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Dielectric and shear mechanical relaxations in glass-forming liquids:
A test of the Gemant-DiMarzio-Bishop model
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The Gemant-DiMarzio-Bishop model, which connects the frequency-dependent shear modulus to
the frequency-dependent dielectric constant, is reviewed and a new consistent macroscopic
formulation is derived. It is moreover shown that this version of the model can be tested without
fitting parameters. The reformulated version of the model is analyzed and experimentally tested. It
is demonstrated that the model has several nontrivial qualitative predictions: the existence of an
elastic contribution to the high-frequency limit of the dielectric constant, a shift of the shear
modulus loss peak frequency to higher frequencies compared with the loss peak frequency of the
dielectric constant, a broader alpha peak, and a more pronounced beta peak in the shear modulus
when compared with the dielectric constant. It is shown that these predictions generally agree with
experimental findings and it is therefore suggested that the Gemant-DiMarzio-Bishop model is
correct on a qualitative level. The quantitative agreement between the model and the data is on the
other hand moderate to poor. It is discussed if a model-free comparison between the dielectric and
shear mechanical relaxations is relevant, and it is concluded that the shear modulus should be
compared with the rotational dielectric modulus, 1 / �����−n2�, which is extracted from the
Gemant-DiMarzio-Bishop model, rather than to the dielectric susceptibility or the conventional
dielectric modulus M =1/����. © 2005 American Institute of Physics. �DOI: 10.1063/1.2136886�
I. INTRODUCTION

The understanding of the dynamics in liquids close to
the glass transition is one of the main fundamental questions
in condensed-matter physics. The phenomenology is rich and
a full understanding calls for measurements over a large
range of temperatures and frequencies.1,2 Dielectric spectro-
scopy plays an important role in the field, because dielectric
measurements are comparably easy to perform with high ac-
curacy over a large frequency span.3,4 It is, however, rare that
theories and models refer directly to the dielectric properties
of the liquid. It is therefore important to understand how the
dielectric response is related to microscopic dynamics and
more fundamental macroscopic properties, such as the shear
viscosity.

It is a general understanding that shear mechanical and
dielectric relaxations are somehow connected. The results of
dielectric measurements are therefore often compared with
the shear mechanical behavior of the liquid either via the
Debye-Stoke-Einstein �DSE� time,5–9 or by direct compari-
sons of the shear relaxation and the dielectric relaxation.6–13
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The idea of connecting dielectric relaxation to shear
properties goes back to the classical Debye model which
attributes the frequency dependency of the dielectric spec-
trum to the interaction of the dipoles with a viscous liquid.14

The Debye model predicts exponential relaxation, commonly
referred to as Debye relaxation, while the spectrum found in
glass forming liquids is considerably broader. Cole15 and
Fatuzzo and Mason16 attempted to improve the Debye model
by using, respectively, the Onsager field and a frequency-
dependent Onsager-type field in place of the Lorentz field
which was used by Debye. A different approach to improve
the Debye model is to take the liquid’s viscoelasticity, i.e.,
the frequency dependence of the viscosity itself, into ac-
count. This type of generalization of the Debye model was
first proposed by Gemant17 and later derived by DiMarzio
and Bishop.18 We therefore refer to the model as the Gemant-
DiMarzio-Bishop model �the GDB model, for convenience�.

The purpose of the present work is to test the GDB
model against the set of shear mechanical and dielectric data,
taken on seven different liquids, which we present in Ref. 19
However, the macroscopic version of the GDB model which
was tested in the original paper, and which has been quoted
and tested by other groups, is inconsistent with the physics
that it aims to describe. In order to test the model, we there-
fore recast the macroscopic model in a physically consistent
form and analyze which qualitative and quantitative predic-
tions the model can be brought to give.

We start by briefly reviewing the Debye and GDB mod-
els and proceed by formulating the new consistent macro-

scopic formulation in Sec. III. In Secs. IV and V we discuss
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and test the qualitative and the quantitative predictions which
can be extracted from the GDB model and compare these
predictions to the data. In Sec. VI we consider the question
of whether dielectric susceptibility or modulus can be com-
pared with shear modulus and show that the GDB model
offers a third, physically meaningful alternative. The overall
status of the GDB model is finally discussed in Sec. VII.

