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Abstract

The goal of this thesis is to elucidate whether a relation can be estab-
lished between shear mechanical and dielectric relaxation in glass
forming liquids. The starting point is a generalized Debye model,
which has been proposed by Dimarzio & Bishop (1974).

The DiMarzio-Bishop model is thoroughly analyzed and reformu-
lated in such a way that different unphysical simplifications that
have been used earlier, are avoided. New testable qualitative pre-
dictions of the DiMarzio-Bishop model are formulated and the
model is put in a form where quantitative tests can be made by
using only one macroscopic parameter.

The DiMarzio-Bishop model is tested by extensive dielectric and
shear mechanical measurements on various molecular liquids. The
shear mechanical measurements are performed using a transducer
that has been developed at IMFUFA by Christensen & Olsen (1995).
This transducer allows measurements to be made in an exception-
ally large frequency range (1mHz-50kHz). The systematic errors
and uncertainties of the two measuring methods are analyzed in
detail. Furthermore these errors and uncertainties are taken into ac-
count in the reformulation and tests of the DiMarzio-Bishop model.

It is found that the DiMarzio-Bishop model to a large extend has
qualitative agreement with our data and data from the literature,
whereas the quantitative agreement is moderate or poor depend-
ing on the liquid tested. This suggests that the model is too coarse
grained to capture details of the relaxation processes, but that it
does in fact capture the fundamentals of the physics involved, and
consequently that there is a direct relation between shear mechani-
cal relaxation and dielectric relaxation.

Front cover illustration: Photograph of the multilayered capacitor used for
dielectric measurements, the piezoelectric shear modulus gauge, and a daisy
(scale 1:1).



Preface

This text is a slightly revised version of our master thesis in physics. The work reported
has been carried out under the supervision of Niels Boye Olsen in the passed year. It
is an experimental project and the measurements have been performed in the student
laboratory at the old IMFUFA.

During our work we have been met with much goodwill and have received invaluable
help and support from many sides.

We thank the glass research group at IMFUFA for the interest they have taken in our
work and for giving us the great opportunities of participating in the “III Workshop
on Non Equilibrium Phenomena in Supercooled Fluids, Glasses and Amorphous Ma-
terials” in Pisa, and to speak at the “Viscous Liquids and the Glass Transition (III)”,
workshop at Sømine Stationen.

Niels L. Ellegaard, Claus F. Behrens, Eva Uhre, Rasmus Godiksens, and Esben Thor-
mann are thanked for the discussions and the helpful inputs.

The cumbersome task of proof reading has been shared by Marianne Niss, Ulrik
Stervbo-Kristensen, Christian Johannessen, and Maj M. Rydbjerg, whom we all thank
for their effort.

We thank Thomas H. Aagaard and Fritz Duus (Chemistry department, RUC) for find-
ing, and allowing us to use, the PZO RL3 refractometer.

We are indebted to the technical staff at IMFUFA, Oda Brandstrup, David B. Andersen,
Michael Jensen, Ib Høst Pedersen, Torben S. Rasmussen, and Ebbe H. Larsen, for the
practical services that made the experimental part of our project possible, and for help-
ing out with multiple unexpected problems ranging from short circuits in the cryostat
to the cooling water flood in our lab.

A special thank to Ranko Richert (Arizona State University) for providing high quality
dielectric squalane data.

Jeppe C. Dyre (IMFUFA) is thanked, as much for his critical attitude, as for his strong
support.

We are grateful to Tage Christensen (IMFUFA) for all the times he has spent 15 minutes
(read: entire afternoons) helping us, especially in the laboratory and understanding the
details of the PSG.

Last and most of all we wish to thank Niels Boye Olsen for being a qualified and com-
mitted supervisor and for sharing his knowledge from a lifetime in the lab with us.

Kristine Niss and Bo Jakobsen
October 2003

iii



iv



Dansk Resumé

I dette speciale arbejder vi med dielektrisk og shearmekanisk relaksation i seje væsker1.

Det er karakteristisk for seje væsker, at temperaturafhængigheden af viskositeten hyp-
pigt er ikke-Arrhenius, og at relaksationsprocesserne er ikke-Debye2. Disse to forhold
er ikke forstået og udgør således de to mest grundlæggende spørgsmål for forskningen
i seje væsker.

Baggrund og mål for vores arbejde

Udgangspunktet for dette projekt er en udbredt formodning om, at der eksisterer en
sammenhæng mellem væskers shearmekaniske egenskaber og deres dielektriske op-
førsel. Denne hypotese er interessant, fordi en klarlægning af en sådan sammenhæng
oplagt vil bidrage til den overordnede forståelse af dynamikken i seje væsker.

Ideen om en sammenhæng mellem shearmekaniske egenskaber og dielektrisk relaksa-
tion går tilbage til Debye [1929]. Debye var inspireret af Einsteins arbejde med trans-
lationel diffusion, og beskrev det rotationelle bidrag til dielektricitetskonstanten ved at
betragte den enkelte dipol som en kugle, der roterer i et viskøst medie. Debyes model
forudsiger Debye-relaksation, og holder derfor generelt ikke for seje væsker.

Vores mål med dette arbejde er at bidrage til forståelsen af den mulige sammenhæng
mellem dielektrisk og shearmekanisk relaksation. Vores arbejde er bygget på en gene-
ralisering af Debyes model, som er blevet foreslået af Dimarzio & Bishop [1974]. I mod-
sætning til den oprindelige Debye-model, tager DiMarzio-Bishop-modellen væskens
viskoelastiske egenskaber i betragtning.

Eksperimentel test af sammenhængen mellem shearmodul og dielektricitetskonstant

Undersøgelser af sammehænge mellem to responsfunktioner stiller meget store krav til
målingerne, da man skal være sikker på, at de to typer målinger er sammenlignelige.
Dermed skal forstås, at det skal sikres, at det undersøgte stof er kemisk stabilt, samt
at de eksperimentelle omstændigheder er de samme. Det er desuden svært at foretage
mekaniske målinger på meget viskøse stoffer, da stivheden af stofferne bliver sammen-
lignelige med typiske stivheder i måleudstyret. Disse forhold gør, at mængden af til-
gængelige data, som tillader direkte sammenligning mellem dielektricitetskonstant og
shearmodul, er meget begrænsede. Det har derfor været vores ambition at producere
grundige målinger på en række stoffer med forskellige egenskaber.

1Med seje væsker forstår vi væsker med viskositeter i størrelsesordenen 104 − 1012Pa s, svarerende til
relaksationstider på ca. 10−6 − 103s.

2Hvis viskositetens temperaturafhængighed går som e
E

kB T kaldes den Arrhenius. Debye-relaksation bety-
der, at væsken relakserer mod ligevægt på en simpel eksponentiel måde.
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Vi har foretaget målinger på syv forskellige stoffer, som har varierende dielektrisk relak-
sationsstyrke og relaksationsegenskaber. Stofferne er udvalgt ud fra et ønske om både
at undesøge stoffer med og uden en eksperimentelt tilgængelig beta-relaksation3. Vi
har begrænset os til at arbejde med væsker i ligevægt4, samt begrænset os til lineære
eksperimenter.

Alle målinger er udført på IMFUFAs studenteropstilling som tillader kapacitansmålin-
ger med høj pressision og god temperaturkontrol. De dielektrisk målinger er foretaget
med en pladekondensator, og dækker frekvensintervallet 1mHz − 1MHz.

Vi har anvendt den såkaldte “piezoelectric shear modulus gauge”, PSG, til shear-
målingerne. Denne transducer, som er udviklet på IMFUFA (se Christensen & Olsen
[1995]), gør det muligt at finde shearmodulet ud fra kapacitetsmålinger. Metoden dæk-
ker et frekvens- og shearmodulinterval, der er exceptionelt stort (1mHz − 50kHz og
0.1MPa − 10GPa).

I forbindelse med sammenligningen af de to forskellige typer data, er det centralt at
have styr på de indgående fejl og usikkerheder. Derfor analyserer og beskriver vi disse
fejl og usikkerheder grundigt.

Resultater

Vi reformulerer den makroskopiske version af DiMarzio-Bishop modellen, hvorved
højfrekvensopførslen behandles fysisk korrekt og tidligere ufysiske forsimplinger und-
gås. Det bemærkes blandt andet, at højfrekvens-plateauværdien af dielektricitetskon-
stanten dels er styret af den atomare polarisabilitet og dels af et rotationelt elastisk bi-
drag.

Gennem en analyse af temperaturafhængigheden af netop højfrekvens-plateauværdien
i de dielektriske målinger, viser vi, at en stigning af denne værdi med temperaturen
betyder, at der eksisterer et elastisk bidrag til dielektricitetskonstanten. Et fald i den die-
lektriske højfrekvens-plateauværdi ved temperaturstigning er derimod ikke et bevis for,
at et sådant elastisk bidrag ikke findes. Eksperimentelt ser vi en stigning i højfrekvens-
dielektricitetskonstanten, og dermed et sikkert tegn på et elastisk bidrag, i ét af de un-
dersøgte stoffer.

Ved en analyse af DiMarzio-Bishop-modellen finder vi, at den forudsiger at maksimum
i tabet ligger ved en højere frekvens for shearmodulet end for dielektricitetskonstanten,
samt at relaksationskurven for shearmekanikken er bredere end for dielektricitetskon-
stanten. Vi har for alle de undersøgte stoffer fundet, at forudsigelsen om forskellen i
position af maksimum i tabet er som modellen forudsiger, hvilket også er, hvad der
rapporteres i litteraturen. Når formen på tabskurverne sammenlignes ses den forud-
sete forskel i de fleste tilfælde. Forskellen er dog ikke nær så udtalt som forudsagt af
DiMarzio-Bishop modellen.

Vi formulerer desuden en simpel én-parameter-version af DiMarzio-Bishop-modellen
med henblik på kvantitativ test af denne. Formuleringen er meget anvendelig, fordi

3Beta-relaksation er en sekundær relaksation som ses ved højere frekvenser end den primære relaksation.
4Almindeligvis undersøges underafkølede molekylære væsker, men andre væsker med stor viskositet un-

dersøges også. I denne sammenhæng er det således ikke afgørende om væsken er i en metastabil ligevægt
eller en ægte termodynamisk ligevægt, og vi henviser derfor til væskens tilstanden som “ligevægt” i begge
situationer. At vi begrænser os til ligevægtsvæsker skal derfor ses som i modsætning til at undersøge væsker
i glas tilstanden.
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den er robust over for absolutte fejl i målingerne, og fordi parameteren er direkte rela-
teret til makroskopiske målbare størrelser. De fysisk rimelige værdier for parameteren
er således nedadtil begrænset af kvadratet på brydningsindekset og opad begrænset af
det målte højfrekvensplateau for dielektricitetskonstanten.

Vi finder at DiMarzio-Bishop modellen giver rimelige kvantitative forudsigelser for
stoffer med lille dielektrisk styrke og ingen beta-relaksation. Derimod er model-
lens kvantitative forudsigelser for stoffer med stor styrke dårlige. Det findes desu-
den at DiMarzio-Bishop modellen i alle tilfælde giver en dårlig beskrivelse af beta-
relaksationen.

Ved at analysere hvilken betydning valget af lokalfelt har for DiMarzio-Bishop model-
lens forudsigelser finder vi, at den dårlige overensstemmelse mellem modellen og data,
for stoffer med stor styrker, sandsynligvis ikke skyldes valget af lokalfelt.

Vi diskuterer om grunden til, at modellen passer for stoffer med lille styrke og ikke for
stoffer med store styrke er, at der er forskel i hvordan shearmodul og dielektricitetskon-
stant kobler i de to tilfælde. Vi foreslår, at lokal orden måske påvirker shearmodulet og
dielektricitetskonstanten på forskellige måder. Lokal orden kan have større betydning
for beta-relaksationen, da denne menes at have en lokal karakter. Tilsvarende er det let
at forestille sig, at stor dielektrisk styrke, hvilket er direkte relateret til stort dipolmo-
ment af de enkelte molekyler, kan lede til en mere udtalt lokal orden. Derved vil den
lokale orden naturligt få større betydning for stoffer med stor dielektrisk styrke. Som
alternativ til ovenstående forklaring viser vi, at det er en mulighed at DiMarzio-Bishop
modellen kun passer godt for stofferne med lille styrke, fordi vi her har løsere bånd på
den styrende parameter.

Opsummering

Overenstemmelsen mellem DiMarzio-Bishop modellens kvantitative forudsigelser og
virkeligheden svinger mellem rimelig og dårlig. Derfor mener vi ikke, at modellen er
anvendelig i forbindelse med kvantitative forudsigelser.

Derimod finder vi god overensstemmelse mellem de kvalitative forudsigelser fra
DiMarzio-Bishop modellen og resultaterne af vores målinger. Vi mener derfor at
DiMarzio-Bishop modellen indfanger den grundlæggende fysik i dielektrisk relaksa-
tion, hvilket dermed understøtter at shearmekanisk relaksation og dielektrisk relaksa-
tion er tæt forbundet.



List of commonly used symbols

〈·〉 Ensemble average
·′ Real part of complex number
·′′ Imaginary part of complex number
T Temperature
Tg The glass temperature
lp As subscript indicates that the function should be evaluated at the loss

peak frequency
ω Angular frequency
ν Frequency
ωlp Loss peak (angular) frequency
νlp Loss peak frequency
G, G(ω) Complex frequency dependent shear modulus
G∞ High frequency plateau value of shear modulus
η, η(ω) Complex frequency dependent viscosity
η0 Frequency independent viscosity, equilibrium viscosity
τ Some relaxation time
τM Maxwell time
ε, ε(ω) Complex frequency dependent dielectric constant
χ, χ(ω) Complex frequency dependent dielectric susceptibility
αi Molecular induced polarization coefficient
εi Molecular induced dielectric constant
εe Equilibrium (low frequency limit of) dielectric constant
εh High frequency plateau of dielectric constant
a Elastic contribution to the dielectric constant; a = (εh −εi)/(εe −εi)
ε0 Vacuum permittivity
αr, αr(ω) Complex frequency dependent rotational polarization coefficient
ζ , ζ(ω) Complex frequency dependent friction coefficient
ζ0 Frequency independent frictions coefficient
Em Macroscopic field
Ed Local average directing field
Ei Local average inducing field
EL Lorentz field
µ Dipole moment
µ(t) A memory function
r Radius of rotating sphere in Debye and DiMarzio-Bishop model
N Dipoles per volume
θ Angel between field direction and dipole
K1, K2, K3 Parameters in our formulation of the DiMarzio-Bishop model (see sec-

tion 4.7.2)

The figure illustrates our definitions of the differ-
ent dielectric quantities. ∆ε is the dielectric relaxa-
tion strength, we often refer to it as “the dielectric
strength” or merely “the strength”. εi is the part of
the dielectric constant which is due to induced po-
larization of the molecules (see section 3.2.1). �
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1 Introduction

Glass forming liquids have a diverse phenomenology, which has been investigated over
a large range of temperatures and frequencies. Dielectric spectroscopy data are the most
abundant, because dielectric measurements are easy to perform with high accuracy over
a large frequency span. It is therefore of great interest to understand what microscopic
processes are actually probed via the macroscopic dielectric constant.

The results of dielectric measurements are often compared to the shear mechanical be-
havior of the liquid either via the Debye-Stoke-Einstein (DSE) time, or by direct com-
parisons of the shear relaxation and the dielectric relaxation. This is done because it
is a common conjecture that dielectric relaxation is somehow connected to the shear
meachanical properties of the liquid. The believe in such a connection can at least be
dated back to Debye [1929]. In the Debye model the rotation of a dipole in a liquid is
governed by the viscosity of the surroundings, in analogy with the result of Einstein
on translational diffusion. However, the Debye model does not generally hold for glass
forming liquids because it predicts too simple and too narrow a relaxation.

Motivation and goal

A better qualitative understanding of the possible connection between the two relaxa-
tions would contribute to achieving an overall consistent picture of the relaxation pro-
cesses in glass forming liquids. Especially because it would qualify the interpretation of
dielectric data.

Models of glass forming liquids often relate to the mechanical properties of the liquid.
The question of the glass forming itself is normally connected to an increase in shear
viscosity, but the frequency dependent shear modulus is also considered a fundamental
property. An example of this is the shoving model, which has been developed at IM-
FUFA. This model connects the high frequency plateau value of the shear modulus to
the viscosity [Dyre et al., 1996]. However, it is often difficult to obtain reliable shear
data especially at high frequencies, which complicates direct tests of the shoving model.
Therefore reliable estimates of shear behavior based on dielectric measurements could
play an important role in testing the shoving model and other models involving shear
behavior.

Our aim is to contribute to the understanding of the possible connection between the
shear mechanical relaxation and the dielectric relaxation, both qualitatively and quant-
itatively. The studies, we perform, are largely based on the simple model of Dimarzio &
Bishop [1974], which is a generalized version of the original Debye model. Our object-
ives can be summarized by the following two questions.

• Does the DiMarzio-Bishop model capture the underlying physics of dielectric re-
laxation in glass forming liquids?

1



2 Introduction

• Does the DiMarzio-Bishop model provide a method for estimating shear relaxa-
tion spectra from dielectric relaxation spectra?

We believe that a model-based approach is desirable since it provides testable predic-
tions. Without a model it is impossible to evaluate which correlations that could be
expected between the two relaxation processes. However, the drawback of studying
a model is that it limits the conclusions that can be drawn. Hence, if the model gives
poor results it is of course still possible that a connection between shear relaxation and
dielectric relaxation can be found by another approach.

Method

In order to test the DiMarzio-Bishop model we have to analyze it in great detail, and
we restate it in appropriate formulations that enable simple quantitative and qualitat-
ive predictions. One of our main objectives, is to include a systematic treatment of the
significance of the local fields used in the macroscopic formulation. Besides these ana-
lyses it is of course necessary to test the predictions of the model against data, in order
to answer the questions we have posed.

The viscosity spans many order of magnitude in the relevant temperature regime, lead-
ing to very high demands on the measurement equipment used for mechanical spec-
troscopy. Thus, to span the full dynamical range several techniques have to be used.
[Etienne et al., 2003]

At high viscosity near the glass temperature, problems using a conventional rheometer
emerge, as deformation of the rheometer has to be taken into account [Christensen &
Olsen, 1995]. Due to these problems the amount of shear mechanical data are limited,
and the amount of shear mechanical and dielectric measurements taken on samples
from the same batch and in the same lab, ensuring comparable conditions for the meas-
urements are even further limited. It is therefore a main ambition to produce reliable
dielectric and shear mechanical data from liquids with a varied phenomenology.

Comparing measurements from two different methods put great demands on the pre-
cision, as absolute errors and temperature independent errors, which are sometimes
ignored, can influence the conclusions. Therefore, we have performed a study of the
errors and uncertainties on our data and have taken care not to draw conclusions which
could be altered by these.

The report

The study of glass forming liquids has been a central research area at IMFUFA for over
a decade, and it has at the same time been the object of many student projects. It is
our hope that the next group of students entering the field will profit from reading
this report as we have profitted from the earlier projects. We have thus attempted to
introduce the subjects from a starting point that more or less corresponds to the level of
understanding we had a year ago.

