.

The curve hence shows the transition from relaxed to non-relaxed dynamics on the

nanosecond timescale. It is clearly seen that this happens at a higher temperature

at elevated pressure, and also that Iinc(Q, t) increases with increasing pressure at

all temperatures.

7.2.1 Calculating 〈u2〉

The mean square displacement is calculated from the measured intensities by as-

suming the Gaussian approximation, such that equation 4.3.29 holds. This gives

ln(I) = A +
−Q2〈u2〉

3
(7.2.1)
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Figure 7.2: The incoherent intermediate scattering function of DBP as a function of
temperature at atmospheric pressure (full line) and at 500 MPa (diamonds).

and 〈u2〉 can hence be found from the slope in a plot with ln(I) versus Q2. Figure 7.3

illustrates the Q and the temperature dependence of the measured elastic signal. It

is seen that there is a small systematic deviation from the Q2 behavior, with a peak-

like feature around Q = 1 Å−1. This could be due to the coherent contribution of

the scattering. In order to cancel this contribution, we assume that the mean square

displacement is zero when the temperature is zero, and normalize the Q-dependent

intensities at all temperatures to the low temperature limit of the Q-dependence.

Apart from this small systematic deviation it is seen that the Q2 dependence is

followed even at temperatures in the range 1.2 Tg. However, this is not true at

even higher temperatures, which means that the Gaussian approximation becomes

inadequate.

7.2.2 The mean square displacements

Figure 7.4 shows the mean square displacement of DBP at atmospheric pressure and

at 500 MPa. The mean square displacement increases linearly with temperature

at low temperatures. The slope gradually increases at higher temperatures. The

departure from linear is smooth and starts well below Tg(P ) both at atmospheric

pressure and at elevated pressure.

The mean square displacement of cumene at atmospheric pressure and 500 MPa is

displayed in figure 7.5. A linear increase with temperature is seen almost up to Tg

and an increase in slope in the vicinity of Tg.
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Figure 7.3: Illustration of the temperature and Q dependence of the measured elastic
intensity (DBP at atmospheric pressure). Left: the temperature dependence of the
intensity at two different Q-values. Right: The logarithm of the measured intensity
as a function of Q2 at three different temperatures. The lines are fits to the Gaussian
approximation.
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Figure 7.4: The mean square displacement of DBP as a function of temperature at
atmospheric pressure (dots) and at 500 MPa (full line). The vertical lines illustrate
the positions of Tg at these two pressures.
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Figure 7.5: The mean square displacement of cumene at atmospheric pressure
(squares) and 500 MPa (triangles). The vertical lines illustrate the positions of
Tg at these two pressures.
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Glycerol is known to be a case where the temperature dependence of the mean

square displacement passes smoothly through Tg at atmospheric pressure. This is

seen in figure 7.6, where we also display the mean square displacement at 300 MPa.

The slope changes rapidly at about 1.25Tg in both cases (figure 7.7).
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Figure 7.6: The 〈u2〉 of glycerol at ambient pressure and at 300 MPa.
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Figure 7.7: The 〈u2〉 of glycerol at ambient pressure and at 300 MPa.

7.3 Relation to alpha relaxation

From the data shown in the previous section it is seen that the mean square displace-

ment at the nanosecond timescale often has a change in its temperature dependence

in the vicinity of Tg, which is governed by the dynamics on the time scale of hundreds

of seconds. This is a general observation and it is probably the most clear example

of a coupling between fast and slow dynamics [Buchenau and Zorn, 1992; Angell,

1995; Casalini and Ngai, 2001; Ngai, 2000]. The origin of this coupling is considered
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a central question for understanding the glass transition phenomenon [Angell et al.,

2000].

Several more specific relations between the temperature dependence of the alpha

relaxation time and the mean square displacement have been proposed. It is common

to these relations that they associate a larger mean square displacement to a shorter

alpha relaxation time, and hence expect the change of the mean square displacement

just above Tg to be more dramatic the more fragile the liquid is. The physical

pictures and starting points vary, but the conclusions can essentially be condensed

to two different hypothesis.

One view is, that the activation energy related to the alpha relaxation time, should

be proportional to T and inversely proportional to the total temperature dependent

mean square displacement, E(ρ, T ) ∝ T
a2〈u2〉(T )

, where a is a characteristic distance

between the relaxing entity. This yields:

τ(T ) = τ0exp

(

Ca2

〈u2〉(T )

)

(7.3.1)

where C is a constant. This view point has mainly been based on so called elastic

models [Dyre and Olsen, 2004], (for a review see [Dyre, 2006]), but it has also been

proposed by Starr et al [Starr et al., 2002] based on a Voronoi volume analysis and

computer simulations.

The other view is that it is a non-harmonic part of 〈u2〉 that should be con-

sidered instead of the total 〈u2〉. That is E ∝ T
〈u2〉loc(T )

, where 〈u2〉loc(T ) =

〈u2〉(T ) − 〈u2〉harm(T ). It is a little over-simplifying to call this one view, as the

definitions proposed for 〈u2〉loc(T ) are not completely equivalent - however this has

minor importance in the present context. This second view point leads to

τ(T ) = τ0exp

(

K

〈u2〉loc(T )

)

, (7.3.2)

where K is a constant.

We refer to this viewpoint as the relaxational hypothesis. The relaxational hypothesis

was originally proposed from a phenomenological relation found between viscosity

and 〈u2〉 in selenium [Buchenau and Zorn, 1992]. It has later been supported by Ngai

and coworkers, based on qualitative analysis of data-compilations and an extension

of the coupling model [Ngai, 2000, 2004].
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7.4 Lindemann criterion

If the constant C in equation 7.3.1 is assumed to be universal, then it follows that

a2/〈u2〉 will be the same for different liquids at the same value of the relaxation

time, eg. at Tg. It has the consequence that the mean square displacement at Tg

is a universal fraction of a2 independent of the fragility or other properties of the

liquid. The elastic model thus predicts a Lindemann criterion at Tg. The Lindemann

criterion is the rule that 〈u2〉/a2 ∼ 1% when the crystal melts. A Lindemann

criterion for the glass transition has also been proposed several times independently

of the elastic model. This is done by combining the two phenomenological “facts”,

the 2/3 rule and the Lindemann criterion for melting [Buchenau and Wischnewski,

2004; Dyre, 2006].

In order to test the Lindemann criterion, the data needs to be normalized to the

squared characteristic distance between the molecules, a2. Figure 7.8 shows the

mean square displacement for the five studied liquids in one plot. The temperature

is scaled to Tg, (but all liquids except cumene have very similar Tg’s). The 〈u2〉

values are normalized to a2 where a is taken to be v1/3 and v is the specific volume

of the molecules at ambient conditions. The figure does not appear to support a

Lindemann criterion as the 〈u2〉(Tg)/a2 varies with a factor of 3 going from glycerol

to m-toluidine.
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Figure 7.8: The temperature dependence of 〈u2〉 scaled to a2 = v2/3 (see text for
details) for 5 different liquids. The temperature is scaled to Tg.

A proposition quite opposite to that of the Lindemann criterion is suggested based

on the coupling model by Ngai [2000, 2004]. Namely, that 〈u2〉 at Tg should be larger

the more fragile the liquid is. This hypothesis is substantiated by a compilation of

data, mainly on polymer samples [Ngai, 2004]. Such correlation is not found in figure

7.8. The data on extremely fragile DHIQ fall in the middle of the curves again and
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cumene fall closer to the much less fragile glycerol than it does to m-toluidine, which

has fragility similar to that of cumene.

As an alternative figure 7.9 shows the absolute values of mean square displacement

for the five liquids in one plot. The temperature is again scaled to Tg, but the 〈u2〉’s

are given in absolute units of Å2. This plot is the same type of plot as the ones

presented in figure 4 and figure 5 of [Ngai, 2004]. It is this type of plot which is used

to argue that the absolute values of 〈u2〉 at Tg are larger for liquids with larger n

(smaller βKWW larger fragility in the frame of Ngai’s coupling model). In figure 7.9

we see that least fragile liquid, glycerol does indeed have the lowest absolute value.

However, the extremely fragile DHIQ falls just between the liquids with much lower

fragility, at odds with the results reported by Ngai [2004].
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Figure 7.9: 〈u2〉 as a function of temperature for 5 different liquids. The temperature
is scaled to Tg.

7.4.1 Pressure dependence

The value of 〈u2〉/a2 at Tg does not appear to be universal, when considering the

5 liquids studied here. This breakdown of the Lindemann criterion can be ad hoc

explained by allowing C in equation 7.3.1 to be material dependent. The Lindemann

prediction becomes weaker, but can still be scrutinized by looking at the pressure

dependent Tg of a given system. The “pressure dependent” Lindemann criterion

following from equation 7.3.1 says that 〈u2〉/a2 should be constant on an isochrone,

particularly Tg(P ) (This is a special case of equation 3.4.2). The change in density

will lead to a change in 〈u2〉 but also to a change in a2. The simplest assumption for

the density dependence is to assume that it follows the change in density; a ∝ ρ−1/3

[Dyre, 2006].

Figure 7.10 shows the temperature dependence of the mean square displacement in
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DBP at atmospheric pressure and 500 MPa. The temperature scale in this figure

is scaled by the pressure dependent Tg and the y-axis is scaled with a2 ∝ ρ−2/3

evaluated at (Tg(P ), P ). This scaling makes the entire temperature dependence

collapse on one curve (see figure 7.4 for the raw data). The scaling of the temperature

axis is by far the most important for this data collapse. The estimated increase

in density is less than 10% (see appendix A for equation of state). This gives a

decrease of a2 by approximately 5%. This difference is almost indistinguishable in

figure 7.10 due to the scatter of the data. The same type of data collapse is found for
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Figure 7.10: The temperature dependence of the mean square displacement in DBP
at atmospheric pressure and 500 MPa. The temperature is scaled by the pressure
dependent Tg and the y-axis is scaled with a2 ∝ ρ−2/3 evaluated at (Tg(P ), P ).

cumene (figure 7.11) within the rather large error-bars of the data on the measured

pressure (see section 7.1.1). A similar result has bean found earlier by Frick and

Alba-Simionesco [1999] on polybutadiene.

This scaling strongly supports the notion of a Lindemann criterion for the glass

transition. It is moreover striking to see that the whole temperature dependence

of the mean square displacement in the glass and in the liquid state collapses after

applying this scaling. This is particularly clearly seen in the case of glycerol, in

which case the deviation from linear temperature dependence sets in much above Tg

(figure 7.12).
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Figure 7.11: The temperature dependence of the mean square displacement of
cumene at ambient pressure and at 500 MPa. The temperature is scaled by the pres-
sure dependent Tg and the y-axis is scaled with a2 ∝ ρ−2/3 evaluated at (Tg(P ), P ).
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Figure 7.12: The temperature dependence of the mean square displacement of glyc-
erol at ambient pressure and at 300 MPa. The temperature is scaled by the pressure
dependent Tg and the y-axis is scaled with a2 ∝ ρ−2/3 evaluated at (Tg(P ), P ).
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7.5 Temperature dependence

The figure 7.13 shows the 〈u2〉T /〈u2〉Tg as a function of T/Tg. Hence the figure

illustrates the relative change in the total 〈u2〉 as a function of the relative change

in T . The 〈u2〉 value of the very fragile DHIQ rises most dramatically, the 〈u2〉 of

glycerol the least, while the three remaining liquids, which all have similar interme-

diate fragilities fall in between. The five systems studied hence follow the general

trend that more fragile liquids have more temperature dependent mean square dis-

placement above Tg [Ngai, 2004].
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Figure 7.13: 〈u2〉 scaled to 〈u2〉Tg for 5 different liquids. The temperature is scaled
to Tg.

The elastic model moreover makes a quantitative prediction regarding the relation

between the temperature dependence of 〈u2〉 and that of the alpha relaxation time.