II. REVIEW OF THE DEBYE AND THE GDB
MODELS

The GDB model and the Debye model are microscopic
models, describing the average linear rotational response of a
single dipole, when subjected to an average local field, Ed.
Such a description relies on the assumption that the average
of the permanent dipole moment ��� can be written as

��� = �rEd, �1�

and hence the scope of the model is to give an expression for
the rotational polarization coefficient ��r�.

It is hard to test the microscopic model directly, hence
�as we will discuss later in detail� the microscopic model is
normally converted to a macroscopic model using some as-
sumptions. This macroscopic formulation is commonly what
is meant when the GDB model is discussed, and we will also
frequently use the term “model” when referring to the mac-
roscopic model, but it is important to realize that different
macroscopic formulations can be derived from the same mi-
croscopic model.

The original Debye model,14 which is based on Ein-
stein’s work on translational diffusion,20 can be summarized
in the following five points.

• The liquid is assumed to have a frequency-independent
viscosity �0.

• The relaxing entity is an ideal dipole �with a dipole
moment of norm �� in the center of a sphere with radius
r.

• The dipoles are noninteracting �giving a random orien-
tation of the dipoles in the equilibrium situation without
an external electric field�.

• The dipole’s interaction with its surroundings is mod-
eled as a macroscopic entity in a continuous liquid �us-
ing Stokes law and a no slip boundary condition�.

• The Lorentz field is used as local field.

To our knowledge the first to consider the effect of vis-
coelasticity was Gemant.17 Gemant arrives at his model by a
generalization of an electrical circuit model of the Debye
model. Havriliak and Havriliak21 suggest that the Gemant
model should be erroneous or unphysical as they are not able
to reproduce the results of Gemant. We are able to reproduce
the results of Gemant and disagree that there should be any-
thing erroneous in the model of Gemant. The Gemant model
is in fact just a less general form of the model suggested by
DiMarzio and Bishop. The only difference is that Gemant
restricts the analysis to a specific model for the shear re-

sponse.
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DiMarzio and Bishop18 derive the model in a general
form using the same approach and assumptions as Debye,
but generalizing the equations to describe a viscoelastic liq-
uid. This means that DiMarzio and Bishop maintain all but
the first of the five points listed above.

The model leads to a differential equation describing
how the average orientation of the dipole changes as a func-
tion of time when a field is applied. It is given by22

�f

�t
=

1

sin �

�

���sin ��	
−�

t

D�t − t��
 �f

��



t=t�
dt�

− f	
−�

t

V�t − t��M�t��dt��� , �2�

where f is the probability density function describing the
distribution of orientations of dipoles, � is the angle between
the field and the dipole, D is the angular diffusion memory
function, V is the angular mobility memory function, and M
is the torque due to the directing field �M =−�Ed sin ��. The
two memory functions are related by D�t�=kBTV�t�.

Solving the above differential equation, for a harmonic
input, to first order, using a frequency-dependent Stokes fric-
tion term �1/V���=8�����r3�, where r is the molecular ra-
dius, and averaging over the directions of the dipoles, leads
to the following model for the rotational polarization coeffi-
cient:

�r��� =
�2

3kBT�1 + �4�r3/kBT�i������

=
�2

3kBT�1 + �4�r3/kBT�G����
, �3�

where the second equality is obtained by using the relation
G���= i�����. This result is identical to the Debye model,
except for the fact that the �0 which appears in the Debye
model has been replaced by ����. This difference between
the GDB model and the Debye model can also be expressed
in terms of the memory functions in Eq. �2�, since the as-
sumption of a frequency-independent viscosity results in
memory functions of the form V�t�=V0	�t� with �1/V0

=8��0r3�, which reduces the integrals to products. As no
assumptions about the frequency dependency of ���� enters
the derivation of the microscopic model, it can equally well
be used at all frequencies and hence it should in principle
describe both the alpha and the beta relaxations.

Equation �3� is in principle the model prediction we aim
to discuss and test. However, it deals with microscopic quan-
tities which are not directly accessed by dielectric spectro-
scopy. The measured quantity is the total polarization which
contains a contribution from molecular induced polarization
�changed electron distribution� in addition to the rotational
contribution which has our interest. An additional problem
arises because the average field which in effect contributes to
the rotation of the molecules, Ed, and that which contributes
to the induced polarization, Ei, are different and in both cases
different from the macroscopic average field which is applied

Em, �see Refs. 23 and 24�.
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The relation between the total polarization �P� and the
macroscopic and microscopic quantities, respectively, is
given by

P = N��iEi + ����

= N��iEi + �r���Ed�

= ����� − 1��0Em, �4�

where N is the number of dipoles per volume, �i is the mo-
lecular induced polarization coefficient, and ���� is the
frequency-dependent dielectric constant. It is hence neces-
sary to have a relation between the macroscopic field and the
local fields, and to eliminate the contribution from induced
polarization, when testing the model for �r by measuring the
dielectric constant.