Chapter one has given a general introcuction to the thesis. Chapter two and three will
introduce the general questions and phenomenology of glass forming liquids, in par-
ticular shear and dielectric relaxation in glass forming liquids. The focal point of this
introduction is the issues, which are relevant for our studies.
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In chapter 4 the original derivations of the Debye model and the DiMarzio-Bishop
model are presented before a reformulation of the macroscopic version of the DiMarzio-
Bishop model is introduced. Finally, the chapter ends with an account of the approach
we use to test the DiMarzio-Bishop model experimentally.

The experimental setup and practical procedures are described in chapter 5, including
our analysis of the errors and uncertainties.

Chapters 6-11 present our data and further analysis of the DiMarzio-Bishop model,
which leads to a range of predictions that subsequently are tested. Based on these find-
ings an overall discussion of the DiMarzio-Bishop model is made in chapter 12.

In relation to our data we have looked at a few phenomenological issues, which are
central to the general discussions about glass forming liquids, and to a lesser extend to
the DiMarzio-Bishop model. These issues are presented in chapter 13.

Finally, the conclusion is presented in chapter 14.

A list of commonly used symbols is found before the table of contents, however symbols
will also be defined the first time they are used. In the report we use the standard SI
system of units. This may lead to some confusion as it is customary to use cgs units in
the literature on dielectric behavior. It is, however, easy to translate formulas from SI
units to cgs units, merely interchange ε0 with 1/(4π).
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2 Glass forming liquids; relaxation
and response

This chapter gives an introduction to those of the general results and questions from
glass physics, which are related to the specific questions we deal with. The focus is on
relaxation processes and response functions.

2.1 What is a glass?

The equilibrium value of volume (and enthalpy) of a liquid will in general decreases
with decreasing temperature. Whenever the temperature is decreased by some amount
the volume has to adjust to its new equilibrium value. This does not happen instant-
aneously1, rather the liquid equilibrates in some way over time. The characteristic time
for this process is closely related to the viscosity of the liquid, and as the viscosity grows
upon cooling so does the time required to reach equilibrium2. Due to this there will be a
temperature, Tg, at which the volume can no longer reach its equilibrium value within
the time scale of a given cooling experiment. At lower temperatures the liquid will no
longer be an equilibrium liquid but a glass. The volume of the glass is also dependent
on temperature, but this temperature dependence is weaker than that of the liquid. The
glass only contracts due to the isostructural contraction, which happens instantaneously
upon cooling3 whereas the liquid has both isostructural contraction and contraction due
to better packing of the molecules.

The change in compression rate at Tg gives rise to an abrupt change in slope on a V − T
plot. A stereotype of this plot is shown in figure 2.1. The plot also shows a re-heating
curve and it is seen that the system exhibits hysteresis, as it is typical for a system which
has been taken out of equilibrium. If the system is kept below Tg the liquid will ap-
proach equilibrium, though it happens slowly, and the volume will therefore be time
dependent.

A liquid will have a Tg corresponding to each cooling rate (lower cooling rates give
lower Tg). However, the term Tg is traditionally used about the temperature at which the
liquid falls out of equilibrium when cooled at standard experimental rates [Ediger et al.,
1996]. Alternatively Tg is sometimes defined as the temperature where the viscosity is
1012Pa s, or the temperature where the characteristic time (τ) of whatever response in
question is 100s or 1000s.

1In some sense it can be said that equilibrium is never achieved but only approached asymptoticly. Equi-
librium will however be reached within experimental resolution - making this a rather academic argument.

2The liquid will of course reach its melting point at some point, but if the cooling is fast enough crystalliza-
tion can be avoided (the liquid becomes supercooled), and the liquid behavior is continued. When a liquid is
supercooled it is in a metastable state. Through this thesis we refer to this metastable state as “the equilibrium
liquid”, when we wish to distinguish it from the glassy state.

3In practice it is not really possible to make an instantaneous jump in temperature, but the isostructural
change in volume will happen at the same time scale as the temperature change.

5
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Figure 2.1 Stereotypic V, H − T plot of cooling and re-heating of a liquid through the falling out
of equilibrium. [Angell et al., 2000]

2.2 Non-Arrhenius

There is nothing surprising in the behavior described above. The viscosity is expected
to increase with decreasing temperature, and the falling out of equilibrium is a natural
consequence of this. The puzzling part is the dramatic rate at which the viscosity and
the characteristic times increase with decreasing temperature.

The simplest model of the temperature dependence would be an activated behavior,
where the viscosity/characteristic times are controlled by some temperature independ-
ent activation energy (Ea). This would lead to an Arrhenius temperature dependence:

η = ηpe
Ea/kB T or τ = τ0e

Ea/kB T , (2.2.1)

where ηp and τ0 are the high temperature limits of the viscosity and the characteristic
time, respectively.

However, most liquids have a much stronger temperature dependence than the above –
they are non-Arrhenius. Figure 2.2 shows a classical illustration of how the temperature
dependence of time/viscosity deviates from Arrhenius.

In the past decades there has been a vast amount of work in attempt to characterize the
non-Arrhenius behavior and resolve its origin, and it has undoubtedly been one of the
main areas of research within the research field of glass forming liquids.

The temperature dependence is commonly reported in terms of the Angell fragility in-
dex , which when found from a relaxation time is given by

m =
d log10(τ)

dTg/T

∣

∣

∣

∣

Tg

(2.2.2)

[Richert & Angell, 1998].

An alternative index which has been suggested by N. B. Olsen is

γ(T) = −
d log E(T)

d log T
(2.2.3)

[Olsen, 2003][Dyre & Olsen, 2003], where E(T) the apparent activation energy, defined
by

τ(T) = τ0e
E(T)
kB T ⇔ E(T) = kBT(ln τ(T)− ln(τ0)). (2.2.4)
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Figure 2.2 Sketch of classical fragility plot (also sometimes called an Angell plot after C. A.
Angell). τ0 is the high temperature characteristic time and τg is the characteristic time at the glass
temperature. Liquids with temperature behavior close to Arrhenius are called “Strong liquids”
and liquids which deviates much from Arrhenius are called “Fragile liquids” [Richert & Angell,
1998].

The Olsen index gives the relative change in apparent activation energy as function of
relative change in temperature. This is a very convenient way of measuring fragility,
because the non-Ahrrenius behavior is often modeled in terms of the apparent activa-
tion energy. The Olsen index is 0 in the case of an Ahrrenius liquid whereas the Angell
index is (log10 (τg/τ0)). The general relation between the two is

m = log10 (τg/τ0) (1 + γ(Tg)). (2.2.5)

There has been a number of models trying to account for the temperature dependence
of the viscosity [Angell et al., 2000]. One of these is the shoving model by Dyre et al.
[1996], which connects the high frequency shear modulus G∞ to the viscosity

η = ηpe
Vc G∞ (T)

kB T , (2.2.6)

where Vc is a characteristic volume.

Our work does not directly deal with the non-Arrhenius behavior, but our discussions
will return briefly to the subject in section 13.3. The possibility of testing the shoving
model by dielectric measurements, which was mentioned in the introduction, will be
discussed in section 10.3.

2.3 The general dynamics of a liquid

The most general question we can ask regarding the dynamics of the equilibrium liquid
is of course the following: Where are all the molecules and how are they oriented as
a function of time? That is, we ask the time dependence of 6N coordinates (N being
the number of particles). But these 6N values are of course not accessible (except in
computer simulations) and moreover it is difficult, if not impossible, to interpret such
an overwhelming amount of information. It is, however, very common in glass physics
to think and argue in terms of the potential energy landscape. The energy landscape is
a hyper-surface which describes the potential energy of the system as a function of the
6N coordinates. This view of the liquid dynamics was introduced by Goldstein [1969]
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and it has been used extensively in the last decade as a tool in computer simulations
and theoretical work.

In the temperature interval we study, that is temperatures a little above Tg, it is generally
agreed that the long time dynamics are dominated by hopping between energy minima,
whereas short time dynamics can be viewed as vibrational modes determined by the
shape of the minima (see for example Schrøder et al. [2000]).

The different properties of the liquid, which can be measured will all be given by the
(unknown) time dependent values of these 6N coordinates. However, some of the prop-
erties do not depend on all 6N coordinates. The macroscopic polarization of dipolar
substance is for example independent of the position of the molecules and only de-
pendent on the orientation of the dipolar axis. Likewise, it does not probe the individual
orientation of the molecules, nor the distribution of orientations, but only the average
orientation.

Different measurements contain information on different aspects of the coordinates of
the molecules, and different types of measurements can probe quantities which are
totally different in nature as for example the volume and polarization. It is therefore
possible that different types of measurements on the liquid can give uncorrelated in-
formation on the system. We picture this by saying that different measurements probe
different projections of the liquids movement in its 6N-dimensional phase space. In ad-
dition to measurements of totally different quantities it is also possible to access prop-
erties which are closely related. The background for our work is a conjecture about the
existence of a connection between the rotation of dipoles in the liquid and the shear
mechanical properties of the liquid.

2.4 Linear response in viscous liquids

When the glass is formed as described in section 2.1 the liquid is taken far out of equilib-
rium which results in nonlinear effects. The experiments we have performed are linear
experiment on the equilibrium liquid. Before describing some of the known pheno-
menology of linear relaxation we give a brief introduction linear response theory.

In linear experiments the liquid is subjected to an input so small that the resulting
changes can be assumed to depend linearly on the input. The output response at time
t depends on the input at all times t′ before t (causality), and on how much time has
passed since the input (t − t′). The time itself is assumed to have no significance.

Such a linear response is described by

B(t) =
∫ t

−∞

µ(t − t′)h(t′)dt′ =
∫

∞

0
µ(t′)h(t − t′)dt′. (2.4.1)

with B(t) being the time dependent output and h(t) the applied input. µ(t) is called the
memory function, as it describes how the system remembers its past. The output can
of course not depend on the future. This can mathematically be expressed by setting
µ(t) = 0 for t < 0.

A convenient input is the Heaviside step input:

H(t) =

{

0 t ≤ 0

1 t > 0
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The time (domain) response function, R(t) is defined as the output of a Heaviside input:

B(t) =
∫ t

−∞

µ(t − t′) H(t′) dt′ =
∫ t

0
µ(t′)dt′ = R(t), (2.4.2)

from which it is seen that the memory function (µ) is the time derivative of the time
response function. It is also seen that R(t) = 0 for t < 0.

Again the input could be a change in temperature and the monitored response could be
the relative change in volume of the liquid, in which case the investigated quantity is
the linear expansion coefficient. Many other linear responses can be measured and even
more can be defined.

2.4.1 Fluctuation versus response

The linear response of a system is directly related to the fluctuation of the system in
equilibrium through the fluctuation dissipation theorem (FD-theorem). This is import-
ant in the interpretation of the experiments since it shows that a linear experiment in
fact probes the dynamics of the equilibrium liquid. Further it allows for direct com-
parisons to be made between linear response measurements and measurements on the
fluctuations via two time correlation functions in the equilibrium system.

Given the general description of a linear response (equation 2.4.1) the general formula-
tion of the FD-theorem states

µ(t) = −
1

kBT
d
dt

〈B(t)A(0)〉 .

A(t) has to be a physical quantity which is conjugated to the applied input h(t), which
means that A(t)h(t) is a component of the potential energy of the system. The FD-
theorem leads to an easily interpretable result when B(t) itself is conjugated to h, for
example if B is the polarization and h an electric field. In this case the time response
function R(t) corresponding to a Heavyside input is directly proportional to the mean
square variation of the quantity B(t) in equilibrium:

R(t) =
∫ t

0
µ(t′)dt′

=

(

−
1

kbT
〈B(t)B(0)〉+

1
kbT

〈B(0)B(0)〉

)

=
1
2

1
kbT

〈B(0)B(0)〉+
1
2

1
kbT

〈B(t)B(t)〉 −
1

kbT
〈B(t)B(0)〉

=
1
2

1
kbT

(〈B(0)B(0)〉 + 〈B(t)B(t)〉 − 2 〈B(t)B(0)〉)

=
1
2

1
kbT

(〈

(B(t)− B(0))2〉) (2.4.3)

The calculation above follows Doi & Edwards [1986], but is slightly expanded.

A consequence of the result is that our measurements on the dielectric constant gives
a measure of the mean square fluctuation of the polarization in the equilibrium liquid,
and the shear modulus is a measure of the mean square fluctuation of the shear stress.
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2.4.2 Time versus frequency domain

Linear response measurements can be performed by experiments in either the time do-
main or the frequency domain. All the experiments we have performed are made in
the frequency domain. The information obtained in the two situations is equivalent and
transformations can be performed to go from one to the other.

The time domain response function R(t) was defined above (see equation 2.4.2) as the
output of a Heaviside step input.

In the frequency domain an oscillating input is applied, h(t) = Re
(

h0eiωt
)

and the
frequency dependent response function R(ω) is defined by:

B(t) =
∫ t

−∞

µ(t − t′) Re
(

h0eiωt′
)

dt′ (2.4.4)

= Re
(

h0

∫

∞

0
µ(t′)eiω(t−t′)dt′

)

(2.4.5)

= Re
(

h0eiωt
∫

∞

0
µ(t′)e−iωt′dt′

)

(2.4.6)

= Re (h(t)R(ω)) . (2.4.7)

Hence the frequency dependent response function is the Laplace transformed memory
function, with iω as Laplace Frequency.

Combining the above result with the observation that the memory function is the time
derivative of the time response function, leads to the relation between the two response
functions

R(ω) =
∫

∞

0

dR(t)
dt

∣

∣

∣

∣

t=t′
e−iωt′dt′ = iω

∫

∞

0
R(t′)e−iωt′dt′. (2.4.8)

When working in the frequency domain the input and output is normally taken to be
complex valued functions h = h0eiωt and B = B0eiωt where h0 and B0 are complex
numbers describing phase and amplitude. If the actual physical output is needed the
real part of B should be used. This “complex formalism” has the advantaged that the
frequency domain response function R(ω) is given directly by

R(ω) =
B0

h0
. (2.4.9)

We will in the rest of this thesis use the complex formalism when dealing with frequency
domain experiments and response functions.

2.5 Phenomenology of relaxations in glass forming
liquids

The following is an overview of how the phenomenology of relaxations in glass form-
ing liquids is usually characterized and of the questions commonly connected to it. The
phenomenology of the relaxation process will depend on which specific relaxation is
in question, though it is possible to make some general assertions. Dielectric measure-
ments, which are probably the easiest to make, and definitely the type of data which is
the most abundant, have played a central role in the determination of these character-
istics [Lunkenheimer & Loidl, 2002]. This is, as we mentioned in the introduction, why
it is central to understand dielectric relaxation.



2.5 Phenomenology of relaxations in glass forming liquids 11

2.5.1 Non-Debye

The simplest linear relaxation experiment, at least for a gedanken experiment, is to con-
sider a Heavyside step input, and then to monitor how the output reaches a new equi-
librium behavior. The simplest possible output in this experiment is an output that in-
stantaneously reaches its equilibrium behavior. This would be found in the case where
the output behavior is independent of the history of the input. Such a behavior is gener-
ally not found in viscous liquids, because here the response does depend on the history
of the input. When the step input is applied to a liquid it is taken linearly out of equi-
librium and will subsequently relax into its new equilibrium state. If a harmonic input
is applied the response will correspondingly depend on frequency. The equilibrium be-
havior will be seen at low frequencies whereas the instantaneous contributions to the
relaxation is seen at high frequencies.

The simplest relaxation process are exponential, commonly referred to as Debye relaxa-
tion.

The following equations show two examples of such a exponential relaxations (ex-
pressed as the time and frequency response functions)

R(t) =







R0

(

1 − e−t/τ
)

t ≥ 0

0 t < 0
R(t) =







R0

(

e−t/τ
)

t ≥ 0

0 t < 0

R(ω) = R0
1

1 + iωτ
R(ω) = R0

iωτ

1 + iωτ

(2.5.1)

The left set of equations could for example describe the polarization of a substance when
an electric field is applied, while the right set of equations for example could describe
the force response to a deformation in a viscoelastic4 substance (this type of response
is illustrated in figure 2.3). The frequency dependent response functions exhibit a peak
in the imaginary part called the loss peak, because it corresponds to the maximum loss.
Both sides of the loss peak in a Debye relaxation show power law behavior, and the
slope (in a log-log plot) is 1 on the low frequency side of the peak and −1 on the high
frequency side.

A relaxation of this type is very rarely found in viscous liquids, hence the relaxation is
non-Debye. The reason for this is not understood and it is regarded as one of the main
questions in the research area of viscous liquid [Angell et al., 2000].

The relaxation spectrum is found to be broader than a Debye relaxation. This is often
described as a superposition of Debye processes or sometimes by one of the numerous
phenomenological fitting functions which are used in the area.

The most general question, concerning non-Debye relaxation in macroscopic quantities,
is whether it is due to an intrinsic non-Debye relaxation or whether it is due to hetero-
geneous dynamics. The two extreme scenarios are either a homogeneous relaxation or
a heterogeneous relaxation. In a homogeneous relaxation all the relaxation entities have
relaxations identical to the average relaxation. In a heterogeneous scenario every entity
behaves differently, and in this case it is possible that the individual relaxation is Debye.
In this case the non-Debye average relaxation stems from the fact that it is an average.
[Richert, 2002]

4A short introduction to viscoelasticity is given in the beginning of the next chapter.
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Figure 2.3 An example of relaxation functions that are Debye (corresponding to the right hand
equations in equation 2.5.1).

In the last decade there has been extensive studies, using different experimental tech-
niques and simulations, of the heterogeneity of viscous liquids. The most common con-
clusion is that the liquid is structurally homogeneous but that the dynamics is hetero-
genous. This means that different parts of the liquid move in different ways at a given
time. [Richert, 2002]

2.5.2 Time Temperature Superposition

The relaxation process is non-Debye, and the characteristic time is temperature depend-
ent. The next question is whether the nature of the relaxation process itself is tempera-
ture dependent and if so, how this temperature dependence is. The first part of the
question can be posed as a question of whether there is time temperature superposition
(TTS) or not.

TTS holds if the relaxations at different temperatures can be made to coalesce if the
frequency/time is scaled by a characteristic time scale and the relaxation is normalized
by its strength. If TTS holds then the response function, in the frequency domain, can
be written in the following way

R(ω, T) = R0(T)Rn(ωτ(T)), (2.5.2)

where Rn is a temperature independent function, which describes the shape of the re-
laxation, τ(T) is a temperature dependent time scale, and R0(T) is a temperature de-
pendent relaxation strength [Olsen et al., 2001]. It follows from this definition that all
characteristic times of the relaxation will be proportional, through temperature inde-
pendent constants, if TTS holds. This is a convenient result because it relates the easily
accessible time scales (eg. the reciprocal loss peak frequency) to other time scales, which
might be relevant for models or theory.
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If time temperature superposition holds it can be interpreted by saying that the liquid
does not “know” the difference between different temperatures; it always behaves in
the same way. It is only the speed at which things happen that change.