The elastic model leading to equation 7.3.1 is based on

E(ρ, T )

kBT
=

Cρ−(2/3)

〈u2〉(ρ, T )
(7.5.1)

(assuming that a2 ∝ ρ−2/3). Recalling the definition of the Olsen fragility index

(equation 2.2.5) it follows that the model predicts (a special case of equation 3.4.3)

IP = −
d log E(ρ, T )

d log T

∣

∣

∣

∣

P

(7.5.2)

= −
d log T

d log T
+

∂ log〈u2〉

∂ log T

∣

∣

∣

∣

P

+
2

3

∂ log ρ

∂ log T

∣

∣

∣

∣

P

(7.5.3)

= −1 +
∂ log〈u2〉

∂ log T

∣

∣

∣

∣

P

−
2

3
TαP . (7.5.4)
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IP is of the order of magnitude 4 for fragile liquids at Tg(τ = 100s) while TgαP ∼ 0.1,

meaning that the last term can be neglected. Using the general relation between the

conventional steepness index and the Olsen index (equation 2.2.6) it subsequently

follows that the model predicts a proportionality between fragility and the relative

change of 〈u2〉 with relative change in temperature:

mP = log10

(

τg

τ0

)

(1 + IP ) = log10

(

τg

τ0

)

∂ log〈u2〉

∂ log T

∣

∣

∣

∣

P

(7.5.5)

= 16
∂ log〈u2〉

∂ log T

∣

∣

∣

∣

P

. (7.5.6)

The last equality follows if all values are evaluated at Tg defined by τg = 100 s and if

it is assumed that τ0 = 10−14 s. Hence the elastic model predicts a correspondence

between the slope seen in figure 7.13 and the fragility found from the temperature

dependence of the alpha relaxation time.

Figure 7.14 tests this relation, using fragilities and Tg’s taken from literature (see

appendix for values and references). We also include some ∂ log〈u2〉
∂ log T

∣

∣

∣

P
(T = Tg)

calculated on the basis of mean square displacements reported in literature. The

value of ∂ log〈u2〉
∂ log T

∣

∣

∣

P
(T = Tg) is in all cases calculated in a narrow range temperature

range from Tg to ∼ 1.1Tg, because this corresponds to the range where fragility is

determined. It has to be stressed when considering this figure that the elastic model

not only predicts a proportionality between mP and ∂ log〈u2〉
∂ log T

∣

∣

∣

P
, the elastic model

predicts the proportionality constant as well, hence the line is not a fit nor a guide

to the eye. The line appearing in the figure is a parameter free prediction of the

elastic model. It is therefore quite striking and not at all trivial, that the order of

magnitude is correct. Secondly it also appears that the variations in mP follow the

variations in ∂ log〈u2〉
∂ log T

∣

∣

∣

P
except for the very fragile liquids.

A further test of the predicted correlation, could in principle be to consider the pres-

sure dependence of fragility and ∂ log〈u2〉
∂ log T

∣

∣

∣

P
. This correlation is of the type discussed

in section 3.4, that is a correlation between fragility and the temperature dependence

of another quantity. This means that both quantities are path dependent, and the

isobaric ∂ log〈u2〉
∂ log T

∣

∣

∣

P
(T = Tg) is hence expected to follow the pressure dependence of

the isobaric fragility. The isobaric fragility of DBP is not pressure dependent in the

relevant range. It is therefore consistent that we find that the whole 〈u2〉 temper-

ature dependence collapses after scaling with ρ
(−2/3)
g and Tg(P ) (figure 7.10). The

isobaric fragility of cumene increases with pressure. This means that the correla-

tion implies that the slope of 〈u2〉 should be lower above Tg. Figure 7.11 does not

support this prediction, it could even be argued that it contradicts it. However, the
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scatter in the data points is too large for us to draw any conclusions on this basis. In

glycerol it has been observed that the fragility increases with pressure [Cook et al.,

1994; Paluch et al., 2002]. This should mean a larger temperature dependence of

〈u2〉 above Tg. This is not seen in figure 7.12. But the expected change is again very

small compared to the precision of the data.
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Figure 7.15: 〈u2〉 scaled to 〈u2〉Tg for the most fragile sample, DHIQ, and the least
fragile sample, glycerol. The temperature is scaled to Tg.

7.6 Relaxational contributions

The elastic model is based on the idea that the barrier height is related to curvature

of the harmonic potential, and the decreasing barrier height above Tg is rationalized
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as being due to the softening of the harmonic potential. The break in 〈u2〉 around Tg

is in this frame understood as being due the change in temperature dependence of

the high frequency elastic constants (sound speeds) at Tg (see sections 2.5 and 6.2).

The arguments behind the elastic model ignore/disregard any possible contributions

to 〈u2〉 from non-harmonic and relaxational movements.

In order to test the elastic model it is necessary to assume that there is no extra

relaxational motion contributing to 〈u2〉 around Tg. However, it is not likely that

this assumption is fulfilled. We know from the time of flight spectra that DHIQ has

strong quasi-elastic scattering already at Tg (section 8.3.3). The time of flight has a

broader resolution function, so this quasi-elastic scattering correspond to relaxation

at even shorter times than the 〈u2〉 we probe with backscattering. If the relaxational

contribution is larger for more fragile liquids, then it might explain that the pre-

diction of the elastic model appears to hold better for stronger systems. The alpha

relaxation itself also enters the experimental window at some time, maybe already

when τα ≈ 1µs. This happens intrinsically faster for fragile liquids than for strong

liquids.

The fragility dependent difference in the temperature dependence of 〈u2〉 seen in

figure 7.13 is difficult to anticipate very close to Tg but becomes significant only

above 1.1Tg. This explains why differences that are apparent to the naked eye in

figure 7.13 correspond to relatively small differences in figure 7.14. The liquids are

already quite far from the glass transition at 1.1Tg and the actual alpha relaxation

time depends intrinsically and strongly on the fragility of the liquid. In figure 7.15

we show the mean square displacement of the least fragile of the systems we study,

glycerol, and of the most fragile liquid, DHIQ. The mean square displacement is

scaled with its values at Tg as a function of temperature scaled with Tg (hence, it is

the same type of plot as the one depicted in figure 7.13, just with a different scale).

Glycerol has τα ≈ 0.01 s while the very fragile DHIQ has an alpha relaxation time

of only τα ∼ 1µs, meaning that their alpha relaxation time differ by four orders

of magnitude when compared at T = 1.1Tg. The alpha relaxation time of glycerol

only becomes as fast as τα ∼ 1µ s at a much higher temperature, namely around

T = 1.3Tg, where the mean square displacement of glycerol also increases rapidly.

7.7 Summary

The mean square displacement at the nanosecond timescale has been studied as a

function of temperature in a set of molecular liquids which covers a large range of

fragilities.
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The isobaric temperature dependence of the mean square displacement above Tg was

found to correlate with the isobaric fragility when comparing systems at atmospheric

pressure in agreement with earlier results in literature. However, no systematics were

found regarding the value of the mean square displacement at Tg.

We have found that the pressure dependent Lindemann criterion holds for the liquids

studied. This suggests that there is an intimate relation between the amplitudes of

vibrations and the transition from glass to liquid, in agreement with the elastic model

[Dyre, 2006]. Moreover, we find that the order of magnitude of the temperature de-

pendence of 〈u2〉 above Tg agrees with the prediction of the elastic model. However,

contributions from relaxational processes makes 〈u2〉 measured on the nanosecond

timescale inadequate for precise quantitative test of the elastic model. The relax-

ational processes appear to have larger amplitude the more fragile the liquid is (see

also section 8.3.3).





Résumé du chapitre 8

Le pic de bose est un excès des modes vibrationels par rapport au niveau de Debye,

qui est observé dans tous les systèmes vitreux. L’origine des modes en excès n’est

pas connue ce qui en fait une des questions centrales de la physique des verres. En

particulier, la question de l’existence d’une relation entre les modes du pic de bose

et la transition vitreuse est très intéressante.

Dans ce chapitre, on présente une étude du pic de bose faite par diffusion incohérente

neutronique. L’étude est composée de deux parties. La première partie est consacrée

à l’étude de la dépendance en pression du pic de bose du PIB. La deuxième partie

porte sur la corrélation possible entre le pic de bose et la fragilité.

Dans les données obtenues sur le PIB, on observe que la fréquence du pic de bose

augmente avec la pression. Ce décalage en fréquence est accompagné par une baisse

de l’intensité dans les spectres à basse fréquence. Cependant, quand on compare

l’évolution du pic de bose avec celle de la vitesse du son, on trouve que i) la fréquence

du pic de bose est plus sensible à la pression que la vitesse du son, ii) l’intensité du

pic de bose par rapport au niveau Debye augmente avec la pression, iii) la forme du

pic de bose ne change pas avec la pression.

Le pic de bose a été étudié pour une grande série de liquides moléculaires avec des

fragilités trés différentes. Sur la base du schéma developpé dans le chapitre trois,

on discute l’effet respectif de la température et de la densité sur l’existence d’une

corrélation entre l’inverse de l’intensité du pic de bose et la fragilité du liquide. On

suggère que la fragilité à considérer dans le cadre d’une corrélation avec l’inverse de

l’intensité du pic de bose est la fragilité isochore.





Chapter 8

Boson Peak

The low energy vibrations in crystalline solids are often quite well accounted for

by the Debye model. In the Debye model the modes are assumed to be plane

waves and the number of possible modes are counted in the Q-space. This leads

to a density of vibrational states which is proportional to the square of the mode

frequency gD(ω) ∝ ω2. It is this dependence of the vibrational density of states

which leads to the well known T 3 dependence of the heat capacity in solids at low

temperatures. The Debye model is described in textbooks on solid states physics

and thermodynamics e.g. [Kittel, 1996; Bairlein, 1999].

Disordered solids, on the other hand, have an excess in the vibrational density of

states as compared to the ω2 Debye behavior followed by crystals in the correspond-

ing frequency range (approx 2 meV - 10 meV depending on system). The excess

gives rise to a peak in the reduced density of vibrational states g(ω)/ω2 (rDOS) and

the peak is seen directly in incoherent inelastic neutron spectra, which essentially

probes g(ω)/ω2 as well as in Raman scattering spectra. The excess also gives rise

to a peak in the reduced low temperature heat capacity cP (T )/T 3.

The boson peak has been studied intensively experimentally as well as theoretically

over the last decade, but its origin is still controversial. The proposed explanations

for the boson peak fall in three categories. (i) Localized (harmonic) modes in soft

potentials (SPM), the concept of soft localized soft modes being expressed differently

in different models [Gurevich et al., 2003, 2005; Klinger, 1999, 2001]. (ii) Quasilo-

calized sound like modes in structural regions of the nanometer size in the glass

[Duval et al., 1990; Schroeder et al., 2004; Quitmann and Soltwisch, 1998], and (iii)

Fluctuating elastic constants (FEC) giving rise to a peak in g(ω)/ω2 [Maurer and

Schirmacher, 2004]. The total density of vibrational states is in the two first cases

described by Debye modes plus extra modes, which are ascribed to the disorder.

141
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The FEC-model suggests a different picture, namely that the disorder distorts the

Debye modes and a way which gives rise to a peak in the rDOS.

The inverse intensity of the boson peak is based on data compilations suggested to

correlate with fragility (see section 8.3 for details). The origin of this correlation

is (evidently) not understood, since neither the fragility nor the boson peak itself

are understood. However, it is common for the models for the boson peak that

its intensity is related to some notion of “amount of disorder” in the glass. The

structure of the glass is the frozen-in structure of the liquid, and could in this sense

carry a reminiscent signature of the dynamics in the liquid.

In this chapter we present a study of the boson peak measured by inelastic neutron

scattering in a number of different systems. A section (8.2) is devoted to analyzing

the pressure dependence of the boson peak, particularly in comparison to the pres-

sure dependence of the other vibrational modes of the system, the aim being to shed

light on the origin of the boson peak. This part of the study is based on experiments

on a PIB-sample, which has a well resolved boson peak. A second section (8.3) is

reserved for the discussion of the correlation between the boson peak intensity and

fragility. We particularly discuss the role of density versus temperature for this type

of correlation in light of the general ideas presented in chapter 3. We have for this

purpose studied a set of samples which span a large range in isobaric as well as

isochoric fragility.

8.1 Time of flight

8.1.1 Experimentals

The experiments were carried out at the time of flight spectrometer IN5 at the ILL.

The energy of the scattered neutron is in time of flight measured via the time it

takes the neutrons to arrive at the detector. The incoming beam is monochromatic

and pulsed, the path length is known. The speed and the energy of the outgoing

neutron can therefore readily be calculated. The pulsing and monochromation is in

the case of IN5 done with a system of choppers. Monochromation can also be done

with crystals (e.g. IN6) and the incoming beam can be intrinsically pulsed if it is

generated by a spallation source.