DiMarzio and Bishop assume that G���→� for �→�
and G�0�=0 and they use the Lorentz field for both local
fields in order to arrive at a macroscopic formulation. The
macroscopic formulation they test and the equation which is
considered in all the references that cite them �Eq. �I.1� of
Ref. 18� reads

���� − ��

�e − ��

=
1

1 + �4�r3/kBT����e + 2�/��� + 2��G���
, �5�

where �� is the high-frequency limit of the dielectric con-
stant, and �e is the low-frequency equilibrium value.

The limit �→� value is interpreted by DiMarzio and
Bishop as the plateau value which is reached in dielectric
spectroscopy �1 MHz�. It is noted by DiMarzio and Bishop
that the assumption G���→� for �→� is wrong if a Max-
well model is used for the frequency-dependent shear modu-
lus. However, a more serious problem, which DiMarzio and
Bishop do not consider, is that the assumption is wrong in
general since it is an experimental fact that G reaches a pla-
teau in the considered frequency region meaning that G� is
finite. The consequence is that the high-frequency limit of
Eq. �5� is wrong. This can been seen by considering the
high-frequency limiting behavior: the left side of the equa-
tion will approach zero while the right side approaches a
finite value.25 DiMarzio and Bishop give a consistent formu-
lation in the Appendix of Ref. 18. However, this formulation
is rather inconvenient because it requires that G�, ��, and �e

must all be known, which is rarely the case, and experimen-
tal tests of this version of the model have never been re-
ported. A different macroscopic version of the GDB model is
therefore needed in order to make an adequate test of the
model.

III. REFORMULATION OF THE MACROSCOPIC GDB
MODEL

In the following we propose a new consistent and simple
macroscopic formulation of the GDB model which we use as
starting point for testing the model �Eq. �3�� in the following
sections.

The Lorentz field is used as the local fields �the directing
and inducing fields� as it is also done in the Debye and
DiMarzio-Bishop formulations. We will return to a brief dis-

cussion of the consequence of this choice at the end of Sec.
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V. The use of the Lorentz field leads to the Clausius-Mossotti
approximation,23 which connects the macroscopic accessible
dielectric constant to the microscopic properties,

���� − 1

���� + 2
=

N

3�0
��r��� + �i� . �6�

The induced polarizability can be related to the refrac-
tion index through the Clausius-Mossotti approximation as26

n2 − 1

n2 + 2
=

N

3�0
�i. �7�

Combining Eqs. �3�, �6�, and �7� with the fact that
G�0�=0 yields the below result after some algebraic
manipulation27

���� − n2

�e − n2 =
1

1 + �4�r3/kBT����e + 2�/�n2 + 2��G���
. �8�

The result appears similar to the original macroscopic
formulation �5�, however, it has a different high-frequency
behavior, because �� may differ from n2. The consequence is
that both right and left sides of the equation have finite high-
frequency limiting values. The physical meaning of this is
that the rotation of the dipoles contributes to the polarization
even at high frequencies, due to an instantaneous elastic ro-
tation. Note that we have adapted the convention of referring
to the plateaus found in ���� and G��� around 1 MHz as
high-frequency limits. This is a regime where the inertia of
the molecule plays no significant role.

IV. QUALITATIVE PREDICTIONS
OF THE REFORMULATED MODEL

The GDB model is a simple model and it is therefore not
expected to capture all details of the relation between the
dielectric and the shear mechanical relaxations. We have
therefore investigated which qualitative predictions the
model offers and include these in our overall test and discus-
sion of the GDB model.

A. Comparison of the dielectric and shear mechanical
losses

A detailed analysis of the model, where we have taken a
characteristic shear spectra and calculated the corresponding
dielectric signal from the GDB model while varying the con-
trolling parameter in a complete manner,28 reveals the fol-
lowing qualitative predictions regarding the shear modulus
and dielectric constant.

• The alpha loss peak of the shear modulus is found at a
higher frequency than the alpha loss peak in the dielec-
tric constant measured at the same temperature.