It is generally agreed that time temperature superposition is not universal, but that it is
sometimes obeyed. Whether it is obeyed or not should probably be tied to other proper-
ties of the liquid and the nature of the relaxation in question. [Angell et al., 2000],[Olsen
et al., 2001]

It was earlier believed that TTS was universal [Olsen et al., 2001], and this notion has
been used to construct relaxation curves over a wide time/frequency-range [Ferry,
1961]. This is of course not justified since TTS is not universal, however, TTS is
still sometimes assumed due to the lack of better ways to obtain data over a large
time/frequency-range (see for example [Ribierre et al., 2003]).

We will later use the term “TTS plot” about plots where the imaginary part of the re-
laxation function is normalized by the value at the loss peak and is plotted against a
frequency that is reduced by the loss peak frequency.

2.5.3 Beta relaxation

The Johari-Goldstein beta relaxation is a secondary relaxation, which is sometimes seen
at higher frequencies than the primary relaxation (also known as the alpha relaxation).
Its relaxation strength is usually 5 − 20% of the total relaxation, and the beta relaxa-
tion time has a much weaker temperature dependence than that of the alpha relaxation
[Olsen et al., 2000]. The beta relaxations can be seen in the equilibrium liquid as well as
in the glass (see for example Olsen [1998]).

It was originally debated whether the beta relaxation is due to intramolecular relaxa-
tion, or it is due to the same kind of relaxation process as the alpha relaxation [Gold-
stein, 1969], [Johari & Goldstein, 1970]. Today the debate is focused on wether all or
just some of the relaxing entities participate in the relaxation. Johari and Goldstein ori-
ginally proposed a picture of islands of mobility in which some parts of the liquids are
more mobile than the rest giving rise to this extra faster relaxation, (see for example Jo-
hari [1973] Johari [2002]). Another explanation, which has strong support, is that every
relaxation entity makes a small relaxation at a fast time scale corresponding to the beta
relaxation (see for example Vogel & Rössler [2001]).

It is debated whether the beta relaxation is fundamental for glass forming liquids – fun-
damental in the sense that there is always a beta relaxation. The beta relaxation can not
always be seen, but it is possible that the temperature where the alpha and beta relax-
ations merge is below Tg, making it impossible to observe a distinct beta peak in meas-
urements taken above Tg. An example supporting this view is found in Lunkenheimer
& Loidl [2002]. Here a shoulder, which could be a hidden beta, is found to appear in the
spectrum for a number of liquids when they are cooled and relaxed making the alpha
relaxation time very large.

The general introduction that has been given in this chapter is followed by definitions
and more details regarding shear and dielectric relaxation in the next chapter.
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3 Shear and dielectric relaxation

The first two sections in this chapter give definitions and basic phenomenology of shear
and dielectric relaxation, while the final section provides some of the background for
comparing the two.

3.1 Shear relaxation

This section gives a very short introduction to viscoelasticity; shear modulus, viscosity
and their generalization. The section follows the notation and presentation in Harrison
[1976] and Lautrup [1999].

3.1.1 Basic concepts

Elastic substances

The shear modulus, G, is a measure of how difficult it is to make a deformation of a
substance.

In the case of a pure shear deformation (that is a shear deformation with constant
volume) in an isotropic elastic material, the shear modulus connects the linearized strain
tensor ui j with the stress tensor σi j in the following way (there might be a constant con-
tribution to the stress tensor from pressure, but this is ignored).

σi j = 2Gui j (3.1.1)

By turning to a one dimensional case and assuming that the stress and strain are har-
monic functions of time, it is seen that:

σ = 2Gu (3.1.2)

(3.1.3)

where σ = σ0eiωt and u = u0eiωt are the relevant components of the tensors.

Viscous substances

For viscous substances the shear viscosity η plays a similar role to the shear modulus. It
connecting the linearized rate of strain tensor dui j

dt with the stress tensor. The connection
is given as (in the case of a pure shear strain, and ignoring hydrostatic pressure)

σi j = 2η
∂ui j

∂t
. (3.1.4)

Here the one dimensional harmonic situation with σ = σ0eiωt and u = u0eiωt yields

σ = 2iωηu (3.1.5)

where it is seen that stress and strain are out of phase.
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Viscoelastic substances

All the liquids we are going to investigate, show viscoelastic behavior. By this is meant
that they behave as something between a pure elastic substance and a pure viscous
substance.

The generalized complex shear modulus G∗ is defined as

G∗ =
1
2

σ

u
. (3.1.6)

It is seen that for a pure elastic substance G∗ = G, while G∗ = iωη for a pure viscous
liquid.

It is likewise possible to define a generalized viscosity

η∗ =
1
2

σ
du
dt

(3.1.7)

and it can be seen that η∗ = 1
iω G∗.

The above definitions are general, and can also be used on system with inertial effect.
However, we will always assume that we are in a frequency domain where such effects
can be neglected.

3.1.2 Phenomenology

In the viscoelastic case, G∗ generally becomes a frequency dependent complex number
G∗ = G′(ω) + iG′′(ω).

In the high frequency limit, the substance acts as a pure elastic substance, while it acts
like a pure viscous liquid in the low frequency limit:

lim
ω→0

G∗ = 0 + iωη0 (3.1.8a)

lim
ω→∞

G∗ = G∞ + 0i (3.1.8b)

where η0 is the equilibrium viscosity, and G∞ is the instantaneous shear modulus
(where ∞ should be understood as a limit where initial effects still can be neglected).

In the rest of this thesis, we will write the complex frequency dependent shear modulus
as G, and the complex frequency dependent shear viscosity as η.

The Maxwell model

The simplest model which has a behavior resembling that of a real viscoelastic liquid is
the Maxwell model. The model can be described by the electric network model1 shown
on figure 3.1.

The shear modulus of the Maxwell model is

G = G∞

iωτM

iωτM + 1
= G∞

(ωτM)2

1 + (ωτM)2 + iG∞

ωτM

1 + (ωτM)2 (3.1.9)

where τM = η0
G∞

, τM is also known as the Maxwell time. It is seen that this model has
the limiting behavior described in equation 3.1.8. It is also seen that the Maxwell model
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η0
1

G∞

Figure 3.1 Electric diagram representing the Maxwell model. A capacitor with capacitance 1/G∞

in parallel with a resistor with resistance η0.

is one of the examples of a Debye relaxation presented in equation 2.5.1 (see figure 2.3
for the typical spectrum of the Maxwell model). The Maxwell model is inadequate to
describe real shear mechanical data, since Debye relaxation is rarely seen in viscoelastic
liquids.

We will sometimes use an extended Maxwell model (see appendix B) to describe data.

3.1.3 The shear compliance

The complex frequency dependent shear compliance is defined as

J =
1
G

=
G′

G′2 + G′′2 − i
G′′

G′2 + G′′2 (3.1.10)

The imaginary part of the shear compliance has the low frequency behavior −1/ωη0.
A quantity which is related to the compliance is the retardation part of the compliance
defined as J − 1/G∞ − 1/iωη0. This quantity is sometimes claimed to exhibits a peak
in the imaginary part (for example in Schröter & Donth [2002]). However, the fitting
function commonly used for shear moduli data (see appendix B), does not imply the
existence of such a peak.

3.2 Dielectric relaxation

3.2.1 Basic concept

The dielectric constant2 ε, or equivalently the dielectric susceptibility χ, is a measure of
how polarized a substance gets when subjected to an electric field in the linear regime.
The macroscopic polarization is parallel to the electric field in the case of an isotropic
liquid, and the dielectric constant is therefore a scalar. The definitions are

P = ε0χEm, D = P +ε0Em = ε0(χ + 1)Em = ε0εEm, (3.2.1)

where P is the polarization per unit volume, Em is the applied electric field, D is the
displacement field, and ε0 is the vacuum permittivity.

An alternative representation of the liquids dielectric proporteis which is sometimes
used is the dielectric modulus

Em =
M
ε0

D thus, M =
1
ε

. (3.2.2)

1In an electric network model of a rheological system, charge is the two times the strain and voltages the
stress. The modulus of the model corresponds the shear modulus, with these definition.

2The term constant is a bit misleading, as it is not constant but a function of both temperature and fre-
quency.
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In the frequency dependent case we describe the phase difference between the field and
the polarization by the standard complex formalism, which has been introduced earlier.
We will show some standard examples of frequency dependence in section 3.2.3, but we
will first look a bit more into what it is we measure.

The polarization stems from two physical processes: Polarization of the molecules due
to a change in the electron distribution and reorientation of the permanent dipoles3. We
refer to the first process as induced molecular polarization or just induced polarization, and
we call the latter process the rotational polarization.

Induced molecular polarization

The induced molecular polarization is a quantity which is related to the single molecule,
and it gives information about how tightly bound the electrons are to nuclei. It can be
described by a proportionality between the polarization of the molecule and the local
field that acts on it. The proportionality will in general be given by a tensor, a the po-
larization will be favored in some directions, due to the geometry of the molecule. The
average induced polarization in an isotropic liquid, which has an uniform distribution
of angular directions, will however be parallel to the field. We assume that this is always
the case and this allows us to introduce that following notation

pi = αiEi (3.2.3)

where pi is the average induced polarization per molecule,αi is the induced polarization
coefficient and Ei is the average local inducing field. The average local field acting on
the dipoles in the liquid is in this context assumed to be proportional to, but not in
general equal to, the average macroscopic field (see section 3.2.2).

The induced polarization governs the refraction index. The contribution to the dielec-
tric constant from induced polarization can therefore be found if the refraction index is
known. We designate this contribution by εi, and the relation to the refraction index4 n
is simply εi = n2. What we call εi is almost everywhere termed ε∞, we prefer not to use
this notation due to the confusion it can lead to, (see the discussion elsewhere in this
report, for example section 4.3).

Rotational polarization

The rotational polarization is controlled by how easy the molecules rotate when an elec-
tric field is applied. In a gas the molecules are free to move and the rotational polariz-
ation will be given by a Boltzmann distribution. In a liquid the rotation will be limited
due to the interaction with the surroundings, and it is possible that it is the macroscopic
mechanical properties of the liquid, which control the rotation of the dipoles. It is the
possible connection between the shear modulus and the rotational polarization which
we seek to study in our work.

A major problem with studying the rotational polarization is that it is difficult to access
directly by experiments. The modeled quantity is the average polarization due to the

3If the substance in question is not totally non-polar.
4The induced polarization can also include a contribution from atomic stretching, that is polarization due

to changed position of the atoms within the molecule. Such a contribution will not be seen in a refraction
experiment, because the inertia of the atoms will inhibit the streching at high frequencies. This means that n2

really is a lower bound for εi . Normally the contribution from atomic stretching is small, that is εi ≈ 1.05n2

[Böttcher, 1973].
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orientation of the molecules. It is often modeled by a proportionality to an average local
directing field, Ed, in which case the rotational polarization coefficient αr can be defined

〈µ〉 = αrEd, (3.2.4)

where µ is the permanent dipole moment of a molecule.

The measurable macroscopic susceptibility differs from the rotational polarization coef-
ficient in two aspects, firstly the susceptibility contains the contribution from the in-
duced molecular polarization, secondly the susceptibility relates the polarization to the
macroscopic average field rather than to an average local directing field. It is not trivial
to determine the relationship between the macroscopic average field and the local dir-
ecting field. This problem is complicated by the fact that the local directing field is not
equal to the local inducing field.

The rotational polarizability is in many cases modeled without taking a stand on which
local field should be used. The assumptions about the local field are introduced in the
end of the modeling process and can in principle be chosen differently. This approach
is applied by Debye [1929], Dimarzio & Bishop [1974] and Christensen & Olsen [1994].
A different approach is to integrate the assumptions about the local field in the funda-
mental “building” of the model. In section 4.5 we discuss an example from Fatuzzo &
Mason [1967] where this method is used. Common to the models mentioned here – the
models we study – is that the interaction between the dipole and its surroundings is
handled by treating the surroundings as a continuum liquid. The continuum approach
is used regarding the dielectric as well as the mechanical properties of the surround-
ings. An averaged description might not be adequate for capturing the dynamics of
the interaction of the field and the dipoles. However, if this is the case then the whole
concept of a model, which relates a macroscopic mechanical property to the rotation of
dipoles needs to be reinterpreted. Therefore we restrict our discussion of the local fields
to average fields.

3.2.2 Relation between macroscopic and microscopic: the local field

It is necessary to chose a local field when comparing measurements on the macroscopic
dielectric constant to models of the microscopic rotational polarization coefficient. In
this thesis we aim to treat the significance of this choice systematically. The follow-
ing section supplies the background for understanding the problem, as well as for our
treatment of it.

This section is generally restricted to the static situation, except for brief final discussion
on how the local fields generalize with regard to a harmonic input field.

The basic equation relating the polarization coefficients to the susceptibility arises by
determining the total specific polarization from the macroscopic and microscopic entit-
ies, respectively:

P = χε0Em = N (αiEi + 〈µ〉) = N (αiEi +αrEd) (3.2.5)

where N is the number of dipoles per volume, and other symbols are as defined earlier.

Setting Em = Ei = Ed is the simplest possible approach. The macroscopic average field
is also called the Maxwell field, and the result of using the Maxwell field as local fields
is simply obtained by dividing equation 3.2.5 by the field:

χε0 = N (αi +αr) . (3.2.6)
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The field within each particular molecule, due to the distribution of charge in the mo-
lecule itself, is included in the Maxwell field. This leads to the implicit assumption that
the molecule acts on itself with a torque, but that is of course is impossible.

Clausius-Mossotti approximation

In most of the studies we refer to later the Clausius-Mossotti approximation is used. To
obtain the Clausius-Mossotti approximation it is assumed that the directing local field
equals the inducing local field. This single local field is called the Lorentz field and
can be found as the field in a spherical imaginary vacancy in the liquid. By imaginary
is meant that the polarization of the rest of the liquid is calculated as if the dipole was
there. This description includes the polarization of the surroundings due to the dipole,
and the fact that this polarization give rise to a field acting back on the dipole. Only the
field from the dipole itself is excluded in the description.

The Lorentz field is given by

EL =
(

1 +
χ

3

)

Em =
ε + 2

3
Em. (3.2.7)

Setting Ei = Ed = EL in equation 3.2.5, leads to the Clausius-Mossotti relation5:

χ

χ + 3
=

ε − 1
ε + 2

=
N

3ε0
(αr +αi) (3.2.8)

An alternative route to finding the Lorentz field is to use an Onsager-like argument.
Moreover, this method makes it very eaisy to understand the difference between the
Lorentz field and the Onsager fields, and we will therefore present it before discussing
the Onsager fields. The presentation follows Böttcher [1973].

A dipole in a dielectricum (which in our case is made up of the same type of dipoles)
will polarize its surroundings, and this polarization of the surroundings will give rise to
an electric field at the position of the original dipole, this field is known as the reaction
field of the dipole. The reaction field will itself have contributed to the polarization of
the dipole. This recursiveness can easily be handled in equilibrium. The reaction field at
the position of a dipole is proportional to the dipole itself, and the average reaction field
is proportional to the average polarization. A derivation of the reaction field is shown
in appendix A.

The Lorentz field is the field which can be found in a physical spherical cavity in a
dielctricum plus the mean reaction field from the dipole which is induced/rotated by
the field.

EL = G + R (3.2.9)

Where EL is the Lorentz field, G is the cavity field and R is the average reaction field.

5Isolating the susceptibility in the Clausius-Mossotti equation yields

χ =
3

3ε0
Nα

− 1
where α = αi +αr .

From this it is seen that χ diverges for 3ε0/Nα = 1 and attains negative values for 3ε0/Nα < 1, this “problem”
is referred to as the Clausius-Mossotti catastrophe. According to Böttcher [1973] there is no problem when
αr = 0 because experiments show that the critical value of αi is not reached. When αr > 0 the problem can be
resolved by turning to the Onsager field instead of the Lorentz field [Onsager, 1936].
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G can be found by a standard textbook solution of the Laplace equation to be:

G =
3ε

2ε + 1
Em. (3.2.10)

The reaction field is the reaction field of the mean molecular polarization in the liquid,
the mean polarization has as described a contribution both from rotation of permanent
dipoles and from induced polarization. Using the results of appendix A and E i = Ed =
EL yields

R = f (αi +αr)EL = fαEL = fα(G + R) (3.2.11)

f is the reaction field factor, which is the proportionality between a dipole and the reac-
tion field it generates. R can easily be isolated from this equation.

Substituting the hereby obtained expressions for R and G into equation 3.2.9 and rear-
anging a bit leads to

EL =
1

1 − f (αi +αr)

3ε
2ε + 1

Em. (3.2.12)

In order to get to the Clausius-Mossotti approximation from this, the expression for the
reaction field factor f , should of course be inserted. The radius of the sphere enters in
the reaction field factor (see equation A.6) and the final step is to eliminate this radius
by use of the Onsager approximation6. For the present purpose we find it instructive to
keep the Lorentz field in the above formulation.

Onsager fields

Onsagers important contribution was to realize that the reaction field of the perman-
ent dipole does not contribute to the directional polarization. This section is based on
Böttcher [1973] and Onsager [1936]. The average rotational polarization of the dipoles
is parallel to the macroscopic field and so is the average reaction field due to these. But
this reaction field has not contributed to aligning the dipoles, since the reaction field of
each specific dipole is parallel to the dipole and therefore it acts with no torque on the
dipole. The reaction field from the permanent dipoles does, however, contribute to the
induced molecular polarization, hereby leading to a difference between the two local
fields.

The first step is to determine the directing field. The directing field has two contribu-
tions. The cavity field G and the reaction field due to the molecular polarization, which
is induced by the directing field

Ed = G + fαiEd. (3.2.14)

By inserting equation 3.2.10 and isolating Ed the following result is obtained

Ed =
1

1 − fαi

3ε
2ε + 1

Em. (3.2.15)

Notice how this resembles the Lorentz field (equation 3.2.12).

6The Onsager approximation relates the molecular radius to the macroscopic volume of the liquid:

4πr3

3
=

1
N

. (3.2.13)
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To find the local inducing field the average reaction field of the permanent dipole has to
be added to the directing field.

Ei = R + Ed (3.2.16)

This reaction field has to be the reaction field of a permanent dipole with a molecu-
lar polarization coefficient. This is because the reaction field of the permanent dipole
induces an additional dipole moment in the direction of the permanent dipole, which
again has a contribution to the reaction field. This last term was not, and should not
be, included in the directing field as it is parallel to the permanent dipole but should of
course be included in the inducing field.

The expression for the reaction field of a permanent dipole which can be further po-
larized is given in equation A.7: In order to get the average reaction field the average
permanent dipole moment (αrEd) is inserted

R =
f

1 − fαi
αrEd. (3.2.17)

Inserting this in equation 3.2.16 along with the expression for for the directing field
(equation 3.2.15) leads to the Onsager inducing field

Ei =

(

1 +
f

1 − fαi
αr

)

1
1 − fαi

3ε
2ε + 1

Em. (3.2.18)

If αr = 0 this Onsagers inducing field, reduces to the Lorentz local field given in equa-
tion 3.2.12. Hence there is no difference between the Onsager field and the Lorentz field
for substances with no permanent dipole moment.