The use of choppers gives the possibility of freely adjusting the wavelength of the

incoming neutron and hereby the resolution in absolute values. The experiments

reported in this chapter were all performed using incoming neutrons with a wave-
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length of 5 Å yielding a resolution of FMHW=103 µeV. The resolution function,

which is nearly Gaussian, was in all cases measured with the sample at 2 K.

The range in angle (2θ) goes from 14.5◦ to 132.5◦ with each detector covering ap-

proximately 1◦. This corresponds to a elastic Q values of 0.4 Å−1 to 2.2 Å−1, when

the incoming neutron has λ=5 Å.

The PIB3580 sample (see appendix A for details) was studied in a pressure range

from atmospheric pressure to 1.4 GPa and at temperatures ranging from 140 K

to 430 K. The experiment was performed using a clamp pressure cell and in situ

compression. The sample and the cell were kept in the beam during the entire

experiment, which means that all the measurements on PIB3580 were obtained under

the exact same conditions with regard to position in the beam and the amount of

cell in the beam. The volume of the sample in the beam was also kept constant.

However, the number of sample scattering centers depends on the density.

The compression of PIB3580 was performed at 430 K and the sample was subse-

quently cooled along the isobar. This procedure ensured that the compression was

performed in the melt even when going to the highest pressure.

Cumene was studied at atmospheric pressure and at 1.2 GPa in a temperature range

of 100 K to 300 K. The experiment at atmospheric pressure was performed using

a standard aluminum cell while the pressure experiment was performed using the

clamp cell with in situ pressurization. The pressure was applied at 300 K, which

means that the liquid was well below Pg when compressed.

We moreover studied a set of liquids with very different isobaric and isochoric

fragility: PB, sorbitol, m-toluidine, m-fluoroaniline and DBP (see appendix A for de-

tails on the samples). These experiments were performed at ambient pressure using

aluminum cells in a temperature range from 100 K to Tg (in most cases Tg ∼ 200 K).

The clamp and the aluminum cells used are exactly the same as those used in the

back scattering experiments. The description of the cells is given in section 7.1.1.

However the sample thickness used for the high pressure experiment was only 0.1 mm

in this case. The transmission was ∼95% for the experiments in the aluminum cell

and ∼88% for the high pressure experiments.

8.1.2 Corrections

The data underwent a standard correction procedure using the ILL program INX.

INX converts the data from the measured intensity as a function of angle and time

of flight to intensity as a function of angle and energy transfer, I(2θ, ω) corrected for
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the Qout

Qin
factor (see equation 4.3.17 ). INX is moreover used for correcting for the

different detector efficiency by normalizing to the signal of a vanadium sample, it

performs corrections for sample absorption, and subtracts a measured background

signal.

Subtraction of the empty cell

The signal of the aluminum cell is negligible as compared to the signal of the hydro-

genated sample. The procedure used for subtraction is therefore without significance

for the final result. The pressure cell on the other hand, gives a significant signal

(see also the discussion in 7.1.2). In figure 8.1 we illustrate the raw signal of sample

plus pressure cell along with the signal of the pressure cell1.

We are mostly interested in the energy region 1 meV - 10 meV. The cell signal in this

region is a flat background with considerable lower intensity than the signal of the

sample. The intensity of the cell signal becomes comparable in order of magnitude

at energies somewhere around 15 meV. We therefore conclude that the result after

subtraction of the cell is reliable up to ∼ 15 meV, while we exclude higher energies

from the analysis. The elastic signal is also shown in figure 8.1. Here we see,

consistent with the backscattering data, that the high pressure cell contributes with

about half of the measured intensity.

8.1.3 Determining S(ω) and g(ω)

The discussion of the time of flight data in this chapter is based on S(ω) obtained by

normalizing to the elastic intensity and summing over all measured angles. In the

following section we justify this procedure by showing that it gives less scattered data

than interpolating to constant Q before summing, while the results are equivalent.

The data are interpolated from the measured I(θ, ω) to the I(Q, ω) using the pro-

gram IDA. We neglect coherent scattering which means that the measured intensity

is proportional to the incoherent dynamical structure factor:

I(Q, ω) = N
σinc

4π
Sinc(Q, ω) (8.1.1)

where N is the number of scatterers and σinc is the incoherent scattering cross

section (see equation 4.3.17 and recall that the Qout

Qin
factor was corrected by INX).

1The presence of the sample gives a “shadow” and hence less scatter (∼ 10%) from the cell, in
the cell+sample situation as compared to the empty cell alone. The cell signal shown in figure 8.1
has been corrected to take this effect into account.
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Figure 8.1: The signal of the high pressure cell (+), and the raw signal of the
high pressure cell and PIB3580 (squares). Both curves are measured at T=140 K
and P=0.1 MPa. The three sub-figures focus on three different regions of the energy
axes. a) On this scale it is seen that the sample signal dominates over the cell signal.
b) The inelastic signal of the cell becomes comparable to the signal of the sample at
about 15 meV. The inelastic signal of the cell is due to phonons, and the intensity
is found to grow in accordance with a bose factor as a function of temperature
(not shown). c) The cell gives about half the measured elastic signal. Figure c can
moreover be regarded as an illustration of the resolution function. Notice also that
the intensity of the elastic signal is about 3 orders of magnitudes higher in intensity
than the inelastic signal (The intensity unit is the same on all three sub-figures.).
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We are mainly interested in studying the vibrational density of states obtained from

the inelastic signal.

The theoretical expression for the inelastic one phonon single contribution to Sinc(Q, ω)

is given by equation 4.3.35, which reads

Sinel,inc(Q, ω) =
1

2M
exp

(

−
〈u2〉Q2

3

)

Q2 n(ω)

ω
g(ω). (8.1.2)

where M is the mass of the molecule. Here the Q dependence and the energy

dependence is totally disentangled. This means that the density of state (in arbitrary

units) can be found from the energy dependence of the scattering function at any

given constant Q. We primarily consider the data in the form g(ω)/ω2. This quantity

is obtained directly from equation 8.1.2 by correcting for the bose factor, that is

dividing by n(ω)ω.

In the study of the pressure dependence of the boson peak in PIB3850, we compare

the intensity of the boson peak at different pressures; this experiment is performed

with a constant volume of the sample in the beam, however the number of scatterers

is proportional to the pressure dependent number density. Moreover, the Debye

Waller factor is also pressure dependent because 〈u2〉 is pressure dependent. These

effects are eliminated by normalizing to the elastic intensity, which is given by the

number of scatterers and the Debye Waller factor:

Iel,inc(Q) = N
σinc

4π
exp

(

−
〈u2〉Q2

3

)

. (8.1.3)

The resolution function measured at 2 K had a small wing up to about 2 meV,

and has therefore been subtracted, when considering the inelastic signal of the low

temperature data. The effect of this last correction is minor as soon as the tempera-

ture approaches Tg of the sample because the intensity of inelastic and quasi-elastic

scattering increases.

In figure 8.2 we show the rDOS (g(ω)/ω2) of PIB3580 obtained at a constant Q as

well as the result obtained by summing over the angles. The data are in both cases

corrected for the bose factor and normalized to the elastic intensity as described

above. The data are finally adjusted by one pressure independent factor to make

the data overlap. It is clearly seen that the results are in agreement, not only

the shape and position of the boson peak, but also the pressure dependence of the

intensity found by the two methods is the same.
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Figure 8.2: Spectra of PIB3580 at different pressures. The full lines give g(ω)/ω2

obtained from S(Q, ω) measured at a fixed Q value (Q=1.7 Å−1). The dots give
g(ω)/ω2 based on the S(ω) calculated by summing over all angles. (See the text for
details). The results are in agreement, not only the shape and position of the boson
peak, but also the pressure dependence of the intensity found by the two methods
is the same.

The Q-dependence

From equation 8.1.2 it follows that only the Debye Waller factor and the Q2-term

are Q-depend. A Q independent quantity can therefore be found by dividing by

these
Sinel,inc(Q, ω)

exp
(

− 〈u2〉Q2

3

)

Q2
=

1

2M

n(ω)

ω
g(ω). (8.1.4)

In figure 8.3 we illustrate the above at 3 different Q values, with the Debye Waller

factor taken from the measured elastic intensity. The three curves should overlap

according to equation 8.1.4, but this is clearly not the case. However, the shape is the

same and the curves can be brought to overlap by adjusting the Debye Waller factor

(figure 8.4). Additionally we find that the pressure dependence of the intensity

is the same at all Q-values. We therefore conclude that the measured frequency

dependence shown in figure 8.2 gives a correct representation of the vibrational

density of states.

Other techniques for extracting DOS from equation 8.1.2 exploit the Q dependence.

Rewriting equation 8.1.2 to

ln

(

Sinc(Q, ω)ω

Q2n(ω)

)

= −
〈u2〉Q2

3
+ ln(g(ω)) (8.1.5)

it is seen that the left hand side can be obtained directly from the raw data. Fitting
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Figure 8.3: The S(Q, ω) divided by Q2 and divided by the DWF found from the
elastic intensity.
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Figure 8.4: The S(Q, ω) divided by Q2 and divided by a factor exp(−aQ2) which
is not taken from the elastic peak, but taken to make the inelastic part of spectra
superimpose (as it is expected to). It is seen that the overlap is less convincing at
lower Q and the discrepancy increases if Q is decreased further. It is not possible to
adjust a Debye Waller factor of the form exp(−aQ2), such that all data superimpose.
However, the frequency dependence of the inelastic signal is independent of Q in the
range Q = 0.5 A−1 to Q = 2.1 A−1.
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this as a linear function of Q2, at fixed ω, will in the ideal case give ln(g(ω)) at the

origin and − 〈u2〉
3 as slope. However, the Q2-dependence is only found in the data at

high Q, moreover, the 〈u2〉 found at different energies is not the same. The result of

this procedure is therefore sensitive to the Q-range used. When only high Q’s are

used then it gives the same result as the constant Q or summing over angles, which

we discussed in the previous section.

A last method is to extract the DWF and the Q-independent intensity factors,

exp(−〈u2〉Q2), from the elastic intensity and determine g(ω) as the slope of the Q2

dependence of the left hand side of the below:

Sinc(Q, ω)ω

exp(−〈u2〉Q2)n(ω)
= Q2g(ω). (8.1.6)

It is not possible to obtain any reasonable result from this procedure. This is a

natural consequence of the “incorrect” Q dependence in figure 8.3.

The deviation between the actual Q-dependence and the theoretical expected result

could be related to an error in the subtraction of the high pressure cell signal. A

relatively small error, which will not affect the measured inelastic signal will still

effect the elastic signal and therefore the Debye Waller factor determined from the

latter. However, we have similar problems with the data measured in aluminum

cells. A more likely explanation is that the Q-dependence is distorted due to mul-

tiple scattering and multi-phonon scattering. It is also possible that the coherent

contribution plays a role.

8.2 The origin of the excess modes

In this section we present and analyze the pressure dependence of the boson peak

in PIB3850 at T = 140 K which is well below the glass transition temperature

(Tg ≈ 195 K) at atmospheric pressure. We also include the pressure dependence

of Brillouin light scattering data from Begen et al. [2006 b]. This combination

of data obtained by three different experimental techniques allows us to make a

comparison of the pressure dependence of the sound modes and the boson peak

position in an organic system, including sound modes in the boson peak energy

region as well as both shear and longitudinal modes. The neutron data allow us

to analyze the influence of pressure on the shape and intensity of the boson peak

without the uncertainty from the unknown frequency dependence of the light to

vibration coupling factor which influences the Raman spectra. Combining this data

with literature data on the density of the sample we are moreover able to make the
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comparison of the evolution in the boson peak intensity as compared to the intensity

of the Debye level. The aim of this section is to better understand the origin of the

boson peak. The question of whether there is a relation between the boson peak

and the fragility is attacked in the following section (8.3).

8.2.1 Boson Peak as a function of pressure

In figure 8.5 we show the rDOS of PIB3580 measured at 4 different pressures ranging

from atmospheric pressure to 1.4 GPa. A well resolved boson peak is seen at all

pressures. The peak position increases as a function of pressure with a slope of ∼

0.15 meV / 100 MPa (inset of fig. 8.5) in the whole range. The peak position shifts

by a factor 2 from atmospheric pressure to 1.4 GPa.