• The shear alpha loss peak is broader than the dielectric
alpha loss peak.

• The relative beta relaxation strength, measured as beta
relaxation strength over alpha relaxation strength, is
larger in the shear modulus than in the dielectric

constant.
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The position of the loss peaks has been analyzed mul-
tiple times in the literature �see, e.g., Refs. 6–8, 10, and
29–31�, and it is always found that the shear moduli loss
peak is positioned at a higher frequency than the loss peak of
the dielectric constant in agreement with the GDB model. In
Ref. 19 we present a comparison covering all the three pre-
dictions above �see also Ref. 9 for comparison of the shape
of the loss peaks�, and the general behaviors found are in
agreement with the GDB model prediction. Hence the model
appears to capture some of the general tendencies of the
relationship between the two relaxation processes. Especially
the shift in loss peak is a robust result which has been re-
ported several times, while to our knowledge it has not been
pointed out that this is in fact a general prediction of the
GDB model.

B. High-frequency limit of dielectric constant

The main difference between the original macroscopic
version of the GDB model �Eq. �5�� and the reformulation
which we present here �Eq. �8�� lies, as earlier pointed out, in
the high-frequency limit. From Eq. �8� it is seen that
lim�→� ����
n2 because lim�→� G�����. Thus we find
that the GDB model predicts a contribution from elastic ro-
tation to the dielectric constant. This is an important qualita-
tive difference from the original Debye model, and this pre-
diction cannot be extracted from the macroscopic
formulation in Eq. �5� and it has not been considered in the
treatment of DiMarzio and Bishop nor by those who cite
them.

It is not as simple as it might seem to test directly
whether ��
n2, and hence difficult to verify the existence of
the predicted elastic contribution to the dielectric constant.
The first obstacle is that it is rare to find refraction index data
at low temperatures. This problem could be overcome if ex-
pansivity data were available in the relevant temperature
range.

The second problem is to perform dielectric measure-
ments with high absolute precision. This is difficult because
the degree to which the measuring capacitor is filled with
sample, f�T�, and the distance between the capacitor plates
d�T� need to be known very exactly. These quantities are
both temperature dependent and not trivial to control or
monitor during the experiment, due to the thermal expansion/
contraction of the sample. The consequence is that the mea-
sured capacitance will be given by

C��,T� = f�T�
A���,T��0

d�T�
+ �1 − f�T��

A�0

d�T�
, �9�

this is divided by a temperature-independent capacitance of
the empty cell, C0=A�0 /d0, to obtain the measured dielectric
constant,

�m��,T� =
C��,T�

C0

=
d0 f�T����,T� +

d0 �1 − f�T�� . �10�

d�T� d�T�
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Hence �m�� ,T�=��� ,T� will only be true in the ideal situa-
tion where d�T�=d0 and f�T�=1.

An alternative to direct verification of n2��� is to study
the temperature dependence of the high-frequency value of
the dielectric constant. In doing so we include considerations
on how the change of sample geometry due to thermal ef-
fects influences the absolute value of the dielectric constant
which is actually measured.

The high-frequency limit of the GDB model is in the
Maxwell approximation32 given by

�� − 1 =
N

�0
��i +

�2

3kBT�1 + �4�r3/kBT�G��� . �11�

Combining this expression with Eq. �10�, and assuming that
�i is temperature independent, gives the following changes
in the measured high-frequency limit of the dielectric con-
stant as the temperature increases.

�1� Model predictions

�a� Effect giving increasing ��

�i� G� decreases

�b� Effects giving decreasing ��

�i� N decreases due to thermal expansion
�ii� T increases

�2� Experimental problems

�a� Effect giving increasing ��,m

�i� Liquid expands in the direction parallel to the
plates, leading to an increase in the degree of
filling of the capacitor f�T�.

�b� Effects giving decreasing ��,m

�i� Liquid expands in the direction perpendicular to
the plates, leading to an increase in the spacing
of the capacitor d�T�.

There are two effects giving an increase in the measured
high-frequency dielectric constant, an expansion which leads
to increased filling of the capacitor and an increasing elastic
contribution. It is easily shown that the effect of the in-
creased filling of the capacitor is counterbalanced by the ef-
fect from the decreased dipole density in the extreme case
where the expansion only leads to a change in f�T� while
d�T� is constant �exploiting that the total number of dipoles
is constant�. This means that an increase in the measured ��,m

cannot be due to geometrical effects but has to be due to an
increase in the microscopic high-frequency polarizability
corresponding to the increase in the elastic contribution.