In order for the Onsager fields to lead to the Onsager equation the fields are inserted
in equation 3.2.5, the reaction field factor is inserted and the Onsager approximation is
applied. Finally the Clausius-Mossotti relation is used to introduce εi instead of αi. This
use of Clausius-Mossotti is consistent because as we just saw the Lorentz field and the
Onsager field agree when there is only induced polarization.

The Onsager equation reads [Onsager, 1936]:

µ2 =
9kBTε0

N
(ε −εi)(2ε +εi)

ε(εi + 2)2 (3.2.19)

Lorentz field compared to Onsager field

In a lot of the work done in this area, the Clausius-Mossotti relation is used (we will
later return to the question about what local field should be used in connection to the
model that we test), that is the Lorentz field is assumed as both the directing and the
inducing field.

Ed = Ei = EL =
1

1 − f (αi +αr)

3ε
2ε + 1

Em.

Comparing this to the Onsager directing field (equation 3.2.15) it is seen that if αr � αi

then there is only a little difference between the Lorentz field and the Onsager directing
field.
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By using the Lorentz field the reaction field of the permanent dipole is assumed to be
part of the direction field. If the permanent dipole moment is small then the mistake
maken is also small.

Likewise it is seen that if

f
1 − fαi

αr � 1 and αr � αi (3.2.20)

then the local inducing field found from the Onsager approach is approximately equal
to the Lorentz field. This issue is a little more subtle. The inducing Onsager field is
in principle the cavity field plus a reaction field just as the Lorentz field is it. The dif-
ference lies in the part of the reaction field which is due to the permanent dipole. In
the Onsager direction field it is taken into account that the average permanent dipole is
determined by the directing field alone, hence leading to a different reaction field from
the permanent dipoles than in the case of the Lorentz field.

The local fields and frequency dependency

As long as we are in a quasistatic regime where the different fields in the dielectricum
and whatever cavities, we might imagine, can still be found from solving the Laplace
equation, then the Lorentz field is generalized straight forward to the frequency de-
pendent situation. There will be a phase difference between the macroscopic field and
the Lorentz field, but this does not lead to any complications.

The generalization to the frequency dependent case is not trivial for the Onsager fields.
This is because a crucial point in deriving the Onsager relation is that the reaction field of
the permanent dipole does not contribute to the directing field because one particular
dipole and its reaction field will be parallel. However, if a harmonic field is applied
there will be a phase difference between a dipole and the reaction field it generates, and
they will no longer be parallel. Therefore, the reaction field will act on the dipole with a
torque.

In the next chapter, where we introduce the Debye model and its generalization we will
also discuss the Onsager-like frequency dependent field of Fatuzzo & Mason [1967] (see
section 4.5).

3.2.3 Typical frequency dependence

In this section we describe the basic phenomenology of the frequency dependent mac-
roscopic dielectric constant.

At low frequencies the dielectric constant will approach its equilibrium value, εe,
asymptotically. At higher frequencies the molecules will no longer be able to adjust
their orientation to the field and the real part of the dielectric constant approaches a new
lower plateau value εh. The dielectric constant will never go to one, because there will
always be a contribution from the induced molecular polarization, that is εi = n2 > 1
(as noted before, we call the dielectric constant from the induced molecular polarization
εi, it is commonly called ε∞). It is however very possible that the plateau value which is
reached by dielectric spectroscopy εh (at about 1MHz) is greater than εi. The difference
between εh and εi is actually a central point in our this work and it will be discussed
extensively in chapter 4 and chapter 7.
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Between the equilibrium value and the high frequency plateau the dielectric constant
exhibits a loss peak because the motion of the dipolar molecules is out of phase with
the applied field. This is an example of a relaxation process as we have described it
earlier. A typical dielectric relaxation spectrum with one relaxation process is depicted
in figure 3.2. Sometimes there is also a Johari-Goldstein beta relaxation (see section
2.5.3) or the spectrum exhibits a high frequency wing. Figure 3.3 gives an illustration of
a characteristic dielectric spectrum with a beta relaxation.

�

Figure 3.2 Typical real and imaginary part of a dielectric relaxation.

Figure 3.3 Sketch of dielectric loss, including an alpha and a beta relaxation.
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3.3 The connection between shear and dielectric relaxa-
tion

The hypothesis of a connection between shear behavior and dielectric relaxation goes
back to Debye [1929], and this possible connection is still investigated. In this section
we give a very brief overview of how the two properties are commonly compared, in
order to place our studies of the DiMarzio-Bishop model in a context.

3.3.1 The Debye model

In the Debye model [Debye, 1929] it is assumed that the dipoles are spherical and non-
interaction, and that the surroundings of each dipole can be described by the frequency
independent viscosity η0 of a continuum viscous liquid. The rotation of the dipole is
controlled by the Stokes friction term for a sphere rotating in a viscous liquid. The
classical derivation of the Debye model is postponed until section 4.1, where we return
to the Debye model, because it is the basis for the model we are testing.

The Debye model predicts Debye relaxation. This is, as we have already discussed,
rarely found. The Debye model is therefore rarely used to describe the dielectric relax-
ation function. The Debye relaxation time, is however, often used.

3.3.2 The Debye relaxation time

The Debye model predicts a relaxation time and this is frequently studied and used.
The Debye relaxation time is closely related to the Stokes-Einstein relation where a con-
nection is made between the Stokes friction term for a sphere dragged trough a viscous
liquid and the translational diffusion coefficient

D =
kBT

6πη0r
(3.3.1)

[Einstein, 1905], where r is the radius of the sphere, which is related to some mean radius
of the molecule.

The equivalent results of the Debye model is that the microscopic rotational relaxation
time (τ) is given as

τ =
8πr3η0

2kBT
(3.3.2)

[Debye, 1929]. This relation is know as the Debye-Stokes-Einstein (DSE) relation.

Decoupling

The DSE prediction holds in many ordinary liquids, though the molecular radii, which
are used, are smaller than what should be expected from the geometry of the molecule.
[Rössler, 1990].

It is known that the translational diffusion decouples from the viscosity at high viscos-
ities for many liquids. The typical finding is that the diffusion is too fast compared to
the prediction of the Stokes-Einstein equation [Angell et al., 2000].
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A similar decoupling between the rotational relaxation time and the time defined by the
Debye-Stokes-Einstein equation could exist. This possibility has been tested a number
of times, see for example [Menon et al., 1994], [Deegan et al., 1999], [Chang & Sillescu,
1997], [Suchanski et al., 2000] and [Schröter & Donth, 2000]. The deviation from of the
DSE prediction are generally rather small.

The decoupling is usually measured by a decoupling index. It can be defined in various
different ways, a version which is sometimes used [Chang & Sillescu, 1997] is

R =
η0

τT
(3.3.3)

where τ is some measure of the dielectric/rotational time; τ = 1/νdielec,peak is most fre-
quently used.

The general picture is that R (or an equivalent index) varies a factor of 3 to 10 when the
relaxation time is changed about 10 decades. [Menon et al., 1994], [Deegan et al., 1999],
[Chang & Sillescu, 1997], [Schröter & Donth, 2000]

It is of course also possible to do more direct test of the DSE predictions using micro-
scopic methods. This is for example done in Rössler [1990], where NMR data is used
for the rotational relaxation time. In the studied liquid it is found that two regimes ex-
ist; a high temperature region where DSE might hold, and a low temperature region
where the diffusion mechanisms appear to be different. A comparison between rota-
tional dynamics and the shear modulus where probe molecules are used is found in
Yang & Richert [2002]. It is found that the time dependencies of the two relaxations is
similar if the size of the probe molecules is of the same order of magnitude as the size
of the molecules of the host liquid. If the probe molecules are significantly bigger the
rotational relaxation becomes slower and more exponential.

3.3.3 Direct comparison of the relaxations

The shape of the dielectric and shear mechanical relaxations functions and their peak
positions have also been compared directly in several papers Menon et al. [1994], Dee-
gan et al. [1999], Christensen & Olsen [1994], Suchanski et al. [2000] Ribierre et al. [2003],
Richert et al. [2003], and Schröter & Donth [2000]. We will return to the subject in chapter
8 where we discuss qualitative predictions from the DiMarzio-Bishop model which we
have studied in this work.

It is sometimes discussed whether a modulus or susceptibility formulation is more ap-
propriate when the shear and dielectric relaxation are compared. The dielectric constant
and the shear modulus is most commonly used, but also the dielectric modulus and the
retardation part of the mechanical compliance are used.

3.3.4 A simple connection of the relaxation times

It is a general assumption that the relaxation time in the dielectric and mechanical meas-
urements are related (A commonly used substitute for the mean time is the time defined
by the maximum in the loss). The assertion is justified by connecting the two relaxation
times via the Maxwell and the Debye model (see for example Deegan et al. [1999]).
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If the dielectric relaxation time (τdielec) is determined by the DSE equation and the
mechanical relaxation time is taken as the Maxwell time (τM), then solving for the vis-
cosity yields

η0 ∝
T
r3 τdielec and (3.3.4)

η0 = G∞τM (3.3.5)

Combining this yields

τdielec

τM
∝

G∞

T
r3 (3.3.6)

The shear mechanical time is normally taken to be the time of the maximum loss. This
is proportional to τM if TTS is obeyed (see section 2.5.2 for a discussion of TTS). G∞/T,
and thereby τdielec

τM
, is much less temperature dependent than the time scales.

3.3.5 Models

The above described connections between shear and dielectric spectrums are rather phe-
nomenological, because they are based on simple models which are known to not hold.
More elaborated models connecting the two relaxations also exist. These models usu-
ally seek to understand the dielectric spectrum, specifically the rotational polarization
via the mechanical properties of the liquid.

A few models are based on the original microscopic Debye model, but attempts to
handle the local field in a more consistent way than just using the Clausius-Mossotti
approximation. A static Onsager field is used in Cole [1938], and a generalized Onsager
field is used in Fatuzzo & Mason [1967].

The generalized Debye model of Dimarzio & Bishop [1974], which we have studied and
which is thoroughly presented and analyzed in the next chapter (and the rest of this
thesis) attempts to give a more precise description of the interaction of the molecule
with the environment by including the viscoelasticity of the liquid. To our knowledge
two other models exist, where this is attempted.

The first model which took viscoelasticity into account was the model of Gemant [1935].
The main difference between the model of Gemant and the DiMarzio-Bishop model is
that the latter is restricted to a specific viscoelastic behavior. Moreover Gemant does not
provide a theoretical derivation of the model, but states it on the basis of physical argu-
ments. Contrary to the result in Havriliak & Havriliak [1995] we are able to reproduce
the spectra presented in Gemant [1935] by using the parameters given in the article.

The second model is that of Havriliak [1990] where a (frequency dependent) mechanical
contribution is included in the energy connected with aligning a molecule in an applied
field. A small review and discussion of the models which explicitly include the vis-
coelasticity is presented in Havriliak & Havriliak [1995]. It is found in this review that
similar results are obtained from the model of Dimarzio & Bishop [1974] and Havriliak
[1990].
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4 The Debye model and the
DiMarzio-Bishop model

In this chapter we will present the DiMarzio-Bishop model which is a generalization
of the classical Debye model. The chapter starts with a derivation of the microscopic
classical Debye model followed by the generalization suggested in Dimarzio & Bishop
[1974]. We propose a new macroscopic formulation hereby avoiding two different un-
physical assumptions which have been used in earlier macroscopic formulations by Di-
marzio & Bishop [1974] and Christensen & Olsen [1994] respectively.

A review of results and methods presented in papers in which the DiMarzio-Bishop
model is explicitly tested is included, and it is briefly discussed why further testing is
needed. Furthermore we discuss how the local field problem can be partly disentangled
from the microscopic DiMarzio-Bishop model.

Finally we account for the background of the experimental tests of the DiMarzio-Bishop
model which is reported in the following chapters.

4.1 The Debye model

The background material for the following presentation has mainly been Debye [1929]
and Dimarzio & Bishop [1974].

4.1.1 Fundamental assumptions

Debye’s model is derived by treating the molecules as noninteracting ideal dipoles. This
means that the dipoles in the liquid are assumed to be randomly orientated in an equi-
librium situation with no external field.

The dipoles themselves are modeled as spheres with radius r and an ideal dipole,
with dipole moment µ, at the center. The dipole’s interaction with its surroundings
is modeled as if it was a macroscopic entity in a continuous liquid.

The liquid is assumed to have a frequency independent viscosity (η0), and the molecule
is viewed as a sphere rotating in this medium with a friction coefficient according to
Stokes law and a no slip boundary condition. The use of Stokes law means that the
inertia of the continuous liquid is neglected, and the inertia of the molecule itself is
likewise neglected. The neglection of inertia means that the model is not valid in the
high frequency area, where the inertia of the molecules inhibits their rotation.

The local directing electric field (Ed) (see section 3.2.1 for a definition) is assumed to
be a given homogeneous field. The model is in this aspect, as in all other aspects, an
average description. This means that the model gives αr as an average property, and
not as something which can be assigned to a single molecule.
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4.1.2 The governing equation

A coordinate system is chosen such that the field is in the (ẑ) direction.

The dipoles are described by a probability density function, f . f is a function of the
angle θ between the ẑ direction and the direction of the dipol, and of time. f describes
the probability of finding a dipole with angle θ to ẑ, at a given time.

The dynamics of f is described by a continuity equation, and an equation describing the
current of probability J. The continuity equation is:

∂ f
∂t

+∇ · J = 0. (4.1.1)

The current is controlled by an equation which includes a diffusive term and a convec-
tion term. The first term is governed by the probability density gradient and the latter
is originates from the average angular velocity (V ) due to the external torque:

J = −D0∇ f + V f . (4.1.2)

D0 is the diffusion constant.

The relevant coordinate system is spherical and everything becomes independent of the
azimuthal angle ϕ due to the rotational symmetry in the system. Hence the relevant
component of the angular velocity is θ̇. The angular velocity describes the velocity of
the spheres (with moment of inertia I) rotating in the viscous media, the equation of
motion is:

Iθ̈ = −ζ0θ̇ + M (4.1.3)

where M is the torque due to the external field, and ζ0 is a friction coefficient describing
the viscous forces. In the Debye model, which aims to describe the very viscous limit,
the inertial term is, as mentioned already, neglected and the equation simplifies to

θ̇ =
M
ζ0

. (4.1.4)

By rewriting equation 4.1.1 in spherical coordinates, inserting equation 4.1.2, equation
4.1.4 and using the fact that everything is ϕ independent, the following equation is
obtained

∂ f
∂t

=
1

sinθ

∂
∂θ

[

sinθ

(

D0
∂ f
∂θ

−
M
ζ0

f
)]

. (4.1.5)

This is the differential equation of the Debye model, and it describes rotational diffusion.

The friction term is, as mentioned earlier, taken to be the Stokes-friction term

ζ0 = 8πη0r3, (4.1.6)

and the torque can be written as

M = −µEd sinθ. (4.1.7)
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4.1.3 The diffusion coefficient

Given a constant local field the equilibrium behavior of f is described by a Boltzmann
distribution

f ∝ e
−U
kB T (4.1.8)

U being the potential energy of a dipole in the local field. U is given by

U = −µEd cosθ (4.1.9)

that is

f = ke
µEd cosθ

kB T (4.1.10)

where k is a constant.

Using equation 4.1.6, 4.1.7, 4.1.10 and the fact that in equilibrium ∂ f
∂t = 0 for all θ, equa-

tion 4.1.5 gives

0 =
1

sinθ

∂
∂θ

[

sinθ

(

D0ke
µEd cosθ

kB T
−µEd sinθ

kBT
+

µEd sinθ

ζ0
ke

µEd cosθ

kB T

)]

(4.1.11a)

=
1

sinθ

∂
∂θ

[

(sinθ)2µEdke
µEd cosθ

kB T

(

−
D0

kBT
+

1
ζ0

)]

(4.1.11b)

⇓

D0 =
kBT
ζ0

(4.1.11c)

Equation 4.1.11c follows from equation 4.1.11b because the latter has to be true for all
θ. Hence it is seen that the diffusion constant and the friction term are not independent
but are really just two measures of the same characteristics.

4.1.4 1. order solution

Debye solves equation 4.1.5 to first order by assuming that the local field is a harmonic
function of time

Ed = Ed,0eiωt (4.1.12)

this means that the torque is given as M = −µEd,0eiωt sinθ.

A first order solution of the following form

f = A
(

1 + B
µEd,0

kBT
cos(θ)eiωt

)

(4.1.13)

is used. A and B are constants. The solution is first order in µEd,0, and has the angular
dependence cos(θ) which is the angular dependence that is known to hold in the low
frequency limit (equation 4.1.10).

By inserting the first order solution (equation 4.1.13) into the differential equation (equa-
tion 4.1.5) and disregarding second order terms in µEd,0, B can be determined

B =
1

1 + iωζ0
2kB T

. (4.1.14)
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A can be found by the condition that when Ed,0 = 0, f is an uniform distribution, that is

A =
1

4π
(4.1.15)

The only angular dependence of f (equation 4.1.13) is the cosθ term and this ensures
that f is normalized at all times, because integration of the cosθ term over the spherical
surface gives zero.

Combining all this yields:

f =
1

4π

(

1 +
1

1 + iωζ0
2kB T

µEd,0

kBT
cos(θ)eiωt

)

, (4.1.16)

from which the average polarization is found:

〈µz〉 = 〈µ cosθ〉 (4.1.17)

=
∫ 2π

0

∫ π

0
µ f cosθ sinθdθ dϕ (4.1.18)

=
µ2E0,deiω t

3kBT(1 + iωζ0
2kBT )

(4.1.19)

using equation 4.1.6 and writing the result in terms of the rotational polarizability coef-
ficient (defined in equation 3.2.4) finally leads to

αr =
µ2

3kBT
(

1 +
(

4πr3

kBT

)

iωη0

) . (4.1.20)

There are two uncorrelated parameters in the model, µ and r.

4.2 The DiMarzio-Bishop model

In following we present the microscopic DiMarzio-Bishop model and it will be clear
that the derivation is very similar to derivation if the original Debye model.

In the original model the viscosity is assumed to be independent of frequency. The
consequence of the generalization by Dimarzio & Bishop [1974] is, as earlier mentioned,
that the viscosity is allowed to be time dependent (or equivalent frequency dependent).
All other assumptions from the original Debye model are maintained (see section 4.1.1).

The idea of the generalization is that the two controlling terms in the description of the
current of probability (equation 4.1.2) are allowed to depend on the past. The diffusion
term now depends on the history of the distribution, and the convection term depends
on the history of the external field.