The second striking effect of pressure is that it reduces the boson peak intensity.

However, at high frequencies, from above roughly 8 meV there are no significant

changes in the spectra.
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Figure 8.5: The rDOS (g(ω)/ω2) of PIB at different pressures; atmospheric pressure
(•), 4 MPa (H) 8 MPa (�), and 14 MPa (�). The inset shows the peak positions
as a function of pressure. The full lines is the best straight line. The dashed
line is the best fit to equation 19 of ref. Gurevich et al. [2005], P0=204 MPa and
ωBP = 2.13 meV.

The boson peak has mainly been studied at different temperatures and in glasses

with different thermal history, while few studies report the effect of pressure on the

boson peak. Moreover, the existing studies are mainly performed by Raman scatter-

ing [Andrikopoulos et al., 2006; Schroeder et al., 2004; Yamaguchi et al., 1999; Sugai
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and Onodera, 1996; Hemley et al., 1986] in which the shape, position and intensity

of the boson peak is altered by the light to vibration coupling factor. The latter by

itself is pressure dependent [Begen et al., 2006]. Relevant pressure studies of the bo-

son peak by other techniques include low temperature heat capacity of polystyrene

[Geilenkeuser et al., 1999], and neutron scattering studies of polybutadiene [Frick

and Alba-Simionesco, 2002]. The boson peak has also been studied in permanently

densified SiO2 by neutron spectroscopy [Inamura et al., 2000, 2001] and in densified

Na2FeSi3O3 by nuclear inelastic scattering [Monaco et al., 2006 b].

The shifts in the boson peak seen in figure 8.5 are by far the largest pressure in-

duced shifts of the boson peak that we are aware of. However, the qualitative results

reported in all the above cases are in agreement with our finding: the boson peak

intensity decreases and the boson peak frequency increases, meaning that this be-

havior can be considered as general.

8.2.2 Boson peak position

Pressure increases the elastic constants of the material and this makes the frequency

of all vibrational modes in the system increase as a function of pressure. It is

therefore quite intuitively expected that also the boson peak shifts to higher pressure

upon compression.
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Figure 8.6: The relative shift in energy as a function of pressure. Diamonds: boson
peak, triangles: BLS longitudinal modes, circles: BLS transverse modes, squares:
IXS longitudinal modes.
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In figure 8.6 we show the relative peak shift with pressure of transverse sound modes,

longitudinal sound modes at low and high Qs and of the boson peak, as a function

of pressure. All modes are shifted to higher frequency with increasing pressure. We

have calculated the change in density with pressure using the equation of state of

Sanchez and Cho [1995] in the melt and the expansion coefficient αP = 10−4K−1 at

all pressures in the glass. Defining the Gruneisen parameter as
d log ωpeak

d log ρ we find a

value of 2.7 and 3.7 for the IXS mode at 2 nm−1 and the boson peak respectively.

This clearly shows that the boson peak is more sensitive to pressure than any of

the other modes. This result is consistent with the result of Schroeder et al. [2004]

who find that changes of the boson peak frequency in Raman spectra under pressure

were stronger than variations of the sound velocities. On the contrary it is found

in a recent study by Monaco et al. [2006 b] of a permanently compressed inorganic

glass that the shift in the boson peak corresponds to that of the sound speeds (more

precisely they compare to the Debye-frequency, see below for the definition). In the

study by Monaco et al. [2006 b] the density changes were quite small (∼ 6%), while

considerably larger variations (∼ 20%) are achieved in our measurements. This

could be part of the explanation of the different result as it is apparent from figure

8.6 that the differences increase with increasing pressure.

The sound modes measured by BLS are at much smaller frequencies than the boson

peak, while the sound modes measured by IXS are at frequencies of the same order of

magnitude as the boson peak frequency. It could therefore be argued that the boson

peak should be compared to the latter. In line with this, it has been suggested,

based on temperature dependences in silica glass, that the boson peak position is

stronger coupled to the behavior of the high frequency IXS sound modes than the

low frequency BLS sound modes [Masciovecchio et al., 1999]. Our results on PIB

do not support this view as we find that the longitudinal sound speed measured by

BLS agrees with the sound speed found by IXS (figure 8.7). Moreover, the pressure

dependence of the two is the same in the limited pressure range where both are

studied. Based on this we assume that the IXS and the BLS modes have similar

pressure dependences in the whole range, and conclude that the boson peak position

has a more dramatic pressure dependence than the sound modes in the same energy

range.

Note also in figure 8.7 that the position of the boson peak seen in the rDOS is in

the regime where the dispersion of the longitudinal sound is linear.
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Figure 8.7: The dispersion of longitudinal sound modes measured by IXS. Squares
are atmospheric pressure, circles 300 MPa. The full lines show the linear dispersion
corresponding to the low Q sound speed measured by light scattering. The dashed
lines indicates the position of the boson peak at the same pressures (higher energy
higher pressure). The dashed-dotted line shows the estimated πΓ (see text).

Ioffe-Regel limit

It is often suggested that the mean free path of the sound speed reaches the order

of magnitude of the wavelength, the Ioffe-Regel limit, at the frequency of the boson

peak position (e.g. references [Quitmann and Soltwisch, 1998; Schroeder et al.,

2004]). Such a general connection was most recently proposed by Ruffle et al. [2006]

(and contested by Scopigno et al. [2006]), who define the Ioffe-Regel limit by ωl = πΓ

where ωl is the frequency of the sound mode. In figure 8.5 we indicate the value of

πΓ based on the Γ-values estimated from on the IXS data. The sound attenuation

was found to be pressure independent, which is why it is only indicated by one line

(see section 6.2 for details).

The position of the boson peak at atmospheric pressure and at 300 MPa (interpolated

from the data in figure 8.5) are indicated by horizontal lines in figure 8.7. This shows

good agreement between the boson peak position and the Ioffe-Regel limit at both

pressures.
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Predictions/explanations by the models

The most detailed prediction regarding the peak position is given for the SPM

model by Schober and coworkers in terms of the position of the peak in the rDOS.

The prediction is that the peak position should follow a (1 +P/P0)
(1/3)-dependence

[Gurevich et al., 2005]. The best fit to our data (inset of figure 8.5), is not convincing,

as we find no significant deviation from linear pressure dependence in the studied

pressure range. However, the change in elastic constants is not considered in the

model and this obscures the comparison. Moreover, it is important to note that

we compressed the sample in the melt and not in its glassy state. A different

path of compression would lead to a different density change and the boson peak

position would be different too [Chauty-Cailliaux, 2003]. Another complication when

comparing to the SPM prediction, is that it does not take the shift in the sound

speeds into account.

There are no explicit predictions regarding the pressure dependence of the boson

peak for other models. Phonons localized in nanoscale domains (blobs) yield the

relation ωBP = av/L where v is the sound speed and L is the size of the blobs

[Duval et al., 1990; Schroeder et al., 2004; Quitmann and Soltwisch, 1998]. We find

that ωBP increases more with pressure than the sound speed. In order for the above

picture to be correct it is therefore required that the domain size decreases with

pressure. There is no experimental evidence for the existence of blobs and it is

therefore difficult to anticipate their dependence on pressure.

In the FEC model of Schirmacher and coworkers, in which the boson peak is due to

the fluctuation of the elastic constants, it is predicted that the boson peak position

shifts to higher energies if the sample gets more ordered in the sense that the ampli-

tude of the fluctuations in the elastic constant is decreased [Maurer and Schirmacher,

2004]. This means that the shift in the boson peak, which we report should be due

to a decrease in disorder when the liquid is compressed. It is easy to imagine that

the compression and the resulting change in the packing of the molecules will lead

to more structural order and therefore also less fluctuations of the elastic constants.

8.2.3 Boson peak intensity

The shift in energy should both for the SPM and the FEC model be accompanied

with a decrease in boson peak intensity. The decrease of the boson peak is also seen

in the raw data (figure 8.5). However, the Debye level also changes as a function of

pressure. This means the that intensity of the rDOS intrinsically decreases at low

energies. This effect is not considered in the models. Comparing data to models, it
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therefore seems that the relevant evolution in intensity should be the relative inten-

sity over the Debye density of states. We perform such a comparison in the following

section. As an alternative approach we also consider the pressure dependence of the

actual number of excess-states.

Comparison to the Debye density of states

In treating the data we have normalized to the number of scattering centers, the

Debye Waller factor and the bose factor. Hence, the result shown in figure 8.5 is the

reduced density of states defined by:

rDOS(ω) = A
g(ω)

ω2
, (8.2.1)

where A is a pressure independent arbitrary constant. The normalization to the

number of scattering centers means that g(ω) is normalized, thus it satisfies

∫ ∞

0
g(ω) dω = 1. (8.2.2)

The corresponding situation for the Debye density of states is given by

∫ ωD

0

3ω2

ω3
D

dω = 1. (8.2.3)

where ωD is the maximum cut-off frequency, which is also referred to as the Debye

frequency. The Debye level in the reduced density of states is hence given by

rDOSD(ω) =
3

ω3
D

. (8.2.4)

The Debye frequency2 is determined by the sound speeds and the number density

ωD = v0(6π2n)1/3 where
1

v3
0

=
1

3

(

1

v3
l

+
2

v3
t

)

(8.2.5)

and n is the number density which is proportional to the density ρ. The average

sound v0 of PIB is strongly dominated by the transverse sound speed because it is

about a factor 2 smaller than the longitudinal sound speed [Begen et al., 2006,b],

2The expression here gives the Debye frequency in units of [Hz]. The corresponding Debye energy
is as usual found by multiplying by ~; ED = ~ωD
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meaning that the Debye level essentially is given by

rDOSD(ω) ∝
1

ρv3
t

. (8.2.6)

In a Debye situation the hardening of the system (increase of elastic constants)

pushes the Debye density of states. The Debye level gets lower and the cut-off

frequency gets higher, while the total number of states of course stays constant.

The intensity of rDOS will therefore naturally get lower, due to the decrease of the

Debye level.

0 500 1000 1500
0

0.2

0.4

0.6

0.8

1

BP intensity

ω
D
−3

Pressure [MPa]

R
el

at
iv

e 
in

te
ns

ity

Figure 8.8: The Debye level (•) and the boson peak intensity (�) as a function of
pressure.

In figure 8.8 we illustrate the decrease in the Debye level as a function of pressure.

We compare this decrease to the decrease in the boson peak intensity. It is seen that

the amplitude of the boson peak decreases less than the Debye level. Consequently

we conclude that the boson peak intensity relative to the Debye level increases as a

function of pressure. The analysis of the boson peak intensity relative to the Debye

level was also performed in the study of densified glasses by Monaco et al. [2006 b]

and in an earlier study by the same group on a hyper-quenched glass [Monaco et al.,

2006 a]. The finding in these studies was that boson peak intensity relative to the

Debye level was unchanged. The difference between their conclusion and our finding

could (as for the peak position discussed above) be due to the much larger change

of density in the present study. Alternatively it is quite possible that the behavior is

not universal but will depend on specific properties of the glass. Thirdly it is worth
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mentioning that the studies by Monaco et al. were performed using nuclear inelastic

scattering, which might not be sensitive to all the modes in the vibrational density

of states [Chumakov et al., 2004].

The excess in the density of states

It is possible to define the excess of modes with respect to the Debye modes by the

total density of states minus the Debye density of states gex(ω) = g(ω) − gD(ω). If

the boson peak is due to modes that superimpose to Debye modes, then these modes

are described by gex(ω) and the number of excess modes is given by the integral of

gex(ω).

The shift of the excess to a higher frequency gives a decrease in the boson peak seen

in the rDOS. This is so because, as pointed out by Yannopoulos et al. [2006 a], the

division by ω2 leads to an intrinsic suppression of the peak intensity.

Assuming that the excess density of states does not change in intensity but just

shifts to higher frequency then this effect will make the intensity of the boson peak

seen in the reduced excess density of states gex(ω)/ω2 inversely proportional to ω2
BP .

Note however, that this is true for the intensity of g(ω)/ω2, because the Debye level

gives an additional term. The total reduced density of states will be given by

g(ω)/ω2 = gD(ω)/ω2 + gex(ω)/ω2 = rDOSD + gex(ω)/ω2. (8.2.7)

It follows that the 1/ω2 dependence of the intensity only will be seen if the excess

term gex(ω)/ω2 dominates over the Debye term, even in the most simple situation

where the Debye level itself is assumed to be pressure independent.