In Fig. 1 the measured high-frequency dielectric con-
stant, ��,m, is shown for three liquids with increasing dielec-
tric relaxation strength �data from Ref. 19�. We see a de-
crease in ��,m with rising temperature in the case of
triphenylethylene �TPE� and tetramethyltetraphenyltrisi-
loxane �DC704�, which are both liquids with small dielectric
strength. Our interpretation of the results is that the primary

expansion is an isoarea expansion giving an increasing
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distance between the capacitor plates, d�T�, while f�T�
is constant. This thermal expansion will give a decrease in
the measured high-frequency value, ��,m. It is reasonable to
assume ���T�n2�T� in the case of TPE where the dielectric
strength is very small. Combining this with the assumption
of an isoarea expansion leads to the result that
d��,m /dT=−�, where � is the thermal-expansion coefficient.
The value found for TPE is d��,m /dT=−1.4�10−3 K−1,
which corresponds well to the � values normally found for
viscous liquids close to Tg, thus supporting the interpretation
of isoarea expansion.

The ��,m of polyphenyl ether �PPE� which has an order
of magnitude larger dielectric strength than DC704 shows an
increase with temperature. This means that the microscopic
high-frequency polarizability increases with temperature.
The effect dominates over the effect of expansion because
PPE has a larger dielectric strength.

It is impossible to calculate if the actual �� has a T
dependence corresponding to that of G� because of the large
uncertainties on n as well as f�T� and d�T�. It is, however,
clear that the increase in ��,m as a function of temperature
which is seen in the PPE data must be due to a high-
frequency rotational reorientation of the permanent dipoles,
meaning that ��
n2 such as it is predicted from the GBD
model.

V. QUANTITATIVE TEST

The GDB model has been tested and used a number of
times �see, e.g., Refs. 10, 12, 13, and 31�, but all these tests
are performed in different ways, and it is hard to be conclu-
sive about the quality of the microscopic model. We have
therefore tested the quantitative predictions of the model on
the systematic data sets presented in Ref. 19.

The GDB model is normally tested in a dielectric con-
stant formulation �like Eq. �8�� making the molecular radius
r the controlling parameter. r is inconvenient since it is an

FIG. 1. High-frequency limit of the measured dielectric constant �see Eq.
�10�� from three liquids; triphenylethylene �TPE�, tetramethyltetra-
phenyltrisiloxane �DC704�, and polyphenyl ether �PPE�. � is the dielectric
relaxation strength �difference between zero-frequency limit and high-
frequency plateau�, Tg is the glass temperature, and �g is the high-frequency
limit of the dielectric constant at the glass temperature. These results are
based on the data presented in Ref. 19, where full information on experi-
mental techniques can be found.
unaccessible microscopic parameter, and the interpretation
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can be disputed as real molecules are not spheres. The inter-
pretation of r is, in particular, ambiguous in the case of poly-
mers where the size of the relaxing entity is not a priori
known. In order to test the GDB model on the relaxation
spectra it is therefore convenient to express it in terms of the
moduli, rewriting Eq. �8� to

G��� = � kBT

4�r3��n2 + 2

�e + 2
�� �e − n2

���� − n2 − 1� . �12�

As n2 and �e are real numbers this can be formulated as

Im�G���� = A Im� 1

���� − n2� , �13�

if only the imaginary part is considered. A is a real
temperature-dependent constant given as A= �kBT /4�r3�
��n2+2���e−n2� / ��e+2�.

Whereas Eqs. �5� and �8� differ because they are based
on different physical assumptions, there is no difference in
the physical content of Eqs. �8� and �13�. It is just a matter of
which quantity is isolated in the equation. This, however,
does not mean that one equation can be used just as well as
the other. Equation �13� is much better suited for experimen-
tal tests of the model, because the shape and position of the
calculated shear mechanical loss peak depend only on the
macroscopic physical quantity n2. This means that a
parameter-free test of the GDB model is possible by com-
paring the loss peak shape and position of the left- and right-
hand sides of Eq. �13�, and that this is possible even if the
high-frequency and low-frequency limiting values are not
known from the experiment.