The model is restricted to linear viscoelastic liquids (see section 2.4), and the governing
equation is the most general linear analog to equation 4.1.5

∂ f
∂t

=
1

sinθ

∂
∂θ

[

sinθ

(

∫ t

−∞

D(t − t′)
∂ f
∂θ

∣

∣

∣

∣

t=t′
dt′ − f

∫ t

−∞

V(t − t′)M(t′)dt′
)]

(4.2.1)

where V is the mobility memory function and D is the diffusion memory function.
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In this case the equilibrium arguments (section 4.1.3) result in the following equation
connecting the diffusion memory function to the mobility memory function

∫ t

−∞

D(t − t′)dt′ = kBT
∫ t

−∞

V(t − t′)dt′ (4.2.2)

which implies that

D(t′) = kBTV(t′) (4.2.3)

By inserting the expression for the torque (equation 4.1.7) and assuming that the input is
of the form given in equation 4.1.12 plus a solution of the form given in equation 4.1.13,
the generalized rotational differential equation (equation 4.2.1) can be rewritten in the
following way

∂ f
∂t

=
1

sinθ

∂
∂θ

[

sinθ

(

∂
∂θ

∫ t

−∞

kBTV(t − t′)A
(

1 + B
µEd,0

kBT
cos(θ)eiωt′

)

dt′−

f
∫ t

−∞

V(t − t′)(−µEd,0eiωt′ sinθ)dt′
)]

. (4.2.4)

Using the definition of the complex response functions in the frequency domain (and
the fact that the complex mobility coefficient V(ω) is given as V(ω) = 1/ζ(ω), ζ(ω)
being the complex friction coefficient), this reduces to

∂ f
∂t

=
1

sinθ

∂
∂θ

[

sinθ

(

−kBTB
µEd,0

kBT
sin(θ)1/ζ(ω)eiωt−

f (−µEd,0 sinθ)1/ζ(ω)eiωt
)]

(4.2.5)

which can be rewritten in terms of f and M

∂ f
∂t

=
1

sinθ

∂
∂θ

[

sinθ

(

kBT
ζ(ω)

∂ f
∂θ

−
M

ζ(ω)
f
)]

. (4.2.6)

The above equation is based on the assumption of a harmonic input and a solution of
the form given in equation 4.1.13, hence it is not as general as 4.2.1. It is however a very
convenient formulation, since it resemble the original Debye differential equation. The
calculations which gives the constants in the solution and finally the rotational polariza-
tion coefficient are therefore completely equivalent to the calculations performed when
deriving the original Debye model.

The result of the DiMarzio-Bishop generalization is that the viscosity in Debye’s model
is replaced by the frequency dependent viscosity:

αr(ω) =
µ2

3kBT
(

1 +
(

4πr3

kBT

)

iωη(ω)
) =

µ2

3kBT
(

1 +
(

4πr3

kBT

)

G(ω)
) (4.2.7)

where the second equality is obtained by using the relation G(ω) = iωη(ω).

The model has µ and r as two uncorrelated parameters, just as the original Debye model
did.
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4.3 Earlier macroscopic formulations, using the Clausius-
Mossotti approximation

It is, as explained in chapter 3.2.2, a general problem when testing theories and models
on the rotational polarization that it can not be measured directly, since the model of the
rotational polarization has to be related to the macroscopic susceptibility or dielectric
constant.

With one exception, which we will return to, all the earlier studies of the DiMarzio-
Bishop model have been performed using the Clausius-Mossotti approximation.

4.3.1 Dimarzio & Bishop [1974]

Inserting the microscopic DiMarzio-Bishop model (equation 4.2.7) in the Clausius-
Mossotti relation (equation 3.2.8) leads to

ε(ω)− 1
ε(ω) + 2

=
N

3ε0
(αi +αr(ω)) =

N
3ε0



αi +
µ2

3kBT
(

1 +
(

4πr3

kBT

)

G(ω)
)



 . (4.3.1)

This is how the macroscopic version of the model is first presented by Dimarzio and
Bishop. In this formulation the model contains the microscopic DiMarzio-Bishop model
and the Clausius-Mossotti relation, but no further assumptions.

The DiMarzio-Bishop model has three microscopic parameters µ, αi and r. The dipole
density N can trivially be lumped in with the microscopic parameter, making Nµ2, Nαi

and r the parameters.

In Dimarzio & Bishop [1974] two limiting equations are used, the high and the low
frequency limit, to solve for two of the parameters leaving r as the only parameter to be
fitted. If the limits are not determined with greater precision than the values at other
frequencies, or if they are not reached by the measurements at all it is possible to handle
them as new macroscopic fitting parameters.

The equation which is compared to data in Dimarzio & Bishop [1974] and the equation
which is always cited (eg. in [Christensen & Olsen, 1994], [Díaz-Calleja et al., 1993],
[Zorn et al., 1997], [Ferri & Castellani, 2001], and [Havriliak & Havriliak, 1995]) is a
simplified version of the DiMarzio-Bishop model, in which an assumption of the limit-
ing behavior of the shear modulus is introduced. The resulting equation is the classical
Debye formula with the exception that η0 is replaced by the frequency dependent vis-
cosity η(ω),

ε(ω)−ε∞

εe −ε∞

=
1

(

1 +
(

4πr3

kBT

) (

εe+2
ε∞+2

)

iωη(ω)
) (4.3.2)

=
1

(

1 +
(

4πr3

kBT

) (

εe+2
ε∞+2

)

G(ω)
) . (4.3.3)

From the derivation of this equation in Dimarzio & Bishop [1974], it is seen that they by
ε∞ mean the quantity we refer to as εh.

DiMarzio and Bishop’s derivation of this macroscopic formulation is the same as that of
Debye. Debye, who models systems with a frequency independent viscosity η0 makes
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use of the fact that iωη0 goes to respectively infinity and zero as ω does so. In order to
generalize the derivation DiMarzio and Bishop make the assumption that this limiting
behavior holds for the frequency dependent viscosity as well.

However, the assumption that iωη(ω) = G(ω) goes to infinity as ω does so will in
general be untrue because G is a limited function of frequency. Consequently an as-
sumption is used which is in disagreement with the phenomenology the model tries
to explain. The result of this assumption is that the macroscopic equation (4.3.3) can-
not hold in the high frequency limit. In this limit the left hand side will approach zero
whereas the right hand side will approach a positive finite value. This incorrect limiting
behavior of equation 4.3.3 is pointed out by Christensen & Olsen [1994].

Another way of putting the same discrepancy is that it is an implicit assumption in the
derivation by DiMarzio and Bishop of equation 4.3.3 that the induced molecular dielec-
tric constant can be found as the high frequency plateau value measured by dielectric
spectroscopy, that is they assume εh = εi. (See section 3.2.3 for the relation between εh

and εi).

4.3.2 Christensen & Olsen [1994]

In a paper by Christensen & Olsen [1994] the model is re-proposed in a different formu-
lation than that of Dimarzio & Bishop [1974].

The microscopic starting point of Christensen & Olsen [1994] is equation 4.2.7, it is the
assumptions used when formulating the macroscopic model which differ. The differ-
ence lies in the fact that the macroscopic model is formulated in terms of the dielectric
modulus, Ge, which they define as the inverse of the dielectric susceptibility1:

Ge(ω) =
1

χ(ω)
=

1
ε(ω)− 1

. (4.3.4)

Solving for Ge in the Clausius-Mossotti equation and inserting the microscopic
DiMarzio-Bishop model leads to

Ge(ω) =
ε0

Nα(ω)
−

1
3

=
ε0

N(αi +αr(ω))
−

1
3

(4.3.5)

=
ε0

N
(

αi +
µ2

3kB T
(

1+
(

4πr3
kB T

)

G(ω)
)

) −
1
3

. (4.3.6)

Christensen and Olsen ignore the induced molecular polarization simplifying equation
4.3.6 to

Ge(ω) =
ε0

N
(

µ2

3kB T
(

1+
(

4πr3
kB T

)

G(ω)
)

) −
1
3

(4.3.7)

=

(

3
ε0kBT
Nµ2 −

1
3

)

+

(

12
ε0πr3

Nµ2

)

G(ω) (4.3.8)

The neglection of the induced molecular polarization is very unphysical, because the
squared refraction index n2 = εi generally is of the same order of magnitude as the high

1Note that Ge(ω) differes from the commonly used modulus, M = ε−1.
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frequency plateau value of the dielectric constant. This will be seen in our data present-
ation in chapter 6 and in chapter 7, where the high frequency behavior is specifically
discussed.

The simplified model in equation 4.3.8 connects the shear modulus to the dielectric mo-
dulus through two parameters. This is one parameter less than the original DiMarzio-
Bishop model, but the background for this difference is of course just that one parameter
has been ignored.

The two moduli are normalized by their high an low frequency values (we here use C’s
as a shorthand notation for the two terms in the parentheses in equation 4.3.8)

Ge,n(ω) =
Ge(ω)− Ge,e

Ge,h − Ge,e
=

C1 + C2G(ω) − (C1 + C2G0)

C1 + C2G∞ − (C1 + C2G0)
(4.3.9)

=
G(ω) − G0

G∞ − G0
= Gn(ω). (4.3.10)

[Christensen & Olsen, 1994]. The second subscript on Ge refers to equilibrium (e), high
frequency plateau (h) and normalized (n).

This is how the model is finally presented and how it is compared to data by Christensen
& Olsen [1994]. We shall return to their results in section 4.6.

4.4 A new macroscopic formulations, using the Clausius-
Mossotti approximation

It is of course unsatisfactory to use unphysical assumptions about the high frequency
plateau value of the dielectric data. It is therefor our objective to give a consistent treat-
ment of the macroscopic model where unphysical assumptions are avoided. We will
include both the induced polarization and the rotational contribution to εh contrary to
the two earlier treatments which, as we have described in the preceding sections, ex-
clude one of these, respectively.

In the following we will derive our result which looks the same as the original for-
mulation by DiMarzio and Bishop (equation 4.3.3), but which has a different physical
meaning.

Through the Clausius-Mossotti approximation the induced polarizability can be related
to the induced molecular dielectric constant;

εi − 1
εi + 2

=
N

3ε0
αi (4.4.1)

It is important to stress that equation 4.4.1 is not a high frequency limit of equation 4.3.1,
because the second term in 4.3.1 does not go to zero as ω goes to infinity, as we have
pointed out earlier. Equation 4.4.1 does hold at even higher frequencies where equation
4.3.1 becomes invalid because inertia starts effecting the rotation of the molecules. This
means that εi can not be equated to the plateau value εh, which ε(ω) attains at the high
frequency end of the dielectric spectroscopy spectrum.

In the zero frequency limit equation 4.3.1 reduces to

εe − 1
εe + 2

=
N

3ε0

[

αi +
µ2

3kBT

]

(4.4.2)
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where G(0) = 0 has been used.

Using this and equation 4.4.1 gives

εe − 1
εe + 2

−
εi − 1
εi + 2

=
N

3ε0

µ2

3kBT
. (4.4.3)

Inserting these results in the macroscopic DiMarzio-Bishop model (equation 4.3.1)
yields

ε(ω)− 1
ε(ω) + 2

=
εi − 1
εi + 2

+

[

εe − 1
εe + 2

−
εi − 1
εi + 2

]

1
1 + 4πr3

kBT G(ω)
. (4.4.4)

Finally some algebraic manipulation leads to:

ε(ω)−εi

εe −εi
=

1
(

1 +
(

4πr3

kBT

) (

εe+2
εi+2

)

G(ω)
) . (4.4.5)

In deriving this equation we have used information about the zero frequency limit be-
havior (equation 4.4.2). It is valid to use this limit because the zero frequency behavior
is the equilibrium situation for which data can be very well determined, and where
the model reduces to a simple general Boltzmann distribution of the orientation of the
molecules. εe can alternatively be regarded as a new macroscopic fitting parameter re-
placing the microscopic µ. By use of equation 4.4.1 the parameter αi has been translated
into a macroscopic physical quantity εi. By using the two macroscopic parameters εe

and εi as fitting parameters rather than αi and µ the dipole density N is lumped into the
fitting parameters.

The last parameter r should of course be related to the size of the relaxing molecules.
However, the agreement is not expected to be very precise, since the description of the
molecules as spheres in most cases is very coarse. Further complications arise in the
case of polymers because the relaxing entity will be a side chain instead of the entire
molecule.

If the high frequency plateau values G∞ and εh are known these can be used to determ-
ine the lumped parameter K =

(

4πr3

kBT

) (

εe+2
εi+2

)

, and r can of course be easily isolated
herefrom.

If the high frequency plateau values are inserted in equation 4.4.5

εh −εi

εe −εi
=

1
(1 + KG∞)

. (4.4.6)

it is easily recognized that K controls how large the elastic contribution (εh −εi) is com-
pared to the whole rotational contribution (εe − εi). Furthermore it is seen that a large
K value (corresponding to a large r) will result in a small elastic contribution.

For a number of reasons, which hopefully will become clear we have chosen to test
the model in the modulus formulation. In order to do so, we have isolated the shear
modulus in equation 4.4.5

G(ω) =

(

kBT
4πr3

)(

εi + 2
εe + 2

)(

εe −εi

ε(ω) −εi
− 1
)

. (4.4.7)

This modulus formulation reveals no direct connection between the shear modulus and
the dielectric modulus. The shear modulus is however related to the quantity 1/(ε(ω)−
εi), which is a modulus like quantity, though it only includes the rotational contribution.
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4.5 The macroscopic DiMarzio-Bishop model with the
Fatuzzo-Mason field

All the macroscopic versions of the DiMarzio-Bishop model described so far are based
on the Clausius-Mossotti approximation for the local field, even though it is known that
this does not hold.

In Fatuzzo & Mason [1967] a Debye (rotational diffusion) model with a more complic-
ated field is presented. The field used in the model is derived by a generalization of the
static Onsager approach, to the harmonic case. In Fatuzzo & Mason [1967] a frequency
independent viscosity is used, but Díaz-Calleja et al. [1993] have combined the results
with the DiMarzio-Bishop model by introducing a frequency dependent viscosity.

4.5.1 Essentials of the Fatuzzo-Mason model

In the static derivation of the Onsager approximation, it is a basic assumption that the
part of the reaction field, which is due to the permanent dipole, always points in the
direction of the dipole itself. This means that this part of the reaction field cannot give a
torque on the dipole, and it is therefore left out of the directing field.

The problem is that in an oscillating field the reaction field will be out of phase with
the movement of the dipole, and due to this it will give rise to a torque. In Fatuzzo &
Mason [1967] this “lag of the reaction field” is modeled by introducing what they refer
to as the “librating dipole method”.

The basic equation in the Fatuzzo-Mason model is the Debye rotational diffusion differ-
ential equation (equation 4.1.5)

∂ f
∂t

=
1

sinθ

∂
∂θ

[

sinθ

(

D0
∂ f
∂θ

−
M
ζ0

f
)]

.

In the original macroscopic Debye calculation the torque is taken to be

M = −µEL sinθ = −µkEm sinθ

where EL is the Lorentz field, Em the average macroscopic field and k is a proportion-
ality constant (see equation 3.2.12). The contribution of Fatuzzo-Mason is to give an
alternative calculation of this torque. The torque is still proportional to the macroscopic
field but the dipole µ appears in a more complicated way.

It is assumed that the dipole is librating around an equilibrium position. It is further
assumed that the libration of each molecule is small.

The permanent dipole is described by the following equation

µ0 = µei + µ1neiωt

where i is a unit vector in the equilibrium direction, n is a unit vector perpendicular to
i, and where µ1 � µe.

The first step in the determination of the torque is done by describing the field which
acts on the dipole in an Onsager frame. The field is split into cavity and reaction fields: A
time dependent cavity field which is parallel to, but out of phase with, the macroscopic
field. A stationary reaction field which is parallel to i. The reaction field of the time
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dependent part of the dipole which is parallel to n but out of phase with the movement
of the dipole. And finally the part of the reaction field, which stems from polarization
by the reaction field itself.

The second step in finding the torque is to make an explicit crossproduct between the
dipole and all the terms in the field. Counting torques from parallel components of
field and dipole moment is hereby avoided in the most natural and straight forward
way. The torque which Fatuzzo-Mason arrive at is simplified by using the assumption
of small librations, in order to arrive at a term which is proportional to the macroscopic
field and sin(θ).

Finally Debyes first order solution is used to find the microscopic polarization and
the macroscopic result is found by using the Onsager approximation and the standard
Clausius-Mossotti result to relate αi and εi (equation 4.4.1).

4.5.2 Final formulation of the model

The final result in Fatuzzo & Mason [1967] is

εe (ε(ω)−εi) (2ε(ω) +εi)

ε(ω)(εe −εi)(2εe +εi)
=

(

1 + iωτd +
(εe −εi)(εe −ε(ω))

εe(2ε(ω) +εi)

)−1

(4.5.1)

Where τd is the microscopic Debye relaxation time (equation 3.3.2). Díaz-Calleja et al.
[1993] combines this result with the results from Dimarzio & Bishop [1974]. This is
simply done by replacing the frequency independent viscosity with the frequency de-
pendent viscosity. The result when expressed in terms of G(ω) is

εe (ε(ω)−εi) (2ε(ω) +εi)

ε(ω)(εe −εi)(2εe +εi)
=

(

1 +
4πr3

kBT
G(ω) +

(εe −εi)(εe −ε(ω))

εe(2ε(ω) +εi)

)−1

. (4.5.2)

We will later use this equation in a form where G(ω) is given as a function of ε(ω)

G(ω) =
kBT
4πr3

(

−εe(ε(ω))2 +ε(ω)ε2
e −εi(ε(ω))2 −εiε

2
e

εe(ε(ω)−εi)(2ε(ω) +εi)

)

(4.5.3)

4.5.3 The high frequency limit

In the above section we presented the Fatuzzo-Mason model and the generalization by
Díaz-Calleja et al. [1993] using our notation. The original versions use ε∞ in the place
of εi. This does not lead to ambiguity in the original Fatuzzo-Mason model because
it uses a frequency independent viscosity and has εi = εh just like the original Debye
model. The meaning of ε∞ is not discussed in Díaz-Calleja et al. [1993] when the result
of DiMarzio-Bishop is combined with that of Fatuzzo-Mason, but here εi 6= εh making a
distinction necessary. The introduction of the macroscopic quantity ε∞ is as mentioned
above based on equation 4.4.1 and for this to hold εi has to be used in the place of ε∞.
Using ε∞ = εh would be erroneous, since the elastic contribution to the high frequency
plateau εh has to be taken into account, just as in the Clausius-Mossotti version of the
model.
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4.6 Tests of the DiMarzio-Bishop model by others

The DiMarzio-Bishop model has been tested against data by several authors since it was
proposed in Dimarzio & Bishop [1974]. In the following we give a review of how the
testing has been performed and of the results which have been found in these previous
works.

4.6.1 Dimarzio & Bishop [1974]

In the original paper [Dimarzio & Bishop, 1974], the model as formulated in equation
4.3.3, is compared to measurements on three different polymers. The raw data is not
presented in the paper. For the dielectric data the best curve of a Havrilak and Negami
fit is used. The shear data is taken from the book of Ferry [1961], and time temperature
superposition is assumed in order to use them.