It is clear that to evaluate pressure dependence of the intensity the excess vibra-

tional density of states it is necessary to determine the Debye level. Our neutron

measurements do not give the vibrational density of states in absolute values, but

only the relative evolution with pressure. We therefore use the ratio of the boson

peak intensity over the Debye density of states at atmospheric pressure [Kanaya and

Kaji, 2001] in order to get comparable scales of the two. Based on this we estimated

excess densities of states at different pressures. The result is depicted in figure 8.9

b). The rather surprising result is that the number of excess states increases when

pressure increases. It is difficult to anticipate the mechanism which could lead to

such an increase in excess states. Our interpretation of the result is therefore that

it is not physically correct to view the vibrational density of states as Debye modes

plus excess modes.
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Figure 8.9: Left: the rDOS (g(ω)/ω2) of PIB at different pressures. The Debye level
is indicated with horizontal lines (see the text). Right: the excess density of states.
Atmospheric pressure (•), 4 MPa (H) 8 MPa (�), and 14 MPa (�).

8.2.4 Shape of the boson peak

It has been found that the boson peak had a universal shape [Malinovsky et al., 1990]

when comparing the boson peak in various materials. In line with this, Chumakov

et al. [2004] find a universal exp(−ω/ω0) behavior at frequencies above the boson

peak in g(ω)/ω2. The exp(−ω/ω0) behavior is also expected from the FEC model

[Maurer and Schirmacher, 2004]. Based on the SPM model, Schober and coworkers

predict that the universal behavior above the boson peak at ambient pressure should

follow a ω−1 power law [Gurevich et al., 2003].

The neutron data allow us to analyze the influence of pressure on the shape and

intensity of the boson peak without the uncertainty from the unknown frequency

dependence of the light to vibration coupling factor which influences the Raman

spectra.

In figure 8.10 we show the boson peak at different pressures with the axis scaled by

the boson peak position (ωBP ) and intensity respectively. The data overlap on a

master curve roughly above ωBP /2. This is consistent with the picture of a universal

shape of the boson peak not only on the high frequency part but also in the region

of the peak itself. We find that the shape follows a exp(−ω/ω0) behavior from

ωBP up to approximately 5ωBP . This suggests that the mechanisms responsible for

the boson peak are not altered as pressure is applied but rather pushed to higher

frequencies due to an increase of the force constants in the material.
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Figure 8.10: The boson peak at different pressures atmospheric pressure (•), 4 MPa
(H) 8 MPa (�), and 14 MPa (�). The data scaled with the boson peak intensity
and the boson peak position. The dashed line shows a 1/ω-behavior, the full line is
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8.3 Boson Peak and fragility

In this section we will discuss the proposed correlation between the relative intensity

of the boson peak and the fragility. The suggestion is that larger fragility should

correlate to smaller relative intensity of the boson peak. This correlation is supported

by data from several glass formers [Sokolov et al., 1993, 1997; Rössler and Sokolov,

1996; Novikov et al., 2005] though it has also been contested [Yannopoulos and

Papatheodorou, 2000].

Two different measures are suggested for quantifying the relative intensity of the

boson peak: (i) by normalizing the boson peak to the Debye density of states [Sokolov

et al., 1997] (see also section 2.7.3) or (ii) by normalizing the boson peak intensity

at Tg to the intensity of quasi-elastic scattering at Tg [Sokolov et al., 1993]. In the

latter case a parameter, R, is defined as the quasi-elastic intensity divided by the

boson peak intensity evaluated at Tg. Of these two measures R is by far the easiest to

evaluate experimentally, because it does not require knowledge of S(Q, ω) in absolute

values, nor does it require knowledge of the sound speeds of the system. Moreover, it

has the advantage of being evaluated in the equilibrium liquid. For these reasons we

will focus on the correlation with R in the main part of this chapter. It is suggested

by Novikov et al. [2005] that the two measures of boson peak intensity essentially
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are equivalent because the intensity of the quasi-elastic scattering appears to be

universal at Tg. We shall question this proposition at the end of this chapter.

8.3.1 Comparing systems

We have studied a set of liquids which covers a large span in isochoric as well

as isobaric fragility. In figure 8.11 we show the isobaric fragility as a function of

the inverse relative boson peak intensity, R, while figure 8.12 depicts the isochoric

fragility mρ as a function of R. We have in both figures included data from literature

of samples where both R, mρ and mP are available. Though the data is limited and

somewhat scattered we find that both figures do show a correlation between fragility

and R. The range in mρ is smaller (which is always the case because mρ < mP ),

and this makes the correlation appear weaker. However, it is not evident from these

figures if one correlation is more fundamental than the other.

Figure 8.13 show the relative contribution of density to the viscous slowing down,

measured by mP /mρ as a function of R. It is clear that there is no correlation

between these two quantities. This suggests that R is insensitive to the relative

effect of density on the relaxation time, meaning that the correlation to fragility is

a signature of a correlation between R and the intrinsic effect of temperature on the

alpha relaxation time.

8.3.2 Pressure dependence

For the samples PIB3580 and cumene we have measured Sinc(Q, ω) at an elevated

pressure on the Tg line. The raw data are depicted in figure 8.14 and 8.16. The

cumene data were obtained using a different cell at atmospheric and elevated pressure

respectively, and they are therefore not shown on the same scale. A shift of the

boson peak position to higher energies is seen in both cases, similar to the result

concerning the effect of pressure along an isotherm in the glass. For PIB where the

intensity scales can be compared we moreover recognize the decrease in the boson

peak intensity with increasing pressure.

Figures 8.15 and 8.17 show the same two sets of data, now with the axes scaled with

boson peak intensity and position. It is striking, particularly for the well resolved

boson peak of PIB, that the entire curve collapses with this scaling. The result

is similar to what we saw when comparing spectra taken along a glassy isotherm

(figure 8.10), but here it is even stronger because also the low frequency minimum

in intensity falls on the “master curve”. From the definition of R it follows directly
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Figure 8.11: Isobaric fragility as a function of the inverse relative boson peak inten-
sity, R. Red symbols are R values of this work. Blue symbols represent data from
literature. See the appendix for values and references.
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Figure 8.12: Isochoric fragility as a function of the inverse relative boson peak
intensity, R. Red symbols are R values of this work. Blue symbols represent data
from literature. See the appendix for values and references.
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Figure 8.14: The boson peak of PIB3580 at atmospheric pressure and at 1.4 GPa
at T ≈ Tg(P ). The data are corrected for the temperature dependent bosefactor.
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Figure 8.15: The boson peak of PIB3580 at atmospheric pressure and at 1.4 GPa
at T ≈ Tg(P ). The axis are scaled with the boson peak position and intensity. The
data are corrected for the temperature dependent bosefactor.

from this scaling that R is independent of pressure. Two systems are not sufficient

to state that this is a universal behavior of R. However if the finding is general, then

it strongly supports the suggestion that the correlation between R and the isochoric

fragility mρ, as the latter also stays constant as a function of pressure along the

Tg-line (chapter 3).

8.3.3 The quasi-elastic intensity

The quantity R is a measure of the boson peak intensity relative to the minimum

intensity at the low energy side of the peak. This latter is sometimes clearly influ-

enced by quasi elastic scattering. It is therefore not a priori the boson peak intensity

that determines R. In figures 8.18 and 8.19 we show the S(ω) of two liquids which

both follow the correlations seen in figures 8.11 and 8.12 namely DBP and DHIQ.

For both samples we show the data at T = 100 K and at T = Tg = 180 K, (all

data at atmospheric pressure). The spectra deep in the glass at T = 100 K are

quite similar for the two liquids, while this is not the case at Tg. For the less fragile

DBP the main effect is an increase in intensity due to the temperature dependence

of the bose factor. In the case of the very fragile DHIQ on the other hand, there is

a quasi-elastic signal at Tg which totally swarms the boson peak. Hence, it is this

quasi-elastic signal, rather than the nature of the boson peak which gives DHIQ its

large value of R. This observation questions the proposed relation between R and
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Figure 8.16: The boson peak of cumene at atmospheric pressure and at 1.2 GPa at
T ≈ Tg(P ). The data are corrected for the temperature dependent bosefactor.
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data are corrected for the temperature dependent bosefactor.
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the boson peak intensity relative to the Debye level [Novikov et al., 2005]. The pres-

sure dependence of the two measures of boson peak intensity is also different. While

R is independent of pressure we have seen in the previous section that the intensity

of the boson peak intensity normalized to the Debye density of states increases as a

function of pressure.
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Figure 8.18: The S(ω) of DBP at T =100 K and T = Tg = 180 K at atmospheric
pressure. The increase in intensity is due to the increase in the bose factor.

It is interesting to note that the boson peak intensity over the Debye density of states

increases with pressure, because the isobaric fragility is usually found to decrease

with pressure. This means that there is a qualitative agreement in the pressure

dependence of the boson peak intensity and its inverse correlation to the isobaric

fragility. This all together suggests that the two correlations found between boson

peak intensity and fragility i) by normalizing the boson peak to the Debye density

of states [Sokolov et al., 1997] or ii) by normalizing the boson peak intensity at Tg

to the intensity of quasi-elastic scattering at Tg [Sokolov et al., 1993], are fundamen-

tally different. The first is a correlation between boson peak intensity and isobaric

fragility, while the latter is a correlation between quasi-elastic scattering at Tg and

isochoric fragility. The first is related to the vibrational properties of the system

and to the density and temperature dependence of the relaxation time. The latter

on the other hand, is related to the relaxations present at Tg and to the pure tem-
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Figure 8.19: The S(ω) of DHIQ at T =100 K and T = Tg = 180 K at atmospheric
pressure. At Tg there is quasi-elastic scattering which essentially makes the boson
peak invisible.
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Figure 8.20: The S(ω) of sorbitol at T = Tg = 273 K atmospheric pressure. Sor-
bitol is a fragile liquid which has a well resolved boson peak in contradiction with
the expectation based on the correlation between inverse boson peak intensity and
fragility.
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perature effect on the alpha relaxation. We stress that the interpretation above is

a suggestion based on the very limited knowledge of the pressure dependence of the

boson peak intensity. More studies would be needed to verify this interpretation.

It is clear that the correlation, if present at all, is a trend rather than a one to one

correlation between fragility and R. The most prominent outlier in figure 8.11 and

particularly in figure 8.12 is sorbitol. In figure 8.20 we show the S(ω) of sorbitol

at Tg. The peak is remarkably different from the boson peak in the other systems

we have studied. The boson peak energy is a factor 2 larger, and the shape is also

distinctively different. Sorbitol is a hydrogen bonded system. This suggests that the

boson peak is different in a hydrogen bonded system as compared to other molecular

liquids.

8.4 Summary

This chapter has two main sections. The first section contains a study of the boson

peak under pressure in glassy PIB (Mw=3580g/mol). We find i) that the boson peak

energy increases faster with pressure than any of the other modes. ii) that intensity

of g(ω)/gD(ω) increases with pressure. iii) the shape of the boson peak seen in the

rDOS g(ω)/ω2 is unaffected by pressure.

The decrease in the low frequency intensity seen directly in the rDOS (figure 8.5) has

earlier been used to favor the interpretation that the shift in the boson peak is due

to a suppression of specific modes rather than a shift of modes to higher frequencies

[Gurevich et al., 2005; Hizhnyakov et al., 2000; Klinger, 1999, 2001; Inamura et al.,

2000, 2001]. Our results are in clear contradiction with this view, as we do not see

a suppression of modes.

It has recently been suggested by Monaco et al. [2006 b] that the changes in boson

peak due to pressure could be explained entirely by the pressure induced increase in

the macroscopic force constants, and that they would disappear when normalizing

to the Debye frequency and the amplitude of the Debye density of states. This is

clearly not the case for the pressure dependence of the boson peak in PIB.

The second part of this chapter deals with proposed correlation between the fragility

and the parameter R. This parameter is given by the intensity of the quasi-elastic

scattering (plus the Debye level) relative to that of the boson peak evaluated at Tg.