As discussed earlier, the absolute errors of ���� are
large, and n2 is not commonly available at the relevant tem-
peratures. These uncertainties can be formulated in terms of
the value of n which is to be used in testing the model, hence
replacing n in Eq. �13� with a parameter ñ. Following the
line of thought in Sec. IV B it can easily be shown that a
lower bound on ñ2 is the actual n2 at room temperature,
Troom, and that an upper bound is the measured high-
frequency value of the dielectric constant; that is n2�Troom�
� ñ2�T�����T� for T�Troom. We have for each sample de-
termined ñ2 at a temperature where both high- and low-
frequency ends of dielectric and shear responses were
reached by the measurement by using the value of ñ2 within
these constraints, which gives the best fit between the mea-
sured and calculated shear moduli. The temperature depen-
dence of ñ2 was subsequently estimated assuming isoarea
expansion, in order to test the model at all temperatures. The
consequence is that the test of the model is not parameter
free as it could ideally be according to Eq. �13�. However,
there is just one parameter, and the physical values of this
parameter are firmly restricted because it is a parameter that
refers directly to macroscopic properties of the liquid.

The absolute size of the interval which is permitted for
n2 by the procedure described above is of the same order of
magnitude for all liquids �all having room temperature ñ2
and high-frequency value in a rather narrow interval�. This
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leads to a larger relative uncertainty �compared with the di-
electric strength� in the case of liquids with little dielectric
strength.

In Fig. 2 tests on two liquids without a visible beta re-
laxation are shown. DC704 has a small dielectric relaxation
strength, the difference between zero-frequency limit, and
high-frequency plateau is approximately 0.2, PPE has a
rather large dielectric relaxation strength of approximately
1.5. It can be seen that the model predictions agree fairly
well for DC704, but that in the case of PPE the model pre-
dicts a loss peak frequency which is approximately one de-
cade too high. The loss peak predicted by the model is more-
over too wide as compared with the actual shear mechanical
loss peak.

In Fig. 3 a test of the model on tripropylene glycol
�TPG�, which shows a pronounced beta relaxation, is shown.
The model has the same flaws as in the case of PPE and it
furthermore overestimates the beta relaxation strongly.

The same procedure of testing the GDB model was per-
formed on TPE, squalane, polybutadiene, and
decahydroisoquinoline.28 The general picture is as illustrated

FIG. 2. Test of the GDB model on tetramethyltetraphenyltrisiloxane
�DC704� �a� and polyphenyl ether �PPE� �b�, data �solid line� are from the
datasets presented in Ref. 19 where all experimental details also exists.
Predicted shear modulus �solid dotted line� is calculated from the dielectric
constant using Eq. �12�, refraction index is chosen as described in the text,
and the constant A in Eq. �13� is chosen to make the level of the loss peaks
agree, thus focusing on the position and shape of the loss peak. DC704:
Temperatures are 215.4, 219.5, 223.5, 227.6, and 231.6 K with ñ2 chosen as
2.5073, 2.5024, 2.4976, 2.4927, and 2.4879. PPE: Temperatures are 248.0,
256.0, and 264.0 K with ñ2 chosen as 2.71, 2.70, and 2.69.
above. The beta relaxation is never well described by the
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model, while the alpha relaxation is reasonably well de-
scribed when the dielectric relaxation strength is small but
not when it is large.

The correlation between the size of the dielectric
strength and the lack of the model predictions leads to the
suspicion that the discrepancies could be due to the inad-
equateness of the Lorentz field used as the local fields. The
consequence of using a different local field has been tested
by Diaz-Calleja et al.31 and Diaz-Calleja and Riande33 who
compare the original version of the GDB model with a ver-
sion modified by using the frequency-dependent Onsager-
type field34 of Fatuzzo and Mason16 and find that the effect is
small. We have also studied the effect of using different
fields28 and find that the choice has virtually no effect in the
case of liquids with small dielectric strength and small effect
in the case of liquids with large dielectric strength. The result
in the latter case depends on how the fitting parameters are
chosen; the difference between the fields is only seen if the
controlling fitting parameter is kept fixed while changing
field, whereas no difference is found in the model’s ability to
fit the data if different, yet physically reasonable values are
used for the parameter along with the Maxwell, the Lorentz,
Onsager, or Fatuzzo-Mason fields, respectively.

Another consideration is that if field effects, referred to
in Refs. 31 and 33 as dielectric friction, were of major im-
portance then we should expect that the dielectric relaxation
itself would have different shape depending on the dielectric
strength. However, such a relation does not seem to be
present.19

The conclusion drawn from the above is that it is the
microscopic model itself that fails to describe the relaxation
for the liquids with large dielectric strength.