It is easily seen in figure 2 and 4 of Dimarzio & Bishop [1974] that there is a problem
with the high frequency limit of equation 4.3.3, as the curves calculated on basis of the
shear mechanical data have a high frequency plateau value considerably greater than
the dielectric data. On top of this discrepancy the rest of the fit is also rather poor. The
authors focus on the fact that the DiMarzio-Bishop model predicts the skewed arc shape
of the Cole-Cole plot of the dielectric data.

The best fits are obtained with radii ranging from 0.95Å to 2.3Å depending on sub-
stance. These values might be reasonable as it is probably the sidechains rather than the
whole polymer that is relaxing.

4.6.2 Díaz-Calleja et al. [1993]

The objective of this paper is to compare the significance of what is called “dielectric
friction” and mechanical friction on the relaxation of the dipoles [Díaz-Calleja et al.,
1993]. This is done by comparing the result of the original Lorentz field version of the
DiMarzio-Bishop model to the version suggested by Díaz-Calleja et al. [1993] in which
the Fatuzzo-Mason field is applied.

The DiMarzio-Bishop model is in both cases tested by using the value r = 2Å. This
value is not fitted, but used because the size of relaxing entity is expected to be of that
order. n2 = ε∞ is additionally assumed. Consequently it is in fact equation 4.4.5, which
is tested, rather than the original equation 4.3.3.

The comparison between dielectric data and model values calculated from shear data is
displayed in a Cole-Cole plot and in a plot of the real part of the spectra. In the Cole-
Cole plot the shape of the calculated dielectric constant has a clear resemblance to the
measured dielectric constant. In the plot of the real part the calculated dielectric con-
stant is shifted considerably towards lower frequencies, and possibly also lower plateau
values, compared to the measured dielectric constant.

It is found that the Fatuzzo-Mason version of the DiMarzio-Bishop model gives slightly
better agreement, though the difference is minor. It is concluded on this basis that the
“dielectric friction” is of lesser importance than the mechanical friction.
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4.6.3 Christensen & Olsen [1994]

The version of the DiMarzio-Bishop model which is formulated in equation 4.3.9 is
tested against data from two molecular liquids.

The dielectric and shear mechanical data are not obtained at the same temperatures and
therefore time temperature superposition is assumed in order to compare the two.

The frequency span (10Hz-60kHz) of the shear data is greater than that of any of the
other data we have seen reported. In spite of this the high frequency plateau of the shear
data is not reached by the measurements and its value is therefore fitted in such a way
that the agreement of the Cole-Cole plots is optimized. By this procedure extremely
good agreements are obtained in the Cole-Cole plots, yet the agreement between the
positions of the loss peak frequencies, is quite poor.

The authors write that they can bring the loss peaks to coalesce by reintroducing the
induced molecular polarization as a fitting parameter. However this alters the shape
of the cole-cole-plots and in the case of 1,3-butandiol the fitted value of αi becomes
negative, which is highly unphysical.

4.6.4 Zorn et al. [1997]

In this paper Zorn et al. [1997] presents a general analysis of the dielectric behavior
of different 1,2-1,4-polybutadienes2. A comparison with earlier shear mechanical data
from Zorn et al. [1995] is also presented.

The comparison of shear data and dielectric data is partly done in terms of the model
by DiMarzio-Bishop, as it is formulated in equation 4.3.3. In Zorn et al. [1997] the high
and low frequency plateaus are not reached by the measurements, and ε∞ is therefore
handled as a fitting parameter. By using ε∞ as a fitting parameter it is not assumed that
it corresponds to the high frequency plateau value of the dielectric constant. This means
that in the use of Zorn et al. [1997] there is effectively no difference between equation
4.3.3 and the correct equation 4.4.5.

ε∞ is fitted along with r using the imaginary part of equation 4.3.3. The directly meas-
ured dielectric data is compared to those calculated from the shear data in a plot of the
loss peak. The fits are quite poor, which is also the conclusion of the authors. Despite
this conclusion they find that the values of r (10Å − 20Å) determined from the fitted
value of r are reasonable compared to the expected size of the relaxating entity. Further
they find that r has a dependence on the micro structure of the molecules which is in
agreement with the expected.

4.6.5 Ferri & Castellani [2001]

In this paper the DiMarzio-Bishop model is tested on the segmental relaxation of two
different polymers. The test is done by comparing the loss of the dielectric relaxation
with model results found from shear data. The exact procedure is close to that of Zorn
et al. [1997]. The agreement between the peak shapes is poor, the calculated peaks are
too wide, but the loss peaks positions agree reasonably. The fitted values for r are 0.6Å
and 1.1Å for the two polymers respectively. These values are too small compared to

2We have also made measurements on a polybutadien, but none of the molecules used by Zorn et al. [1997]
agree in the composition of the two different monomers, with the one we study.



42 The Debye model and the DiMarzio-Bishop model

what the authors expect, but they argue by using the result of Zorn et al. [1997], that the
difference found between the two values is due to an actual difference in the size of the
relaxing entity.

In section 4.8 we will give a brief discussion of why further testing of the DiMarzio-
Bishop model is needed and present the background for our tests. Before this we return
to the question of the significance of the local field, as these consideration are of import-
ance for our practical approach.

4.7 Influence of the local field when the dielectric relaxa-
tion strength is small

In section 3.2.2 we illustrated how the Lorentz field and the Onsager fields approach
each other as αr approaches zero. In this section we will continue this line of thought
and show that the choice of local field is of little importance in the DiMarzio-Bishop
model, when the dielectric strength of the liquid is small. This serves as the background
for a systematic approach to studying the significance of the local field.

4.7.1 The dielectric strength as a measure of the rotational contribu-
tion

For some liquids the dielectric relaxation changes the total dielectric constant with just
1% − 10%. It is the rotational polarization which gives rise to the relaxation process.
This indicates that the rotational contribution to the dielectric constant is small com-
pared to the induced polarization when the dielectric strength is small. A small relax-
ation would also be seen in the case of a large rotational polarization with very little
frequency dependence, as would be found in the case of a large elastic contribution
to the rotational polarization. This scenario would, however, lead to a much greater
high frequency plateau value εh than the εi = n2 value. In our study of liquids with
small dielectric strength we find that the high frequency plateau value deviates from
the squared refraction index by the same order of magnitude as the size of the dielectric
strength itself (see chapter 6). This implies that the total contribution of the rotational
polarization is of the same order of magnitude as the relaxation strength.

The frequency dependent, and the equilibrium dielectric constant, for liquids with small
relaxation strength, can therefore be expressed as

ε(ω) = εi + δ(ω) and εe = εi + δe, (4.7.1)

where δ(ω) ≤ δe � εi, and where both delta values are due to the rotational contribu-
tion.

4.7.2 The DiMarzio-Bishop model with the Maxwell field

The following relation pops up immediately if the Maxwell field is used as both direct-
ing and inducing field in the relation between macroscopic and microscopic polarization
(equation 3.2.5) and the microscopic DiMarzio-Bishop model (equation 4.2.7) is used for
the description of αr:

χ(ω) =
Nµ2

3ε0kBT
1

(

1 +
(

4πr3

kBT

)

G(ω)
) +

N
ε0

αi . (4.7.2)
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We introduce the equilibrium and the induced molecular dielectric constants

εe − 1 = χe =
Nµ2

3ε0kBT
+

N
ε0

αi (4.7.3)

εi − 1 = χi =
N
ε0

αi , (4.7.4)

which allows us to rewrite equation 4.7.2 as

ε(ω)−εi

εe −εi
=

1
(

1 +
(

4πr3

kBT

)

G(ω)
) (4.7.5)

in total analogy with the procedure in section 4.4 where the Lorentz field was used.

Solving for the shear modulus G(ω) yields

G(ω) =

(

kBT
4πr3

)(

εe −εi

ε(ω)−εi
− 1
)

(4.7.6)

The equivalent result found in equation 4.4.7 by using the Lorentz field was

G(ω) =

(

kBT
4πr3

)(

εi + 2
εe + 2

)(

εe −εi

ε(ω) −εi
− 1
)

. (4.7.7)

Both these equations can be posed as

G(ω) = K1
1

ε(ω)−εi
+ K2 or G(ω) = K3

(

εe −εi

ε(ω)−εi
− 1
)

. (4.7.8)

where three independent parameters appear, as always.

This has the consequence that the Maxwell and the Lorentz versions of the DiMarzio-
Bishop model field will yield fits of the same quality if all three parameters3 are fitted
with no additional constraints. The values of the lumped parameters can of course be
used to solve for the “original” parameters εe and r, and the results found for r will
depend on whether the Lorentz or the Maxwell field is used.

The difference between the two local fields is that when the Lorentz field is used a factor
of (εi+2)/(εe+2) is introduced. Liquids with a small strength, will have εe ≈ εi, which
signifies that the difference between using the Lorentz field and the Maxwell field is
smaller the smaller the dielectric strength.

4.7.3 The Fatuzzo-Mason version of the DiMarzio-Bishop
model when the dielectric strength is small

Inserting the expression of εe and ε(ω) from equation 4.7.1, in the Fatuzzo-Mason field
version of the DiMarzio-Bishop model (equation 4.5.2) leads to

G(ω) =
kBT
4πr3

(

−3εi
2δ (ω) − 2εi (δ (ω))2 + 3 δeεi

2 − 3 δe (δ (ω))2 + 2εiδe
2 + 3 δ (ω) δe

2
)

(εi + δe) δ (ω) (3εi + 2 δ (ω))

3Which three parameters are chosen will not affect the fit within the precision of the fitting procedure, but
posing the equation in this form makes it easy to see the equivalence between the two results.
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If only the leading terms in the small quantities δi and δ(ω) are kept in the denominator
and numerator respectively the expression reduces to

G(ω) =

(

kBT
4πr3

)(

δe

δ(ω)
− 1
)

=

(

kBT
4πr3

)(

εe −εi

ε(ω)−εi
− 1
)

(4.7.9)

which can be recognized as the expression obtained when the Maxwell field is used.

Excluding all other terms than the terms of lowest order in δe and/or δ(ω) can only be
justified if the two delta terms are of the same order of magnitude. This will always
hold at the low frequency end of the spectrum, whereas it might not hold in the high
frequency end of the spectrum. δ(ω) goes to zero at high frequencies in the original
Debye model making it unjustified to use the approximation above. δ(ω) will approach
a finite value in the case of the DiMarzio-Bishop model (if the high frequency plateau is
properly treated). Thus the expression is better justified for testing this model. Anyhow
the expression supports the assertion that the choice of local field is of lesser importance
the smaller the dielectric strength is.

It is not surprising that the local field has less importance when the dielectric strength
is small. Nevertheless it is an important result because it allows for a more systematic
discussion of the influence of the local field on tests of the DiMarzio-Bishop model.

In Díaz-Calleja et al. [1993] the importance of the local field is as mentioned earlier dis-
cussed on the basis of a comparison between results from the DiMarzio-Bishop model
with the Clausius-Mossotti approximation and the DiMarzio-Bishop model expressed
in terms of the field developed in Fatuzzo & Mason [1967]. It is claimed that such a com-
parison is a probe on how important the lagging behind of the reaction field (referred to
by Díaz-Calleja et al. [1993] as dielectric friction) is compared to the mechanical friction
described by the DiMarzio-Bishop model.

The discussion above shows that even if the choice of local field is important, then it
is very likely that this cannot be seen in liquids with small dielectric strength, and the
importance is expected to be increasing with increasing dielectric strength. Hence the
dielectric strength can have a major influence on the conclusions when studying the
significance of the local field. It therefore clear that such a study should not be made
without testing on liquids with different dielectric strength.

4.8 Our experimental goals

In section 4.6 we summarized the earlier tests which have been made of the DiMarzio-
Bishop model by others. It is difficult to draw any final conclusions from these tests.

One problem is that a lot of different procedures are used in the testing, regarding the
fitting or determination of parameters in other ways. Some of these procedures are
erroneous4 others are just difficult to compare and to conclude upon. It is specifically a
problem that there is no consensus on how r should be interpreted, hence what values
should be expected. Most of the tests are made in the susceptibility formulation with
the Clausius-Mossotti approximation, making all three parameters (r, εe and εi (or εh))
influence on both loss peak shape and position. Another problem is the local field,
which has not been discussed systematically, in connection with any of the earlier tests.

4We refer here to the earlier discussed problem in Dimarzio & Bishop [1974] where G∞ = ∞ is assumed
and Christensen & Olsen [1994] where χi = εi − 1 = 0 is assumed.
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It is consequently difficult to know if the explanation of poor fits lies in the choice of
local field or in inadequateness of the DiMarzio-Bishop model itself.

We have there performed comparable shear mechanical and dielectric measurements
on a series of liquids, which have been specifically chosen, in order to enable a broad
and systematic test of the DiMarzio-Bishop model.

4.8.1 Requirements to the series of liquids

We have aimed at finding molecular liquids which differ in dielectric strength and to
include liquids both with and without a beta relaxation.

Molecular liquids are chosen rather than polymers because we want to avoid extra de-
grees of freedom due to movement of side chains. The approximation by spherical
molecules which is the starting point of the DiMarzio-Bishop model also seems more
appropriate for a smaller molecule.

Testing whether the DiMarzio-Bishop model’s predictions holds better for small dielec-
tric strength than for large dielectric strength can give an indication of whether disagree-
ments are due to the local field problem. It is additionally possible that the DiMarzio-
Bishop model’s assumption of no correlation of the direction of the molecules might
hold better if the dipoles are small.

Since all alpha relaxations look much alike, the demands, on what the model should
predict for different liquids, are limited. By including liquids with a beta relaxation we
achieve a variation of the relaxation spectrum and we hereby obtain a stronger quant-
itative as well as qualitative test of the DiMarzio-Bishop model. The beta relaxation is
also interesting because shear mechanical beta relaxations are very rarely studied. It
is thus interesting to make even simple phenomenological assertions about the shear
mechanical beta relaxation and its relation to the dielectric beta relaxation.

4.8.2 The actual choice of liquids

Nature has unfortunately made it difficult for us to fulfill all the requirements. We
will in this section give a short presentation of the liquids we have choose, and the
compromises that lead to some of the choices.

We refer to the liquids by the abbreviations given in table 4.1. Relevant information
about the substances is also shown in table 4.1.

TPE, DC704 and PPE are liquids without a visible beta relaxation, and the dielectric
strength varies from very small to rather large.

Squalane, PB20, DHIQ and TPG have a visible beta relaxation, and have dielectric
strength varying from extremely small to very large.

The main problem has been finding a molecular liquid with a small dielectric strength
and a beta relaxation (with its peak in the frequency span where we can access it). We
have chosen squalane, but the dielectric strength is so small that we hardly get a dielec-
tric signal (see chapter 6). Polybutadiene is a polymer5 but complies with the other
demands, and we have therefore chosen to include it in the study.

5The polybutadiene (PB20) is composed of chains with an average of 80% 1, 4- and 20% 1, 2- butadiene
monomers. The monomer molecular weight is 54.09g/mol and the average molecular weight of a chain is
5.000g/mol.
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By this choice of liquids we have a series of liquids that allows us to perform detailed
testing of the DiMarzio-Bishop model.

All liquids are used as acquired, see section 5.4 for a discussion of chemical stability
and handling of the liquids. We will in the next chapter present details about the exper-
imental equipment, procedures and uncertainties.

DC704 is very chemically stable [Olsen, 2003], [Sigma-Aldrich, n.d.]. It is used as a stand-
ard liquid in our laboratory and it has been found to have a pure alpha relaxation which
obeys TTS [Olsen, 2003]. We have therefore used DC704 as a reference liquid for testing
reproducibility and noise level on our data.

n2 M Tg m γ ∆ε εh νβ,lp

TPE
Triphenylethylene

– 256.3 g/mol 249K 73 3.5 0.05 2.71 –

DC704
Tetramethyltetraphenyl-

trisiloxane

2.430 484 g/mol 211K 83 3.9 0.2 2.63 –

PPE
Polyphenyl Ether

2.659 454 g/mol 244K 80 3.9 1.5 2.95 –

Squalane
Perhydrosqualene

2.105 422.8 g/mol 167K 64 2.9 0.015 2.15 104.5Hz

PB20
Polybutadiene

2.310 5000 g/mol 176K 79 3.7 0.15 2.35 104.5Hz

DHIQ
Decahydroisoquinoline

2.221 139.2 g/mol 179K 154 8.3 1.5 2.2 102.7Hz

TPG
Tripropylene glycol

2.085 192.3 g/mol 190K 65 3.0 20 2.8 104.0Hz

Table 4.1 Data on the chosen substances.
Refraction index (n), molecular weight (M), glass temperature (Tg), Angell fragility index (m),
Olsen index (γ), dielectric relaxation strength (∆ε), dielectric high frequency plateau value (εh),
and position of the beta loss peak (log10(νβ,lp)).

The refraction index (taken at 25◦C) and molecular weight of PPE is from Scientific In-
strument Services, Inc. [n.d.]. The refraction index of PB20 was measured on a PZO RL3
refractometer at approximately 28◦C. No refraction index is given for TPE because it is a solid at
room temperature. The refraction index (taken at 20◦C) and molecular weight of other liquids
are from Sigma-Aldrich [n.d.].
∆ε = εe − εh, εh, and the position of the beta loss peaks are rough numbers found from our
dielectric data, the precise value is temperature dependent.
Tg and fragility indices are also based on our dielectric data, (see section 13.3 for details on how
they are found).
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In this chapter we present the two measuring methods that we use, along with a present-
ation of our general experimental setup, and procedures.

We present a thorough analysis of the uncertainties and systematic errors involved. This
analysis is crucial because we aim to compare data from two different methods, and
therefore some of the uncertainties which normally are disregarded (e.g. absolute val-
ues) need to be accounted for.

5.1 Measuring a capacitance

Common to the two methods we use, is that a frequency dependent capacitance needs
to be determined with great accuracy. In this section, we will describe the capacitance
measuring setup and its accuracy.

5.1.1 The setup

Our setup consists of a HP3458A multimeter in conjunction with a Keithley AWFG used
at frequencies in the range 10−3 − 102Hz, and a HP 4284A LCR-meter used at 102 −
106Hz.

The two different setups are connected to the measuring cell through a relay, giving the
opportunity of automatic switching between the two frequency ranges. Everything is
controlled from a computer enabling automatic measurements.

LCR-meter method

The 4284A LCR-meter is a commercial LCR-meter and is used directly to measure the
complex capacitance of the sample.

Multimeter method

The multimeter measurements are performed on a homebuilt setup which is based on
a voltage divider. The total input voltage is known, and the output voltage is measured
over a known component, Ci, consisting of a 10nF capacitor in parallel with a 100MΩ

resistor (see figure 5.1).

The unknown capacitance, Cx is found from the ratio between input and output voltage:

Uout

Uin
=

Uout

Ux + Uout
=

Cx

Ci + Cx
⇔ Cx =

Uout

Uin − Uout
Ci (5.1.1)

47
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Figure 5.1 Schematic illustration of the multimeter method. See the text for details.

where Ux is the voltage over the unknown capacitance Cx.