We test this correlation on a set of samples which span a large range in isobaric as

well as isochoric fragility. In both cases we find a somewhat scattered correlation. We

moreover find that the parameter R is constant along the glass transition isochrone
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as is also the isochoric fragility. Based on this observation we suggest that the

correlation to isochoric fragility is more fundamental. This indicates that the R

could be related to the pure effect of temperature on the relaxation time rather

than that of density.

We note that the pressure dependence of R and the pressure dependence of the

inverse boson peak intensity in terms of gD(ω)/g(ω) are different. The first is in-

dependent of pressure while the latter decreases with pressure. We moreover note

that it is seen directly from the raw data that the value of R is largely controlled by

differences in the intensity of the quasi-elastic scattering. This leads us to speculate

that the correlation with fragility (if present at all) is related to the amplitude of

the quasi-elastic scattering rather than the amplitude of the boson peak.





Chapter 9

Summarizing discussion

When a liquid is cooled along an isobar the density increases and the temperature

decreases. These two effects both contribute to the slowing down of the dynamics

and the isobaric fragility is a combined measure of the two effects.

It has been found empirically over the last five years that the isochoric fragility, which

gives a measure of the effect of temperature alone, is independent of density for a

large group of different systems, while the isobaric fragility changes when evaluated

at higher density. This change in isobaric fragility with pressure is therefore related

to the change in the effect of density on the relaxation time.

The effect of density on the change of relaxation time upon cooling along an isobar

is governed by two things. First the thermal expansivity αP , or αP T = d log ρ
d log T , which

measures how much density changes as a function of temperature, and secondly a

term that measures how sensitive the relaxation time is to changes in density. The

thermal expansivity decreases when pressure is increased. Thus the volume does not

change very much as a function of temperature along high pressure isobars and a

high pressure isobaric experiment is consequently closer to being isochoric. Or put

in other words, the relative effect of density on the viscous slowing down is smaller

at high pressure because density itself changes less as a function of temperature at

high pressure. It is due to this effect that isobaric fragility most commonly decreases

with increasing pressure. The change in fragility with increasing pressure is therefore

due to a change in the thermodynamics rather than to a pressure induced change in

the response to temperature changes. The pure effect of temperature as measured

by the isochoric fragility is found to be independent of density, and in this sense to

be intrinsic to the liquid. Based on these observation we conclude that a property

which is related to the “pure” effect of temperature on the relaxation time, should

correlate to the isochoric fragility (when comparing systems), and that it should
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possess the same type of intrinsic character, that is be constant along an isochrone

for a given system. Properties related to a combined effect of temperature and

density are on the other hand expected to correlate with isobaric fragility and to

have a pressure dependence that corresponds to its pressure dependence - that is

most often decrease with increasing pressure.

The properties of a glass are essentially independent of temperature, because the

structure is frozen in and nothing really changes as temperature is lowered; the mod-

uli and the vibrational density of states stay unchanged when cooling below the glass

transition temperature. This has the consequence that the temperature dependence

of dynamics in the glass is dominated by the increasing thermal occupation of the

vibrational modes. The decrease in temperature accordingly leads to a decrease in

boson peak intensity as seen in the dynamical structure factor, a decrease in the

mean square displacement, and an increase in the nonergodicity factor.

When a system is compressed it becomes harder and all the characteristic energies

of the system increase. The sound speeds increase. The energy of the boson peak

increases. The glass transition temperature increases. These effects are intuitively

easy to anticipate. Nevertheless, they are more complicated than the temperature

dependences, because they are due to real changes of the system rather than just

changes in the occupation number. The amount of data so far is quite scarce, and

it is difficult to know which behaviors are general and which are specific to the

systems we have studied. However, it is clear that pressure allows to distinguish

different types of behaviors, which appear similar when studied as a function of

temperature. The pressure dependence of the dynamics therefore supplies valuable

new information.

The mean square displacement, 〈u2〉, decreases when pressure is applied, even when

compared to the square of the average distance between the molecules a2 (which

also decreases with increasing pressure). It thus found that 〈u2〉/a2 decreases as a

function of pressure along a given isotherm in the glass. The mean square displace-

ment is an average property which averages over all Q’s and it might be dominated

by long wavelengths. Moreover 〈u2〉 is a property with no structural information -

it always decreases when the mobility decreases, and this is why it always decreases

when pressure is increased. However, the whole temperature dependence can be

brought to collapse if the temperature is rescaled with the pressure dependent glass

transition temperature. This suggests that there is an intimate relation between the

energy barriers that control the freezing of the liquid and the moduli controlling

〈u2〉.

The inverse temperature dependence of the nonergodicity factor is also linear in
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temperature in the harmonic approximation, but it differs by mean square displace-

ment in two respects. There is no average over Q and it is a relative quantity which

compares the amplitude of vibrations to the frozen in density fluctuations. The

latter does not change much as a function of temperature in the glass. However, the

frozen in fluctuations will also decrease as pressure is increased. This means that

two competing effects govern the pressure dependence of the nonergodicity factor.

In practice we find that the nonergodicity factor measured in the glass is essentially

independent of pressure at a given temperature. Thus the data at different pressures

essentially collapse (at least at low T ) when comparing the temperature dependence

on an absolute temperature scale. Scaling the temperature axis with the pressure

dependent glass transition temperature therefore makes the curves separate and it

has the consequence that the dimensionless parameter α increases when pressure

increases. This increase of α is opposite the behavior expectation from the correla-

tion between α and isobaric fragility. Also our data on different molecular weight

polymers is in contradiction with the proposed correlation between α and fragility.

As an alternative we suggest based on a combination of our data and literature

data that the original finding is a consequence of a “hidden” correlation between

the nonergodicity factor and the effect of density on the relaxation time. We find

that f(Tg) is smaller when the effect of density on the relaxation time is larger.

This means that the vibrational part of the density fluctuations in the considered

Q-range are larger when the effect of density on the relaxation time is larger. This

suggests that the properties which govern these density fluctuations also couple to

the density dependence of the relaxation time. More studies are needed to verify this

interpretation - particularly studies of the pressure dependence of f(Tg) are needed.

Following the work of Inamura et al. [2000, 2001] it has been thought that the boson

peak intensity decreases when a sample is densificated. However, this work and

several other results that have come out within the last year [Monaco et al., 2006 a;

Andrikopoulos et al., 2006], clearly demonstrate that this is not the case. The boson

peak intensity relative to the Debye density of states stays constant (or increases)

as pressure is increased. The system becomes harder overall, but no specific modes

appear to be suppressed. Also the shape of the boson peak stays constant as pressure

is increased. In so far as the boson peak gives a signature of the type of disorder, this

suggests that the type of disorder is not changed when the system is compressed.

Both the boson peak intensity and the quasi-elastic scattering measured directly in

the dynamical structure factor at Tg decrease as a function of pressure. Moreover,

both contributions change by the same ratio along the Tg-isochrone and the relative

intensity of the boson peak as compared to the quasi-elastic intensity therefore stays
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constant when evaluated at Tg. In addition we find that the ratio expressed by

R tentatively correlates with fragility. The correlation is of similar quality when

comparing R with the isochoric fragility or with the isobaric fragility. Based on

the pressure independence of R (which we find in the two systems where it has

been studied) we speculate that the correlation to the intrinsic isochoric fragility is

the more fundamental. A direct comparison of the spectra from different systems

at varying temperatures, suggests that R evaluated at Tg is more governed by the

amount of quasi-elastic scattering than by the boson peak intensity. This indicates

that more fragile systems might have more quasi-elastic scattering even at Tg, where

the alpha relaxation most certainly does not enter the experimental window.



Chapter 10

Perspectives

In this work we have mainly used pressure experiments to test the robustness of

empirically established “universalities”. In addition we have tested the robustness

of the elastic models for the viscous slowing down and discussed several different

proposed models for the boson peak. These models are formulated as explanations

of phenomenology observed at atmospheric pressure. High pressure experiments

therefore gives a valuable possibility of testing their predictive power. This type of

test is relevant for almost any type of model or theory claiming to explain a gen-

eral phenomenon in glass-formers. Particularly for explaining the viscous slowing

down, it is clear that the relevant governing parameter should be constant along

isochrones in the system. This implies for example that the Adam-Gibbs model pre-

dicts 1/(TSc(ρ, T ))=constant and the shoving model predicts G∞(ρ, T )/T=constant

along an isochrone. Especially the latter of these prediction could easily be tested

in practice.

Turning now to the phenomenology of glass-forming systems, we have established

some trends that appear to be general. The system becomes harder when increasing

pressure along the Tg-isochrone, and the characteristic energy (or energies) of the

system increases. The activation energy is for example higher (but Ea/T is of course

constant). The boson peak energy is higher at higher pressure and the mean square

displacement has a lower amplitude. However, there are also a striking number of

properties which are unaffected by pressure changes along the isochrone. (i) We find

that the relative intensity of the boson peak is unaffected. (ii) The shape of the boson

peak is not affected. (iii) The isochoric fragility is not affected. (iv) The shape of the

alpha relaxation is not affected. (v) The mean square displacement normalised to

the average molecular distance is not affected. Thus all these dynamical properties

are intrinsic to a given system in the sense that they are unaffected by pressure - at

least within a limited pressure range. From this we conclude that the mechanisms

which govern the structural slowing down should have the same type of intrinsic

character.
175
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Appendix A

Details on the samples

This appendix gives an overview of the different properties of the liquids we have

mainly studied. We give the details on the samples and where they have been

acquired. The appendix moreover contains the references and/or calculations of

the fragilities, scaling exponent, x, Tg(P ), and the equation of state, which are used

throughout the thesis. The fragilites mP and mρ as well as the exponent x = d log e(ρ)
d log ρ

are defined in chapter 3.

A.1 Cumene

Cumene is a popular name for isopropylbenzene (1-methyl ethylbenzene), which is

a benzene ring with one side group consisting of a carbon atom with two methyl

groups attached. The sum formula is C9H12 and the density at ambient conditions

is 0.864 g/mol.

The sample used is from Sigma-Aldrich. The viscosity as a function of temperature

is reported by Ling and Willard [1968] at temperatures from 130 K to 150 K and

by Barlow et al. [1966] in the range 150 K to 303 K. Barlow et al. [1966] moreover

report the density as a function of temperature at atmospheric pressure in the range

150 K to 320 K. The temperature dependence of the density is found to be linear in

this range, and we assume that this dependence is continued down to 126 K, which

is the lowest temperature of interest. The density as a function of pressure has been

measured by Bridgman [1949] at room temperature from atmospheric pressure up
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to 4 GPa. The viscosity as a function pressure at room temperature is reported

by Li et al. [1995] who also measured light scattering spectra under pressure. We

have combined the density and viscosity data in figure A.1. An extrapolation of

the viscosity data at atmospheric pressure to η = 1013 leads to a glass transition

temperature Tg = 126 K and the fragility at atmospheric pressure is mP = 90 ± 5.

The temperature dependent data and the pressure dependent data can be brought

to collapse by using a scaling variable given by ρx/T with x=4.85. From this scaling

we can estimate the glass transition density at room temperature exploiting the fact

that the scaling variable is constant along the glass transition line ρx
g/Tg = const. We

find ρg = 1.19 g/mL which corresponds to a glass transition pressure of Pg=2 MPa

and dTg/dP = 0.086 K.MPa−1. The Pg value is 20% lower than the extrapolated

value reported based on the same data by Li et al. [1995]. The method we use is of

course also an extrapolation, however we believe that the use of the scaling yields a

more reliable result.

We calculate the isobaric expansion coefficient from the density data at atmospheric

pressure and obtain αP Tgx= 0.57 which gives us mρ = mP /1.57 = 57.
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Figure A.1: a) The viscosity as a function of density at atmospheric pressure (varying
temperature) and along the room temperature (293 K) isotherm. The high temper-
ature data are from Barlow et al. [1966] the low temperature data are from Ling
and Willard [1968]. The data on the isotherm are from Li et al. [1995]. The density
data are from Barlow et al. [1966] and Bridgman [1949]. b) The same viscosity data
as in figure a) now plotted against the scaling variable ρx/T with x=4.85.