VI. MODULUS VERSUS SUSCEPTIBILITY

The GDB model is rather coarse grained and it could be
argued that a model-free comparison between the dielectric
and the shear mechanical signals could be as useful. How-
ever, “model-free” is not as trivial as it might sound, since
there are always choices to be made. It is often argued that
moduli should be compared with moduli when comparing
different types of relaxation processes,1,35,36 and the dielec-

FIG. 3. Test of the GDB model on tripropylene glycol �TPG�, details as in
Fig. 2. Temperatures are 192.0 and 200.0 K, with ñ2=2.1.
tric modulus M���=1/���� is often compared with the
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shear mechanical modulus. The major, and generally ig-
nored, problem with this quantity is that the induced polar-
ization interferes with the rotational polarization in a non-
trivial manner.

We define the rotational contribution to the dielectric
constant, �r���, by the total dielectric constant minus the
squared refraction index, meaning,

���� = n2 + �r��� . �14�

Thus the loss of the modulus can be written as

M���� = −
�r����

�n2 + �r�����2 + �r����2 . �15�

The fact that n2 appears in the denominator makes it influ-
ence both the shape and the peak position of the M����
spectra. In other words, two liquids which have the same
�r��� but different n2 can have quite different dielectric
modulus. The effect of the induced polarization on the di-
electric modulus is dependent of the dielectric relaxation
strength compared with n2. There is little difference between
the shape and position in loss peak of � and 1/�, if the
dielectric relaxation strength is small. This can be seen from
the following approximation:

M����  −
1

n4�r���� given that ��r���� � n2 for all � .

�16�

In the case of a large dielectric relaxation strength the effect
of the induced polarization will be highly frequency depen-
dent because the high-frequency limit of ���� is close to n2

whereas the low-frequency limit is much greater. Hence
there is a trivial difference between the dielectric modulus
for substances with a large and small dielectric relaxation
strengths, due to an effect which hardly can be imagined to
be related to the mechanical properties of the liquid. A
model-free comparison of moduli is consequently difficult.

It is instructive seen in this context to observe that the
GDB model predicts a linear �affine� relation between the
shear modulus and the quantity 1 / �����−n2� which accord-
ing to Eq. �14� is equal to 1/�r���. This quantity can be
regarded as a rotational dielectric modulus, as it holds only
information on rotation of the molecules in the liquid while
the changes in electron distributions described by n2 have
been disentangled. It seems intuitively clear that it is the
rotational dielectric response and not the change in electron
distribution which should be compared with the shear me-
chanical response. Viewed like this the GDB model reduces
to being the simplest physically reasonable phenomenologi-
cal relation between shear and dielectric responses. The deri-
vation of the model moreover offers a simple interpretation
of the relation between the two responses.

VII. DISCUSSION

In this paper we have pointed out two rather strong
qualitative predictions from the GDB model. One is that the
shear loss peak is at a higher frequency than the dielectric
loss peak. The other is that the high-frequency dielectric con-

2
stant has a rotational contribution, meaning that ��
n . The
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first prediction is experimentally verified by our results as
well as in several previous papers. The latter prediction is
also demonstrated to hold in the one case where it was pos-
sible to test.

Moreover, the GDB model predicts that the shear spectra
are broader and that the beta relaxation, if present, is more
pronounced in the shear spectra. These predictions are less
investigated, however, the results we report in Ref. 19 are
largely in agreement with these predictions.

The result of the detailed testing of the GDB model in
the reformulated consistent formulation, does, however,
show that the GDB model power as quantitatively predictive
is very questionable. The overall discrepancies could be due
to the inadequateness of the Lorentz field used as the local
fields. The effect from changing the local field is, however,
minor,28,31 and a change of field cannot correct the rather
large differences that are seen between the model and experi-
ments.

The difference between the predicted and measured beta
relaxation is one of the very pronounced discrepancies �as
shown in Fig. 3�. It has been speculated that the model might
not work for beta relaxation12 but in the derivation of the
model nothing suggests this. Thus the model has to be red-
erived with some modification if such a separation between
the two relaxation processes is stipulated.