In order to use the above equation, the exact value of Ci has to be known at all fre-
quencies. This is obtained by a calibration in which Cx is interchanged with a known
capacitor of about the same order of magnitude as the real part of Ci. The leaking cur-
rent, which inevitably is in the system, is modeled by a 1 · 1016Ω resistance in parallel
with this capacitor. The frequency dependent Ci is found by making a measurement on
this system. The calibration of Ci is done for each specific measuringcell holder, which
means that resistance and capacitance of all1 the wiring is included in Ci.

Typical spectrum
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Figure 5.2 Real and imaginary part of capacitance of the empty dielectric cell, measured at
approximately 200K, in vacuum.

A measurement on the dielectric measurement cell (a 22 layer platen capacitor with
capacitance of approximately 68pF) is show on figure 5.2 to give an overview of the
systems performance.

1Except the final connection between the measuring cell and the holder.
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The ideal spectrum in figure 5.2 would be a constant real part and a zero imaginary part.
It is seen that the spectrum deviates somewhat from this ideal spectrum. The deviations
are due to systematic errors in the LCR-meter and noise.

5.1.2 Systematic errors in the LCR-meter frequency range

In this section we describe the systematic errors of the LCR-meter and account for how
we have dealt with them.

The errors seen in the right plot in figure 5.2 are systematic2, but changes slowly with
time, and they change abrupt if the LCR meter is restarted. There is a problem at low
frequencies (100Hz to roughly 10kHz) mostly seen as a negative imaginary part, a high
frequency anomaly seen as a increase in the imaginary part, and finally there are repro-
ducible nicks in both the imaginary and real part. These features are not related to the
dielectric cell but are found in all our measurements.

The high and low frequency problems in the imaginary part are partly additive, which
make it possible to eliminate them to some extend. This also has the consequence that
the artifacts are seen less in measurements of bigger capacitances. The nicks in the
spectrum, however, are not additive, and show up in most of our measurements at the
same frequencies. We believe that the non-additivity of the nicks is due to changes of
internal modes in the LCR-meter.

Dielectric measurements

The artifacts from the LCR-meter show up directly in the dielectric measurements, and
are handled in the following way.

The systematic errors are of minor importance in the real part of the signal (notice the
axis in figure 5.2) as they are in general of much smaller scale than the variation in capa-
citance, which we wish to observe, however this is not the case regarding the imaginary
part. The simplest way to deal with the problem in the dielectric measurements is to
subtract an imaginary part of a measurement on a pure capacitor from our raw data.

The problem with this procedure is, as described, that the errors changes with time,
and therefore a complete removal of the artifacts is not possible. In the measurements
on substances with a small dielectric strength, the problem becomes fatal because they
have small imaginary parts.

Shear mechanical measurements

The systematic errors of the LCR-meter have a minor influence on the shear mechanical
measurement. This is due to two things: Firstly the calculations of the shear modulus
limits the problem, since a reference spectrum is subtracted from the measurement (see
section 5.3.2), and secondly the capacitance of the shear transducer is somewhat larger
than the errors (real parts are typically 10nF and imaginary parts are typically 0.1nF).
However, the high frequency nicks are seen in our shear data.

2The high frequency artifacts could also be due to the inductance and resistance of the wiring. This would
give a negative capacitance at the high frequencies, but that is not what we see.
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5.2 Dielectric measurements

In this section the dielectric measuring method is presented. The noise due to the lim-
its of the equipment is evaluated, and we analyze systematic errors that occur due to
improper filling of the measuring cell and thermal contraction.

5.2.1 The dielectric cell

The dielectric measuring cell is a multilayered golden platen capacitor with an empty
capacitance of Cempty ≈ 70pF. We use two capacitors which differ slightly in value.
The capacitance of the empty capacitor is regarded as frequency independent, and this
holds with an accuracy of approximately 0.1% (see figure 5.2).

The dielectric constant of a liquid is found by placing the liquid between the plates in
the capacitor, and measuring the capacitance. From this capacitance of the full cell the
dielectric constant (ε) of the liquid can be found by using the equation:

C =
ε0 A
d0

ε = Cemptyε. (5.2.1)

5.2.2 Accuracy

We have estimated the noise over signal ratio, by looking at the measurement on the
empty capacitor, which was shown in figure 5.2. It is seen that the absolute level of
noise on the real part is about 0.1pF on a capacitor with a capacitance of approximately
68pF. Leading to a relative accuracy ∆Cnoise/C of approximately 0.1%.

Since we have found that our worst problem is with measuring the imaginary part of the
dielectric constant of substances with a small strength, we have studied this situation
in more detail. This is done by estimating where noise starts to dominate over signal in
the imaginary part of a dielectric spectrum taken on the substance DC704. The spectra
is shown in figure 5.3.

We present the limits of the data resolution as levels of dielectric constants because this
is what we mostly will need, but if raw capacitances are needed they can be obtained
by multiplying with the geometric capacitance 68 · 10−12F (corresponding to a shift of
approximately 10 decades on the logarithmic scale).

It is seen that below −ε′′ = 10−3F noise is dominant in the high frequency end (in agree-
ment with the noise seen on the imaginary part in figure 5.2). As a rough procedure we
choose to only use data from the −ε′′ > 10−3F range, but in special cases this range
can be extended if care is taken. Above −ε′′ = 10−2F the signal dominates over noise
(except for a small deviation seen in some data sets just below 106Hz apparently due to
the sharp rise seen in the high frequency end of the spectrum of the empty cell).

In the interval 10−3F < −ε′′ < 10−2F the accuracy becomes highly frequency depend-
ent. In the high frequency end the errors from the LCR meter are seen. Due to this we
choose to exclude this frequency range when dealing with small dielectric losses. At the
crossover between the two measuring methods some noise is seen, but it is also seen
that the curves generally pass through the crossover and return to the same slope as
before. Care should of course be taken if data sets end right at the crossover or if the
loss peak position is at the crossover.
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Figure 5.3 A dielectric spectrum of DC704. 209.4K to 239, 7K in steps of approximately 2K per
curve. A background was subtracted before dividing with the geometric capacitance (see section
5.1.2).

In conclusion we generally exclude the following data

−ε′′ < 10−3F (5.2.2)

f > 105Hz and −ε′′ < 10−2F (5.2.3)

5.2.3 Systematic errors

There are a number of problems regarding the determination of the absolute value of
the dielectric constant.

Firstly it is impossible to determine the exact value of the empty capacitance of the cell.
This is because the distance between the capacitor plates varies as the temperature is de-
creased. When we determine the empty capacitance at some desired temperature (typ-
ically 100K below room temperature) the cell has been contracting from room tempera-
ture empty whereas it contracts with the liquid, when we measure the capacitance of the
cell with liquid. The contraction in the first case is determined by the expansivity of the
spacers in the cell, while it is the expansivity of the liquid that dominates the contrac-
tion in the latter case. Thus the empty capacitance we need is that of an empty capacitor,
which has a spacing between the plates as if it had been contracting full, however this
value is not known.

A related problem is that the capacitor, due to thermal contraction of the liquid, might
not be totally filled and this further complicates the question of what empty capacitance
should be used.

An additional problem is that it is difficult to fill the capacitor properly. This problem
has been revealed by reproduction measurements, where we have found that different
degrees of filling can explain differences in results from liquids, which we believe are
chemically stable.

The measured capacitance is given by

Cm =
ε0 A

d
bε +

ε0 A
d

(1 − b) (5.2.4)
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where A is the area of the capacitor plates, d is the spacing between the plates, b is the
fraction of the capacitor which is filled with the liquid and ε is the dielectric constant of
the liquid.

We divide the measured capacitance by the capacitance of the empty cell to obtain the
measured dielectric constant. The capacitance of the empty cell is:

Cempty =
ε0 A
d0

, (5.2.5)

where d0 is the spacing between the plates when the capacitance of the empty capacitor
is measured.

Assuming that d = d0(1 + ∆d), where ∆d � 1, and that b = 1 − ∆b where ∆b � 1 and
keeping track of first order terms in ∆b and ∆d leads to the following relation between
the measured dielectric constant εm and the actual dielectric constant

εm = ε (1 − ∆b − ∆d) + ∆b (5.2.6)

= ε − ∆dε + ∆b(1 −ε). (5.2.7)

This shows that the measured dielectric constant will be smaller than the actual dielec-
tric constant for ∆b > 0 (unfilled capacitor) and ∆d > 0 (a greater distance between the
plates in the full than empty cell). The typical situation is ∆b > 0 and ∆d < 0, and the
two effects will therefore counteract each other. We return to this problem in section 7.2,
where we study the temperature dependence of the high frequency dielectric constant.

The error described above will not effect the frequency dependence, but only the meas-
ured absolute value.

5.2.4 The effect of uncertainties on reproduction of experiments

When we want to check if our results are reproducible we compare two different meas-
urements taken on the same liquid using the same dielectric cell. This means that the
degree to which the capacitor is filled may vary. The distance between the plates will
approximately be the same in the two experiments since it is the same liquid that is
contracting in the two cases, and the (small) difference in filling will not influence the
degree of contraction significantly.

The two measured dielectric constants (designated εm1 and εm1), will thus be described
by two equations of the same type as 5.2.6 in which the filling degree parameters ∆b1

and ∆b2 are different whereas the distance between the plates is the same. Assuming
that the dielectric constant of the liquid is unchanged the relationship between the two
measured dielectric constants will, to first order, be:

εm1 = (1 − ∆b1 + ∆b2)εm2 + ∆b1 − ∆b2 = fεm2 + (1 − f ) (5.2.8)

with f = 1 − ∆b1 + ∆b2 ≈ 1 (5.2.9)

This equation should hold at all frequencies with the same factor f , and this factor
should not have any significant temperature dependence. (The contraction in the plane
can lead to a smaller filling degree, but this will happen at the same rate in the two
experiments as it is the same liquid in the two cases).
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Figure 5.4 Raw data from two different dielectric measurement taken on DC704. Dashed
lines from one measurement, solid lines from a measurement taken several months later. The
temperatures are 221.5K and 223.5K in both cases.

5.2.5 A dielectric measurement of reproducibility

Figure 5.4 shows data from two different dielectric measurements under the same phys-
ical conditions on the silicone oil DC704. DC704 is as mentioned in the presentation of
the substances (see section 4.8) very chemically stable and therefore we consider these
curves a measure of how well we can reproduce dielectric results. These curves show
that the shape of the relaxation peak is reproduced with high accuracy whereas there is
a deviation of approximately 2% on the absolute value. The difference in absolute value
can be explained by an un-perfect filling of the measuring cell. By use of equation 5.2.8
with f = 1.03 the absolute values are brought to agree. This is depicted in figure 5.5,
and we regard this plot as a measure of the quality of our dielectric measurements.

5.3 The piezoelectric shear modulus gauge (PSG)

The shear measurements are performed with a piezoelectric shear modulus gauge
(PSG). The PSG has been developed at IMFUFA by T. Christensen and N. B. Olsen.
The principle of the PSG and the full analysis leading to the shear data is reported in
Christensen & Olsen [1995].

In the following section we will give a review of the physical principle behind the
method and report some of the practical problems that are important for the routines
and precautions that have to be taken when using the PSG. We also present an ana-
lysis, which has not been performed earlier, of how the uncertainties involved affect the
results, especially regarding the influence on the position and shape of the loss peak.

5.3.1 General principle and construction

The PSG is a sandwich construction of three piezoceramic discs, each coated with a thin
conducting layer at the top and bottom. There is a 0.5mm gap between the discs, and
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Figure 5.5 Data from two different dielectric measurements taken on DC704. The data are the
same as in figure 5.4. Agreement in the absolute values is obtained by using equation 5.2.8 with
f = 1.03. Dashed lines from one measurement, solid lines from a measurement taken several
months later. The temperatures are 221.5K and 223.5K in both cases.

the liquid to be studied is loaded in these gaps.

When an electric field is applied over the discs they expand (or contract depending on
the direction of the field compared to the polarization of the disc) in the radial direction.
The measurements are performed by measuring the capacitance of the combination of
the three discs. The disc are electrically connected as illustrated in figure 5.6, which
means that there is a field over each of the discs, but none over the gaps between them.

Figure 5.6 The electric connections of the discs in the PSG. The dot illustrates the polarization
direction of the pierzoceramics. [Christensen & Olsen, 1995]

The capacitance of the piezoceramic disc depends on the strain of the ceramics, and the
strain depends on how free the ceramics are to move. The shear modulus of the liquid
between the plates in the PSG hinders the movement of the plates, making the measured
capacitance dependent on the shear modulus of the liquid, and this is the central idea
of the PSG.

One of the problems which usually appear when measuring the shear modulus on glass
forming liquids close to the glass transition is that the rigidity of the liquid becomes
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comparable to that of the rheometer, leading to an undesired deformation of the rheo-
meter. This problem does not appear in the PSG because the deformation of the meas-
uring gauge is an integrated part of the method. Another great advantage of the PSG
when doing linear experiments is that the strain is approximately 10−6, which is an
extremely low value, making nonlinearity no problem. [Christensen & Olsen, 1995]

5.3.2 Technical details and complications

In order to obtain shear mechanical data, it is of course necessary to calculate the exact
connection between the shear modulus and the measured capacitance. This is possible
in the case of the PSG due to a very convenient construction and geometry.

The voltage over the central disc is twice that of the outer discs and opposite direc-
ted, while the discs are all directed with the polarity in the same direction (parallel to
the field). This means that the middle disc moves inward while the outer ones move
outward and vise versa. The middle disc is also subjected to twice the mechanical ten-
sion of the outer discs, because the net tension on each liquid layer is zero and because
the inner disc is in contact with two layers of liquid. The double tension and double
voltage on the middle disc leads to double charge and double displacement compared
to the outer discs, since the displacement and charge are given by the mechanical ten-
sion and the electric voltage via the elastoelectric matrix3. Therefore the middle disc has
the same capacitance (double charge and double voltage) as the outer ones, making the
total measured capacitance 3/2 of this, due to the electrical connection. The movements
of the discs result in neutral planes in the liquid displacement fields 1/3d from the outer
discs, where d is the distance between the plates. The neutral plane can be regarded as
an infinitively rigid support, because the points in this plane do not move.

By combining all this it can be realized that the mathematical problem of finding the
capacitance of the PSG as a function of the shear modulus of the liquid is equivalent to
finding (3/2 of) the capacitance of one piezoceramic disc with a liquid layer of thickness
1/3d clamped between the disc and an infinitively rigid support. From this stage the
calculation of the capacitance is done in two steps. First the capacitance of the disc is
found as a function of the outer radius of the disc by using the elastoelectric matrix of
the piezodisc, and an integration of the charge. Second the outer radius of the disc is
found as a function of the liquid shear modulus by solving the equation of motion for
a differential element of the piezodisc. This is done by using the boundary condition
that the disc does not move in the center, it is free to move at the edges and on one
side, and that it has a no slip connection to the liquid on the other side. The tangential
stress is assumed to decrease linearly from the liquid to the free side of the plate and
the displacement of the plate is assumed to be strictly radial. The stress applied by
the liquid is found by assuming that the liquid deformation is pure shear and that the
liquid does not change its thickness. In practice there will be a small volume change.
However, the relative volume change is of the order of magnitude ∆R/R0, while the
shear deformation is approximately ∆R/d, where R0 is the radius of the transducer and
∆R is the change in radius. Hence the ratio between relative volume change and shear
deformation is approximately given by d/R0, which in the PSG is 3%.

The liquid is loaded in to the transducer at room temperature, and it is hereafter cooled
down to a little above the glass temperature, typically at 150 − 250K. It is attempted
to fill the transducer such that the liquid is in line with the edge of the piezo discs, but

3The elastoelectric matrix is assumed to be the same for all three discs.
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the cooling of the liquid will make it contract. The effective radius of the liquid will
therefore be smaller than the radius of the disc at the time of the measurement. This has
to be included in the calculation of the displacement of the edge of the disc. A measure
of the filling degree, is introduced in order to do this.

xl =
Rl

R0
(5.3.1)

Rl being the radius of the liquid, and R0 the radius of the transducer disc. The motion
of the piezodisc is therefore solved by using two domains, the outer rim which has
no contact to the liquid and the inner part of the disc which has contact to the liquid.
The boundary conditions are as before, except for the outer rim which is subjected to
zero stress on both sides and the additional condition of continuity of displacement and
stress at the boundary between the domains.

The characteristic shear modulus, Gc, and the characteristic inertance, Mc, which define
a characteristic frequency ω2

c = Gc/Mc are introduced in order to make the problem
dimensionless. The characteristic inertance is given by the physical dimensions of the
PSG, Mc = ρdh, where ρ, h are the density and thickness of the piezoceramic disc. The
characteristic frequency is found from determining the first and second resonance fre-
quency of the empty transducer (see Christensen & Olsen [1995] p. 5023-5024 for de-
tails). The absolute uncertainties on the characteristics of the PSG lead to absolute un-
certainties on the measured modulus.

The frequency and shear modulus of the liquid are both normalized by these character-
istic quantities of the PSG

S =

(

ω

ωc

)2

V =
G(ω)

Gc
. (5.3.2)

The result which is used to find the shear modulus is a dimensionless quantity, describ-
ing the measured capacitance as a function of frequency, shear modulus of the liquid
and xl

F(S, V, xl) =
Cm − Ccl

C f − Ccl
(5.3.3)

where Cm is the measured capacitance, Ccl is the capacitance of the transducer as meas-
ured if the transducer is clamped, and C f is the capacitance of the transducer when the
piezoelectric discs are free to move.

A final complication is that C f and Ccl are frequency dependent due to dispersion in
the ceramics, but it is assumed that C f/Ccl is frequency independent. To cope with this
frequency dependence a new normalized capacitance Φ is introduced. It relates to the
measured and theoretical quantities by:

Φ(S, V, xl) =
Cm − Ccl

Cr − Ccl
=

F(S, V, xl)

F(S, 0, 1)
(5.3.4)

where Cr is a reference spectrum, of the empty transducer. This reference measurement
has to be made under the same physical conditions, including same temperature history,
due to thermal memory of the ceramics (see section 5.3.4), as the actual measurement.

The last step is to invert the equation in order to obtain G(ω) as function of Φ, x l and S.
The approximative inversion formula applied in the data analysis program, which we
have used is given by

G(ω) = Gc
a − bΦ +

√

(a − bΦ)2 − 4Φc(Φ − 1)

2Φc
(5.3.5)
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where a, b, c are functions of xl and S. Details can be found in Christensen & Olsen
[1995].

The validity of the inversion is also tested in Christensen & Olsen [1995], and the accur-
acy is reported as 5% for 0.95 < xl < 1.0 at frequencies below the first resonance of the
free transducer.

5.3.3 Precision

The more a relative change in modulus of the liquid changes the measured capacitance
the greater is the precision of a measurement. In Christensen & Olsen [1995] the sensi-
tivity defined as

Ψ = G
∂F
∂G

(5.3.6)

where F is the dimensionless capacitance defined in equation 5.3.3. Ψ depends on the
rigidity of the liquid and the characteristic modulus of the transducer Gc.