In order to estimate the pressure dependence of the isobaric fragility we need the

density as a function of pressure and temperature over the whole relevant range. We

have estimated equation of state from the available data in the following way. The

pressure and temperature dependence of αP is calculated at temperatures higher

than 240 K using the formula in Minassian et al. [1988] for toluene rescaled to

cumene by using its critical temperature and density (Tc = 631.1 K Pc = 321 kPa

[Wilson et al., 1996]). The expansion coefficient calculated in this way agrees with
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the value found from the density measure at atmospheric pressure. The density is

calculated at T > 240 K from the density at room temperature and the expansion

coefficient. This gives essentially linear temperature dependence at all pressures

and this temperature dependence is finally extrapolated to low temperature. As a

consistency check we verify that ρx
g/Tg = const holds on the Tg line at all pressures.
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Figure A.2: Illustration of the determination of the density of cumene as a function
of pressure and temperature. Stars are measured densities from Bridgman [1949].
Black fill line is the density from Barlow et al. [1966]. Colored full lines are calculated
from the estimated pressure dependent expansion coefficient (see the text for details).
Crosses are densities found on the Tg-line by assuming that the density scaling holds
yielding ρx/T = constant.
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Figure A.3: The relaxation time (•) at 300 MPa and viscosity (�) at atmospheric
pressure of cumene as a function of temperature under isobaric conditions. The full
lines illustrate the position of Tg(P ) and mP (P ). Figure a shows the data on an
absolute temperature scale (1000/T) and figure b) shows the data versus Tg/T .

Based on the density data we can calculate xαP Tg at all pressures. Assuming that

the scaling shown in figure A.1 holds we calculate the pressure dependent isobaric

fragility using mP = mρ(1 + xαP Tg). We find that the isobaric fragility decreases

with pressure and that it is 20% lower at 300 MPa giving a fragility of mP (P =

300MPa) = 72.

The relatively low Tg = 127 K of cumene makes it difficult to measure with our di-
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electric setup in Orsay (see section 5.1.1) because the alpha relaxation does not enter

the experimental window of frequencies at lower than 1 MHz within the pressure

and temperature range accessible. By using liquid nitrogen we did however obtain

a few spectra at 300 MPa in the temperature range 180 K - 195 K. The results are

consistent with the analysis above which is illustrated in figure A.1.

A.2 PIB

Polyisobutylene (PIB) is a polymer, with a unit consisting of a backbone of carbons

with two methyl groups on every second carbon (-CH2-C(CH3)2-)n

n

PIB does as other polymers have molecular weight dependent thermodynamic and

dynamics properties. In this work we consider 4 different samples PIB680, PIB1190,

PIB3580 and PIB500k. PIB680 (Mw=680 g/mol, Mw/Mn=1.06) PIB3580 (Mw=3580

g/mol, Mw/Mn=1.23) are from Polymer Standard service, PIB500k (Mw=500.000

g/mol, Mw/Mn=2.5) is from Sigma Aldrich while the sample PIB1190 (Mw=1190

g/mol, Mw/Mn=1.08) is supplied by Alexei Sokolov. The polydispersity is higher

for PIB500k because it is more difficult to separate and characterize high molecular

weight polymers. We believe that this is of minor importance, because the molec-

ular weight dependence of different properties saturates at high molecular weight,

meaning that a precise characterization is less important.

The density at ambient conditions increases weakly as a function of molecular weight.

The high molecular weight PIB has a density of 0.92 g/mL at room temperature

and atmospheric pressure.

The Tg increases with about 10% from the lowest to the highest molecular weight,

with the Mw-dependence saturating close to 10000 g/mol where it reaches a value

of Tg ≈ 205 K [Ding et al., 2004; Chauty-Cailliaux, 2003].

PIB has a low dipole moment which makes it inadequate to study it by dielectric

spectroscopy.

The fragility of high molecular weight PIB is reported by Plazek and Ngai [1991] to

be m = 46 based on shear mechanical creep data.
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The temperature dependent relaxation time of the low molecular weight sample

PIB680 has been measured by shear mechanical spectroscopy by Niels Boye Olsen

at Roskilde University. The technique covers the frequency range from 1 mHz up to

more than 10 kHz [Christensen, 1994]. Based on this data we find that Tg = 195K

and m=80. We use only the data at low temperatures in this determination as a

secondary relaxation strongly influences the peak position at higher temperatures

(figure A.4). The result shows that the low molecular weight sample has a higher
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Figure A.4: The temperature dependence of the frequency dependent shear modulus
of PIB680. The left figure shows the imaginary part of the modulus as a function
of frequency at different temperatures. The right figure shows the alpha relaxation
time determined as τα = 1/ωmax as a function of 1000/T . The red line shows the
fit used to determine Tg and fragility.

fragility than the high molecular weight sample. This is in agreement with the con-

clusion by Ding et al. [2004] where the fragility of PIB680 and PIB500k is estimated

based on calorimetric data.

We use the equations of state given for high molecular weight PIB by Sanchez and

Cho [1995] and Kilburn et al. [2006]. The sample we mainly study under pressure

is PIB3580. This molecular weight has dynamical properties very close to the high

molecular weight limit and we assume that the same is true for the thermodynamics.

The pressure dependence of Tg is also dependent on molecular weight, being weakest

for the lowest molecular weights [Chauty-Cailliaux, 2003]. PIB3580 has Tg ≈ 195 K

and dTg/dP ≈ 0.1 K/MPa determined by isothermal calorimetry [Chauty-Cailliaux,

2003]. Using the equation of state and this Tg-line we find that αP /|ατ | = 0.2 ±

0.05, meaning that mP /mρ = 1.2 ± 0.05. Assuming that the scaling holds with a

simple power law for e(ρ) gives x ≈ 2. However, (Tgατ )
−1 appears to increase with

pressure which indicates a more complicated form for e(ρ) or alternatively that the

scaling does not hold. αP /|ατ | is weakly increasing with pressure, which indicates
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an increase of mP with pressure. The situation is hence similar to that of DBP.

A.3 DHIQ

Decahydro-isoquinoline (DHIQ) consists of a cyclohexane with another saturated

ring of three carbons and a nitrogen attached:

NH

The sum formula is C9H17N and the density at room conditions is 0.936 g /mL. The

sample used in the experiments are used as acquired from Sigma-Aldrich. DHIQ

reacts with oxygen and we therefore handled the sample in a glow box with a nitrogen

atmosphere.

DHIQ is one of the most fragile molecular glass formers known. This was first

reported by Wang et al. [2002] who determined mP = 128 based on differential

scanning calorimetry. The corresponding heat capacity jump is reported to be δcP =

0.84 Jg−1K−1.

More direct determinations of the fragility determined by dielectric spectroscopy

are reported by Richert et al. [2003] who finds mP = 158 based on a VTF fit.

In an earlier work we found that the fragility was mP = 154 based on dielectric

spectroscopy while shear mechanical data lead to a fragility of mP = 143 [Niss and

Jakobsen, 2003] (the data are also reported in [Jakobsen et al., 2005; Niss et al.,

2005]). The glass transition temperature defined by 1/(2πνmax) = 100 s is at

atmospheric pressure Tg = 179.5 K.

Dielectric spectra taken at 500 MPa are reported by Paluch et al. [2005], and Tg is

found to shift 50 degrees. The density as a function of pressure was determined in

the temperature range of 300 K - 375 K and a pressure range up to 200 MPa by

Casalini et al. [2006]. The dynamical data are combined with extrapolations of the

obtained equation of state. This is used to determine mρ/mP = 0.71 ± 0.02 and

γ = 3.55 [Casalini et al., 2006].

Finally it is worth noticing that all these determinations of fragility are based on

the position of the maximum. DHIQ does however have an extremely pronounced

secondary beta relaxation1. This secondary relaxation alters the shape of the loss

1The pressure experiment actually reveals that at least two different secondary relaxations can
be detected [Paluch et al., 2005].
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peak differently at different temperatures and it consequently has an effect on the

determined temperature dependence of the peak position.

A.4 DBP

O

O

O

O

Dibutyl-phthalate (DBP) is a benzene ring with two identical side groups. The sum

formula is C16H22O4 and the density at ambient conditions is ρ = 1.0459 g/mL.

The sample used for the experiments is from Sigma-Aldrich and it has been used as

acquired.

The dynamical quantities are determined in this work and we also discuss the

agreement with literature data. We find mP = 67, mρ = 56 and Tg = 176 and

dTg/dP = 0.1 K.MPa−1 in the low pressure limit. We moreover find that the expo-

nent, x = d log e(ρ)/d log ρ is dependent on density (see section 5.2.1).

The determination of mρ and x requires knowledge of the density dependence of the

relaxation times. To do this, we need the pressure and temperature dependence of

the density. However, this data is only available at high temperatures [Bridgman,

1932]. In the following we give a detailed description of how we have extrapolated

these data to lower temperatures and higher pressures and we carefully verify that

the extrapolations do not lead large errors on the results reported in section 5.2.1.

The expansion coefficient, αP , is calculated at two temperatures from the data of

Bridgman [1932], this gives a weakly decreasing αP with decreasing temperature.

We assume that the temperature dependence of αP is linear in the whole tempera-

ture range and integrate αP ρ dT to obtain ρ on the atmospheric pressure isobar. The

pressure dependence of the densities reported by Bridgman [1932] are well described

by the Tait equation fits given by Cook et al. [1993], these fits give temperature de-

pendent Tait parameters c and b (which are directly related to the compressibility

and its first order pressure derivative). We have linearly extrapolated the tem-

perature dependence of these parameters and used the corresponding temperature

dependent Tait equation to calculate the pressure dependence along each isotherm.

The extrapolation of the derivatives rather than direct extrapolation of the densities

gives is expected to give a smaller error on the obtained density. We have moreover

checked that this procedure gives physically reasonable pressure and temperature

dependencies of the expansivity and the compressibility [Minassian et al., 1988].
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The pressure and temperature dependences of the density are of course a crucial

input to the scaling shown in section 5.2.1. In order to evaluate the effect of the

extrapolations we have performed, we focus on the scaling for the high-pressure

room-temperature data of Paluch and the data at atmospheric pressure, because

the extrapolation of the density is smallest in these cases. The discrepancies seen in

figure 5.6 could be accounted for, if the density at high pressure and room tempera-

ture were higher than what we have estimated or if the density at low-temperature

were lower than what we have estimated. The high-density dynamical data are

taken at room temperature. The experimental density data are also taken at room

temperature and they are only extrapolated above 1.2 GPa. If the actual density

is higher than what we have estimated, then it means that the compressibility is

larger than what we have taken. However, the compressibility at 1.2 GPa is already

in the high-pressure domain where it is very low and almost pressure independent

(it is slightly decreasing with increasing pressure). The most conservative estimate

we could make is to keep the compressibility constant for pressures above the last

experimental point at 1.2 GPa. Such an approach changes the ratio ρ2.5/T by less

than one percent, and, therefore, can not account for the discrepancy seen in figure

5.6. An alternative explanation would be that the actual low temperature density is

lower than we have estimated, meaning that we have overestimated the expansion

coefficient αP . This latter has been calculated at two different high temperatures

based on the data in reference Bridgman [1932]. This leads to a slight decrease in

expansion coefficient with decreasing temperature. If the expansion coefficient is

to be smaller than the estimate from this temperature dependence, then it would

mean that the temperature dependence of the expansion coefficient should increase

as temperature decreases. This is the opposite of the normal behavior in liquids,

where αP at atmospheric pressure tends to a constant at low temperatures [Minas-

sian et al., 1988]. It is actually most common to assume that the αP of molecular

liquids is constant below room temperature (e.g.[Reiser et al., 2005]). This type of

assumption would enhance the discrepancy in figure 5.6. We therefore conclude that

the absence of collapse of the high-pressure data in Fig. 5.6 using a simple power

law form for e(ρ) cannot be explained by errors made in the estimation of the PVT

data.

A.5 m-Toluidine

m-toluidine is a benzene ring with a methyl group and a amino side group. The

sum formula is C7H9N and the density of the sample at ambient pressure and room
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temperature is 0.999 g/cm3.

NH2

The sample used is from Sigma-Aldrich and it was twice distilled before usage.

The glass transition temperature at atmospheric pressure is Tg = 187 K (for τα = 100

s) and the isobaric fragility based on dielectric spectra is reported to be mP =

82± 3 [Mandanici et al., 2005; Alba-Simionesco et al., 1999]. (There has been some

controversy about the dielectric relaxation in m-toluidine, see reference [Mandanici

et al., 2005] and references therein.)

Pressure dependence of the alpha relaxation is reported in section 5.2.2 of this work.