It is observed that the GDB model gives better results in
the case of liquids with small dielectric constant. It could be
speculated that the larger relative uncertainties on the value
used for ñ2 in the case of the liquids with a small dielectric
strength could be the reason for the model’s reasonable pre-
dictions. However, it could also be argued that the model
might work better for substances with a small dipole mo-
ment, as the assumption of noninteracting dipoles should be
more appropriate in this case. It is an important issue to
clarify if the model in fact gives reasonable quantitative re-
sults in the case of small dielectric strength, further dielectric
measurement with little absolute uncertainties, and direct
measurement of n2 are therefore needed.

It is clear that the GDB model is an oversimplified
model, three of the major simplifications being that �i� con-
tinuum hydrodynamics is used to describe the interaction
between a molecule and its surroundings, �ii� the dipoles are
assumed to be noninteracting, and �iii� the molecules are
described by spheres even though we know that they often
differ largely from being spherical. It is therefore not surpris-
ing that the model seems to be only qualitatively correct and
it has also been suggested earlier that the GDB model could
be considered as qualitatively correct while quantitatively
inadequate.12 It should, however, be stressed that this conclu-
sion was drawn on a totally different background than the
one presented here. The earlier assertion were made on the
basis of tests of the model where the radius of the relaxing
entity, r, was used to fit Eq. �5� to the dielectric data. In Zorn
et al.12 such fits were performed on a series of different po-
lybutadienes, and the r’s found in the fits reflected the ex-
pected difference in the size of the segmental dipole, even
though the fits were not excellent. This was interpreted as a
qualitative but not quantitative agreement between the GDB

model and data.
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The result of Zorn et al.12 has been used in Ref. 13 to
anticipate that the GDB model could be used for predicting
the size of the dipole responsible for the alpha relaxation,
and a similar approach is applied in Ref. 33. In our test of the
GDB model we use the macroscopic parameter ñ as fitting
parameter, and restrict the fit to the imaginary part of Eq.
�12�. If the real parts are included in the fit or if a measured
value of one of the parameters �e.g., �e� is used then it is
possible to estimate the molecular radius �r� from the param-
eters A and n2. We find that with our fits the order of mag-
nitude of r is 1 Å. This value is consistent with values found
previously by using r as fitting parameter,13,33 but it is too
small to be a physically reasonable size for the relaxing en-
tities. In addition to the fact that the order of magnitude of r
appears too small, our analysis suggests that it is probably
unreasonable to make even semiquantitative assertions re-
garding the size of r based on the GDB model. Acceptable
fits using Eq. �13� �not shown� can be obtained for PPE and
for the alpha relaxation of TPG if all values of ñ2 are per-
mitted. This gives ñ2=1.95 in the case of PPE where
n�Troom�2=2.66 and ñ2=−1 �!!� in the case of TPG. A nega-
tive value of ñ2 as the one found for TPG is without any
physical meaning as the absolute lower limit corresponding
to the vacuum is ñ2=1, and the value found for PPE is also
clearly outside the physical reasonable range. The fits could
of course equally well be done in a susceptibility picture
using r as the fitting parameter. It is clear that an r value
which corresponds to an ñ2 value which is highly unphysical,
cannot be expected in itself to hold any physical information.
It is therefore highly questionable that the GDB model
should be useful for predicting radii of dipoles.

Instead of trying to derive quantitative results �such as
the molecular radius� from the model, the GDB model
should rather be seen as the simplest physical picture of how
the shear mechanical and the dielectric relaxations are re-
lated. The GDB model moreover lends itself as being the
closest possible to a phenomenological comparison between
the shear relaxations and the dielectric relaxations as neither
a direct comparison between G and � nor a comparison be-
tween G and M can by physically justified.

VIII. CONCLUSION

The GDB model has been reformulated and tested on a
unique set of shear and dielectric data and it is concluded
that the quantitative agreement between the model and mea-
surements are moderate to poor. It is moreover argued that it
is unlikely that the GDB model can be used for predicting
molecular radii as suggested in earlier papers.

The GDB model does, however, predict a number of
qualitative relations between shear and dielectric relaxation
spectra, suggesting that the physical picture suggested by
the GDB model, though simplified, might not be completely
erroneous.

Rewriting the GDB model in terms of moduli gives an
affine linear relation between the rotational dielectric modu-
lus and the shear modulus. This relation can be regarded as a
phenomenological relation between dielectric and shear re-
sponses and could very well prove useful as neither a direct
Downloaded 21 Dec 2005 to 130.226.56.2. Redistribution subject to 
comparison between dielectric constant and shear moduli nor
a comparison between the conventional dielectric modulus
and shear modulus seems physically justified.
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