We find x = 2.3 and a ratio of mP /mρ = 1.2. The slope of the glass transition line

is dTg/dP = 0.085 K.MPa−1.

Density data are available along four isotherms in the 278.4 K − 305.4 K range for

pressures up to 300 MPa [Würflinger, n.d.]. Tait fits and thermal expansivity in this

range were extrapolated by using the scheme described above for DBP in order to

determine density both as a function of temperature down to Tg, and as a function

of pressure on the 216.4 K isotherm.

A.6 Other samples

In addition to the samples presented above, which have all been used in at least two

of the different studies in chapter 5 to 8 there are also a few samples which have

only been studied by time of flight at ambient pressure (chapter 8).

These samples where all acquired from Sigma-Aldrich.

Salol, Tg =220 K, it is crystalline at ambient conditions so it was melted prior to

use. The sample did not recrystallize, which is easily verified from the absence of

Bragg peaks in measured neutron scattering data.

O

O

OH

Sorbitol Tg =273 K is crystalline at ambient conditions it was melted prior to use.

The sample did not recrystallize, which is easily verified from the absence of Bragg
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peaks in measured neutron scattering data. OH

OH

OH

HO

OH

OH

H

H

H

H

3-fluoroaniline Tg =173 K, density at ambient conditions 1.156 g/cm3

F

NH2

Propylene carbonate (PC) Tg =156 K, density at ambient conditions 1.189g/cm3

O O

O

The fragilities and related properties along with relevant references are listed in the

following appendix.



Appendix B

Data compilations

B.1 Data compilation

ortho-terphenyl

mP = 76, 81, 82, 84, 86 [Paluch et al., 2001], [Dixon and Nagel, 1988], [Alba-Simionesco

et al., 2004], [Huang and McKenna, 2001], [Dreyfus et al., 2004]

mρ = 45 [Alba-Simionesco et al., 2004]

R = 0.7 [Sokolov et al., 1993]

β = 0.52, 0.57 [Tölle, 2001], [Dixon and Nagel, 1988]

∂ log〈u2〉
∂ log T

∣

∣

∣

P
= 3.5 ∗ [Tölle, 2001]

x = 4 [Tölle et al., 1998],[Dreyfus et al., 2003],[Alba-Simionesco et al., 2004]

α = 0.58, fQ(Tg) = 0.63 [Scopigno et al., 2003]

Dibutylphtalate

mP = 75 (this work)

mρ = 63 (this work)

x = 1.5 (this work)

R = 0.93 (this work)

β = 0.57 (this work)

∂ log〈u2〉
∂ log T

∣

∣

∣

P
= 5 (this work)

α = 0.16, fQ(Tg) = 0.86 [Scopigno et al., 2003],[Mermet et al., 2002]

203
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Propylen carbonate

mP = 90, 93, 104 [Paluch et al., 2001], [Richert et al., 2003], [Qin and McKenna,

2006]

mρ = 57, 65∗ [Casalini and Roland, 2005 b], [Reiser et al., 2005]

R = 1.1 (this work)

β = 0.73 [Paluch et al., 2001]

BMPC = 1,1’-bis(p-methoxyphenyl)cyclohexane

mP = 70, 90 [Casalini and Roland, 2005 c], [Patkowski et al., 2004]

mρ = 26 [Casalini and Roland, 2005 c]

β = 0.6 [Hensel-Bielowka et al., 2002 b]

BMMPC = 1,1’-di(4-methoxy-5-methylphenyl)cyclohexane

mP = 58, 59 [Casalini and Roland, 2005 b], [Gapinski et al., 2002]

mρ = 25 [Casalini and Roland, 2005 b]

β = 0.55 [Casalini et al., 2003]

DEP A = diglycidylether of bisphenol A

mP = 95 [Roland et al., 2004]

mρ = 57 [Roland et al., 2004]

β = 0.38 [Paluch et al., 2003 b]

KDE = cresolphtalein-dimethyl-ether

mP = 64, 68, 73 [Casalini and Roland, 2005 b], [Roland and Casalini, 2003b], [Paluch

et al., 2001]

mρ = 34 [Casalini and Roland, 2005 b]

β = 0.75 [Paluch et al., 2001]
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DHIQ = Decahydroisoquinoline

mP = 158, 163 [Richert et al., 2003], [Casalini et al., 2006]

mρ = 117 [Casalini et al., 2006]

R = 1.3 (this work)

β = 0.36 [Richert et al., 2003]

∂ log〈u2〉
∂ log T

∣

∣

∣

P
= 5 (this work)

Cumene

mP = 90∗ [Barlow et al., 1966]

mρ = 57∗ [Barlow et al., 1966; Bridgman, 1949]

x = 4.858 [Barlow et al., 1966; Bridgman, 1949]

R = 0.95 (this work)

β = 0.66 (this work)

∂ log〈u2〉
∂ log T

∣

∣

∣

P
= 4.1 (this work)

α = 0.44, fQ(Tg) = 0.6 (this work)

Salol

mP = 63, 68, 73 [Laughlin and Uhlmann, 1972], [Roland et al., 2005],[Paluch et al.,

2001]

mρ = 36 [Roland et al., 2005]

R = 0.85, 0.95 [Sokolov et al., 1993], (this work)

β = 0.53, 0.6 [Böhmer et al., 1993], [Sidebottom and Sorensen, 1989]

α = 0.64 [Scopigno et al., 2003]

x = 5.2 [Roland et al., 2005]
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Glycerol

mP = 40, 53, 54 [Alba-Simionesco et al., 2004], [Birge, 1986], Paluch et al. [2002]

mρ = 38 [Alba-Simionesco et al., 2004]

x =1.8,1.4 [Alba-Simionesco et al., 2004][Dreyfus et al., 2004][Reiser et al., 2005]

R = 0.6 (this work)

β = 0.65, 0.7, 0.75 [Birge, 1986], [Ngai and Rendell, 1990], [Dixon et al., 1990]

∂ log〈u2〉
∂ log T

∣

∣

∣

P
= 3.2 (this work)

α = 0.32, fQ(Tg) = 0.76 [Scopigno et al., 2003]

Sorbitol

mP = 128 [Casalini and Roland, 2004]

mρ = 112 [Casalini and Roland, 2004]

R = 0.86 (this work)

β = 0.5 [Ngai et al., 1991]

meta-fluoroaniline

mP = 70 [Roland et al., 2005]

mρ = 51∗ [Reiser et al., 2005]

R = 0.98 (this work)

β = 0.35, 0.64 [Cutroni et al., 1994], [Hensel-bielowka et al., 2005]

meta-toluidine

mP = 79, 84 [Alba-Simionesco et al., 1999], [Mandanici et al., 2005]

mρ = 68 (this work)

x = 2.3 (this work)

β = 0.57 (this work)

∂ log〈u2〉
∂ log T

∣

∣

∣

P
= 4.7 (this work)

α = 0.57, fQ(Tg) = 0.68 [Scopigno et al., 2003],[Comez et al., 2005]
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Triphenylphosphite

mP = 160 [Schiener et al., 1996]

∂ log〈u2〉
∂ log T

∣

∣

∣

P
= 3.4 [Frick and Alba-Simionesco, 2003]

B2O3

mP = 32 [Böhmer et al., 1993]

∂ log〈u2〉
∂ log T

∣

∣

∣

P
= 2.5∗ [Engberg et al., 1998]

Polyisobutylene

mP = 46 [Plazek and Ngai, 1991]

mρ = 34∗ [Chauty-Cailliaux, 2003]

x = 2.6∗ [Chauty-Cailliaux, 2003]

R = 0.62 [Ding et al., 2004]

β = 0.55 [Plazek and Ngai, 1991]

∂ log〈u2〉
∂ log T

∣

∣

∣

P
= 3.1 ∗ [Frick and Richter, 1993]

α = 0.55, fQ(Tg) = 0.65 (this work)

Polyvinylchloride

mP = 160, 191 [Huang et al., 2002], [Plazek and Ngai, 1991]

mρ = 140 [Huang et al., 2002]

β = 0.25 [Plazek and Ngai, 1991]

Polyvinylacetate

mP = 78, 95, 130 [Roland et al., 2005], [Alba-Simionesco et al., 2004], [Huang et al.,

2002]

mρ = 52, 61, 130 [Roland et al., 2005], [Alba-Simionesco et al., 2004], [Huang et al.,

2002]

x = 1.4, 2.6 [Alba-Simionesco et al., 2004],[Roland and Casalini, 2003a]

β = 0.43 [Plazek and Ngai, 1991]

fQ(Tg) = 0.73 [Buchenau and Wischnewski, 2004]
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Polystyrene

mP = 77, 133 [Huang et al., 2002], [Plazek and Ngai, 1991]

mρ = 55 [Huang et al., 2002]

β = 0.35 [Plazek and Ngai, 1991]

Polymethylmethacrylate

mP = 102, 102, 122 [Huang et al., 2002], [Plazek and Ngai, 1991], [Roland et al.,

2004]

mρ = 80, 94 [Huang et al., 2002], [Roland et al., 2004]

β = 0.41 [Plazek and Ngai, 1991]

1,4 Polybutadiene

mP = 60, 77, 107 [Scopigno et al., 2003],[Alba-Simionesco et al., 2004],[Huang and

McKenna, 2001]

mρ = 64 [Alba-Simionesco et al., 2004]

x = 1.8 [Alba-Simionesco et al., 2004]

α = 0.4, fQ(Tg) = 0.71 [Scopigno et al., 2003],[Fioretto et al., 1999]

The ∗ indicates that the value is not given in the corresponding reference but is

calculated from the data therein.

The molecular weight of polymers are not always given in the references. However,

for PIB and PS data are for this high molecular samples.
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Dielectric setup

Figure C.1: The experimental setup for dielectric spectroscopy under pressure at
Orsay. The Teflon parts shown in grey to distinguish from the metal. The length of
the autoclave is ∼ 30 cm, the Teflon cell is 5 cm.

209
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Figure C.2: The experimental setup shown in figure C.1. The upper part of the
figure shows the autoclave. The lower part of the figure shows the Teflon cell, the
measuring capacitor and the closing piece.





Abstract

The degree of departure from Arrhenius temperature dependence of the relaxation

time in the viscous liquid, the fragility, has in the course of the last decade been

shown to (or suggested to) correlate with a large number of properties in the liquid

and the corresponding glass. Here we develop a set of criteria for scrutinizing these

types of correlations by introducing pressure as a control variable in addition to

temperature. These criteria are used in the analysis of an extensive new set of data.

We particularly study the width of the alpha relaxation by dielectric spectroscopy,

the relative intensity of the boson peak and the mean square displacement by neutron

scattering and the nonergodicity factor by inelastic X-ray scattering.

In the study of the width of the alpha relaxation as well as the relative intensity

of the boson peak we find that they do not relate to the effect of density on the

relaxation time, and that a physically meaningful correlation in these cases should be

a correlation to isochoric fragility rather than to the conventional isobaric fragility.

The mean square displacement is found to relate to a balanced combination of

temperature and density, while we suggest that the nonergodicity factor evaluated

at Tg is correlated with the relative effect of density on the viscous slowing down.

Résumé

Il a été montré durant la dernière décennie que la fragilité, qui traduit le caractère

plus ou moins non-Arrhénien d’un liquide, peut être correlée à de nombreuses pro-

priétés de ce liquide et de son verre. Dans ce travail, des critères de test de ces

corrélations utilisant la pression comme nouveau paramètre extérieur ont été mis au

point. Ils ont été appliqués à l’étude d’un nouveau jeu de données obtenu pendant

ce travail. On a particulièrement étudié la largeur du pic de relaxation alpha par

spectroscopie diélectrique, l’intensité relative du pic de bose et le déplacement carré

moyen par diffusion de neutron, ainsi que le facteur de non-ergodicité par diffusion

inélastique des rayons X.

La largeur du pic de relaxation alpha et l’intensité relative du pic du bose ne semblent

pas liés a l’effet de la densité sur le temps de relaxation. Pour ces grandeurs, la bonne

corrélation à considérer serait alors celle avec la fragilité isochore et non la fragilité

isobare usuelle. Le déplacement carré moyen est pour sa part, lié aux effets de

température et de densité. Par ailleurs, le facteur de non-ergodicité pris à Tg est,

lui, correlé à l’effet de la densité sur la ralentissement visqueux.