A measurement on a capacitor of same order of magnitude as the PSG capacitance,
10nF, gives Cnoise ≈ 0.002nF corresponding to a relative accuracy of approximately
0.05% on the measured capacitance.

A relative change in capacity is approximately equal to the change in F, hence it pos-
sible to calculate the relative accuracy of the shear measurements if Ψ is known. We
have determined Ψ from figure 18 in Christensen & Olsen [1995] and found that at
shear moduli around 10MPa the relative accuracy on the shear measurements becomes
approximately 2%, and at moduli at 100MPa the relative accuracy becomes 0.5%.

For practical purposes we mainly focus on the imaginary part of the shear modulus.
Here we cut of data which lies below 10MPa, and we believe that the uncertainty on
the loss peak shape above 10MPa, due to our electrical noise, is of minor importance
compared to the problem discussed in the next section.

5.3.4 Relaxation of the piezoceramics

The properties of the piezoceramics are strongly temperature dependent and have ex-
tremely long relaxation time. This is why it is necessary to make the reference spectrum
(Cr) at each desired temperature, and to do this with the same thermal history as the ac-
tual measurement. However it is impossible to obtain the same mechanical conditions
for the thermal relaxation of the piezoceramics in the reference measurement and the
actual measurement. The reference spectrum is taken on an empty transducer, where
the ceramic is free to move. In the actual measurement there is (of course) liquid in the
transducer and this influences the relaxation, especially at low temperatures, where the
liquid is very rigid.

The difference in relaxation can be seen at very low frequencies in the raw data. In
the ideal case there should be no difference between the capacitance of the empty and
the full transducer in the low frequency limit, because the shear modulus of the liquid
approaches zero. We do however often see a small difference, and this is handled by
scaling the curves to agree. In practice the factor is chosen such that the measured shear
modulus actually approaches zero, as is expected. Usually the scaling factor is around
1.005.
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5.3.5 Errors due to uncertainties in the degree of filling

The greatest problem regarding our shear measurements stems from not knowing the
degree of filling, xl . xl is not a quantity which is easily determined, and uncertainties in
its value can give uncertainties in the loss peak position and in the shape of the relaxa-
tion spectrum.

In the calculation of the shear modulus in the data analysis program, the following
expression is used to determine xl :

xl(T) =
Rl(T0)

R0

(

1 +
α∆T

2

)

(5.3.7)

where α is the thermal expansion coefficient which is assumed to be temperature inde-
pendent, T0 is room temperature, and ∆T = (T − T0). In the data analysis program (that
calculates our shear data from the measured capacitances) the ratio Rl(T0)

R0
is assumed to

be equal to one, that is it is assumed that the transducer is perfectly filled at T0.

If the filling of the PSG is not perfect or the expansion coefficient is poorly determined
an error will be introduced on the xl used in the inversion algorithm. We will first give
en estimate of the magnitude of these errors, and subsequently analyze what changes
they introduce on the calculated shear modulus.

Uncertainty due to unknown coefficient of expansion

The expansion coefficient is often difficult to find in the literature or on chemical data-
bases. We have therefore assumed that all the liquids have expansion coefficients in the
interval4 50 · 10−5 − 90 · 10−5K−1. And we generally use α = 70 · 10−5K−1, except of
the case of DC704 where we use α = 80 · 10−5K−1. This value has been measured by
the resonance method by Olsen [2003], and corresponds to a value given on an old data
sheet (which seems to be unavailable from the manufacturer).

To distinguish between the real physical degree of filling and the one assumed in the
inversion we introduce the following notation; xl,r for the real physical value of the
ratio of filling and xl,u for the one used in the inversion algorithm.

Typical values of the temperature jump are ∆T = −100K This gives an uncertainty on
the real xl,r of the oder of magnitude ∆xl,r ≈ 20·10−5K−1 ·100K

2 = 0.01. A typical value of
the used fraction of filling is xl,u = 1 − 70·10−5K−1100K

2 = 0.965.

Uncertainty due to different filling

The absolute precision of the filling is estimated to be ±0.2mm, and the radius of the
transducer is 1cm, giving a relative error of ±2% It might be argued that we should be
able to fill the transducer more precisely (especially given that the distance between the
discs is 0.5mm) but the problem is that we have to compare fillings made at different
times, and this increases the uncertainty. This leads to an uncertainty in x l,r of approx-
imately ±0.02, that is a larger uncertainty than the one due to the approximative values
of the expansion coefficients.

The uncertainty in determining the filling of the transducer and in determining the ex-
pansion coefficient leads to approximately ±3% uncertainty on xl,r.

4Typical expansions coefficients for liquids are given in Ferry [1961] as 60 · 10−5 − 100 · 10−5K−1. The
expansion coefficient of glycerol is known to be 50 · 10−5K−1.
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Estimation of uncertainty in the shear spectrum

We have performed model calculations to estimate how the uncertainties in the degree
of filling affects the final shear mechanical spectrum obtained from a measurements.
The tests were generally performed the following way: A simulated shear modulus
(Gs) was calculated from a shear modulus model, from this Φ was found using the
exact equations (with a given xl,r), and finally a calculated shear modulus, Gca, was
found from the approximative inversion formula (this time using a different degree of
filling, xl,u 6= xl,r). Because we generally use the same xl,u in our calculation of the shear
modulus on a given substance, we choose to fix this and let xl,r change.

A realistic shear signal was constructed using the extended Maxwell model (see ap-
pendix B) with parameter values G∞ = 2GPa, q = 1.5 and α = 0.5. The data for the
PSG were set as Mc = 6.4 · 10−4 and Gc = 6 · 107Pa [Christensen & Olsen, 1995] placing
the first resonance at approximately 105.8Hz.

In figure 5.7 it can be seen that errors in the degree of filling leads to shifts in the loss
peak position. It is generally seen that xl,u < xl,r leads to a shift of the found loss peak
to a higher frequency. It is also seen that there is a systematic error in the inversion al-
gorithm, if xl,r = xl,u the found loss peak becomes approximately 0.05 decade too high.
The consequence of this is that the symmetric uncertainty on xl,r leads to an asymmet-
ric uncertainty on the loss peak. It becomes more likely to find too high a loss peak
frequency than one which is too low.

The shape of the imaginary part of the shear modulus, is generally affected very little
by the differences in the filling factor. By close inspection it is found that an increase
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Figure 5.7 Change in loss peak position calculated as log Gca,lp f − log Gs,lp f (that is the loss peak
in the calculated shear modulus minus the loss peak of the real shear modulus), as a function of
the real filling factor xl,r. The filling factors used in the inversion algorithm, xl,u, are 0.94 (circles),
0.96 (crosses) and 0.98 (squares).
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Figure 5.8 The bold line is the real shear modulus (calculated from the extended Maxwell model).
The thin lines are the calculated shear modulus using xl,u = 0.96 and xl,r = 0.93, xl,r = 0.96, and
xl,r = 0.99. The curves are scaled to make the peak positions coalesce in order to make a direct
comparison of shape possible.

in xl,r (with fixed xl,u) leads to an increase in the width of the curve. At approximately
xl,r = xl,u − 0.03 the calculated curve gets the right shape, and at lower xl,r the calculated
curve becomes too narrow. The change in shape is most pronounced at the left side of
the peak. Figure 5.8 shows the deviation in shape from ±0.03 error on xl .

The absolute values of the shear modulus are also influenced by differences in the filling
factor. To analyze this we have made Cole-Cole plots of the calculated shear modulus
for different values of xl,r. The result is shown in figure 5.9. It is seen that the uncer-
tainty on the absolute values is approximately 50%. This is a very large error, but we
hardly ever use the real part of the shear data in our further work, thus it has little or no
influence on our conclusions.

Summary of uncertainties in the shear modulus due to uncertainties in the degree of
filling

If the degree of filling assumed when calculating the shear modulus is smaller than the
actual degree of filling (xl,u < xl,r), it has the following consequences; the calculated
loss peak is shifted to a higher frequency than the actual shear loss peak of the liquid,
and the absolute level of the real part of the calculated shear modulus becomes too high.
Finally the shape of the calculated shear loss peak becomes slightly too wide compared
to the real shear peak.

The total uncertainty on xl,r is approximately ±0.03, and there is a 0.05 decade syste-
matic error on the loss peak position, this gives a total measured loss peak position in
between νreal,lp + 0.2 and νreal,lp − 0.1, where νreal,lp is the physical loss peak position.

5.3.6 The effect of uncertainties on reproductions measurements

When comparing experiments on the same liquid the same expansion coefficient is used.
The differense between the measurements should therefore be explained by the uncer-
tainty in the initial filling alone.
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Figure 5.9 The bold line is the real shear modulus (calculated from the extended Maxwell model).
The thin lines are the calculated shear modulus using xl,u = 0.96 and xl,r = 0.93, xl,r = 0.96, and
xl,r = 0.99, with 0.93 being the inner curve with lowest absolute values and 0.99 the curve with
highest absolute values.

This uncertainty in xl,r was estimated to be ±0.02 leading to a maximum difference in
xl,r of 0.04 between measurements. From figure 5.7 it is seen that a difference of 0.04
in xl,r leads to a 0.2 decade difference in loss peak position, which thus is the largest
difference that we will expect as a result of differences in the degree of filling.

5.3.7 A shear mechanical reproduction measurement

The quality of our shear mechanical measurements is tested by comparing three differ-
ent measurements on DC704. In the following we report only the results of the two sets
that deviate the most (the last set lies between these two in all aspects), it should be
noted that the deviation seen in this test is the largest we have seen in any of our meas-
urements, normally we see better agreement between shear mechanical measurement.
The measurements are at the same temperatures. The results from the two different
measurements are shown in figure 5.10. The absolute values deviate with approxim-
ately 50% and the loss peak position differs by almost 0.2 decade. These discrepancies
are quite big but within the error that we expect from uncertainty in the degree of filling
of the transducer, and consistent with the type of discrepancies we expect. The largest
absolute values are found for the measurement which has the loss peak position at the
highest frequency. Figure 5.11 shows the same data, but now the loss peak is scaled in
order to make a comparison of the shape of the relaxation. The agreement is seen to be
good, which is also expected from our analysis, in the preceding sections.

Based on these measurements we asses that the main uncertainty on the shear meas-
urements is due to the problems with determining xl , and hence that the precession is
determined by the model calculations in section 5.3.5.
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Figure 5.10 Reproduction test of shear mechanical measurement taken on DC704. Dashed lines
from one measurement, solid lines from a measurement taken several months later (using a
different shear transducer). The temperatures are 225.5K and 223.5K.
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Figure 5.11 Reproduction test of shear mechanical measurement taken on DC704. Dashed lines
from one measurement, solid lines from a measurement taken several months later (using a
different shear transducer). The temperatures are 225.5K and 223.5K, and the data are the same
as in figure 5.10. The peaks are scaled so that the shape of the measured relaxation can be directly
compared. (There are really two dashed and two full curves, though this is difficult to see, due to
the large degree of TTS).
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5.3.8 Possible improvements of the determination of xl

The PSG itself offers a possibility of determining the value of xl [Christensen & Olsen,
1995], which we have not applied.

Besides the quasi-static method we have used and described, the PSG can also be used
in a resonance method. The principle is that the resonance of the measured capacitance
shifts when there is liquid in the transducer, and this shift is dependent on the shear
modulus. The method gives the shear modulus at the frequency of the resonance which
in practice means at around 1 · 105Hz. The result of this measurement is also dependent
on xl but in a different way than the quasi-static method. [Christensen & Olsen, 1995]

If the high frequency plateau value of the shear modules G∞ is reached by the quasi-
static method (that is below 1 · 104.5Hz) the same value should be found by the reson-
ance method. The values will only agree if the proper xl is used due to the different
dependence on xl . Thus a comparison can be used to determine the right value of xl .

The method described above does not work on DHIQ, TPG, squalane nor PB20 because
the beta process will lead to a frequency dependence of G in the relevant frequency
interval. The method could in principle have been used on DC704, TPE and PPE.

Our electrical setup has not been in a condition to use this method because the number
of frequencies monitored by the LCR-meter in the vicinity of the resonance is much too
scarce to determine the exact position of the resonance. This could of course be handled
by using a different instrument, but this would have required a considerable change of
the setup and it would (with the available equipment) have led to a large uncertainty
on the value of the measured capacitance.

5.4 The liquids; handling and chemical stability

As mentioned in the beginning of this chapter, chemical instability is always a problem
because it makes i difficult to compare measurement. With our focus on comparing
results from two different types of measurements it becomes critical to know if, and how
fast the substances we work with change due to chemical reactions. A solution could be
to make the dielectric and shear mechanical measurements simultaneously. However,
this has not been possible, except in a few cases, because we had full time access to only
one cryostat. In this section we will describe how we treated the substances, and show
tests of their chemical stability.

All liquids are used as acquired, that is no further purification was performed. The
PPE used is the Santovacr5P Vacuum Pump Fluid, and DC704 is the Dow Corningr

Diffusion Pump Fluid DC704. Everything else is acquired from Sigma-Aldrich.

DC704, PPE, squalane, PB20 and TPG are stored as liquids and are not very reactive.
They are loaded into the measuring cells at normal atmospheric conditions.

DHIQ is known to react very much with oxygen. The measurements we report on
DHIQ are therefore obtained from samples taken from a bottle right after the sealing was
broken. The breaking of the sealing as well as the loading of the gauge was performed in
a container with an atmosphere of a very high nitrogen (N2) concentration. The nitrogen
atmosphere was obtained by boiling 1L liquid nitrogen per 15min at the bottom of the
0.2m3 container from half an hour before and during the loading.
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TPE was obtained as a solid and it recrystallizes after melting when kept at room
temperature. We therefore melted TPE at about 370K and loaded it immediately after
by a glass syringe or a glass pipette into preheated measuring cells.

5.4.1 Tests of chemical stability

In the following we present comparison of different measurements on the substances.
We use dielectric data for these tests, because there are fewer experimental problems
with the dielectric measurements than with shear measurements.

The chemical changes can have very different time scales, from slow changes in the
bottle to changes during filling and measuring.

We generally find that we are able to reproduce the dielectric experiments, showing that
chemical changes of the liquids does not influence the results.

TPE Test of reproducibility on TPE is shown in figure 5.12. It is seen that all fea-
tures are well reproduced. It seems as there is a small problem with the real part, it
was impossible to scale all the curves onto each other. Some crystallization was observe
after the measurement (especially in the first measurement), and it is not possible to de-
termine if this crystallization only happened after the measurement or it has happened
before or during measurement.

PPE Test of reproducibility on PPE is shown on figure 5.13. It is seen all features in
the accepted data range are well reproduced. Further investigation show that the high
frequency behavior described in section 7 is also reproduced.

Squalane Dielectric data was compared to the data from Richert et al. [2003] which
was kindly provide in an electronic form by R. Richert. These data span a greater fre-
quency range (100 − 106Hz) than the data by R. Richert which are presented together
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Figure 5.12 Reproduction test of dielectric measurement taken on TPE. Dashed lines from one
measurement, solid lines from a measurement taken three months later. The temperatures are
256K, 262K, 268K and 274K in both cases. Values of the first data set is corrected according to
equation 5.2.8 with f = 1.006.
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Figure 5.13 Reproduction test of dielectric measurement taken on PPE. Dashed lines from
one measurement, solid lines from a measurement taken one and a half months later. The
temperatures are 246.0K, 252.0K, 258.0K and 264.0K, in both cases. The data is shown raw.

with our data in chapter 6. Good agreement between our data and the data from R.
Richert was found.

PB20 Test of reproducibility on PB20 is shown in figure 5.14. It is seen that the main
features are well reproduced, but that the strength is so small that the LCR meter prob-
lems become pronounced.

DHIQ DHIQ is as mentioned earlier known to be chemically unstable. To test if
DHIQ changes in the bottle two measurements from the same bottle are compared in
figure 5.15. A minor change in the loss peak frequencies can be seen, but the overall
spectrums are reproduced.

To test the consequence of exposing DHIQ directly to air, we performed a test in which
the dielectric cell was filled and measured, after this initial measurement, the cell was
exposed to air for some hours and a second measurement was taken, and it was found
that there was a significant change in the spectrum.

This all together shows that our way of handling DHIQ is sufficient to prevent chemical
reaction between the sample and the air.

TPG TPG is the only of the substance we work with that has a large conductance. This
is seen as a large signal in the imaginary part of the dielectric constant. The amount of
conductance is not reproducible from measurement to measurement but this does not
seem to give rise to any change in the other parts of the spectrum. In figure 5.16 two
measurements are shown, the samples are taken from the same bottle with a month
separating the two measurements. It is seen that there is a good agreement between the
two spectra, except for the conductance contribution.



66 Experimentals

−2 0 2 4 6
−3

−2.5

−2

−1.5

log
10

(ν) [Hz]

lo
g 10

(−
ε′

′)

2.4 2.45 2.5
0

0.005

0.01

0.015

0.02

0.025

0.03

ε′
−

ε′
′

Figure 5.14 Reproduction test of dielectric measurement taken on PB20. Dashed lines from
one measurement, solid lines from a measurement taken two weeks later. The temperatures are
176.0K, 182.0K, 188.0K, 194.0K, and 200.0K, in both cases. Values of the first data set is corrected
according to equation 5.2.8 with f = 1.016.
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Figure 5.15 Reproduction test of dielectric measurement taken on DHIQ. Dashed lines from one
measurement, solid lines from a measurement taken one months later. The temperatures are
181.2K, 185.2K, and 189.2K in both cases. Values of the first data set is corrected according to
equation 5.2.8 with f = 1.19.
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Figure 5.16 Reproduction test of dielectric measurement taken on TPG. Dashed lines from one
measurement, solid lines from a measurement taken two months later. The temperatures are
201.3K, 209.3.0K, and 219.5K, in both cases. No correction for different filling was performed.

5.5 The experiments

In this section we give a description of how the experiments were performed, and of the
equipment that we used beside that, which has already been described.

The liquids are loaded into the measuring gauges via a syringe and (in the case of the
shear measurements) a metal needle. The measuring gauge is mounted in a measuring
cell holder and placed in a cryostat.

The measurement are generally performed in the following way:

• The measurements are taken in the temperature interval where the loss peak pos-
ition is within the frequency span we cover. The relevant temperature interval is
estimated from preliminary dielectric measurements.

• The system is cooled to the highest temperature where measurement are to be
taken.

• The system is left to equilibrate at this temperature for 5 hours (thermal equilib-
rium is reached much faster, giving the liquid plenty of time to reach thermody-
namic equilibrium).

• The system is further cooled by stepping down through the desired temperatures
(normally the steps are 2K) and two measurements are taken at each temperature.

• At each temperate the liquid is left for 30 minutes to equilibrate before the first
measurement is taken, and then left for 30 minutes again before the second meas-
urement.

By having two measurements at each temperature we are able to determine if we are
in thermodynamic equilibrium at each temperature, simply by comparing the first and
second measurement. Hence, if the liquid is out of equilibrium the two spectra will
differ due to annealing. By this procedure it was found that, at the used cooling rate,
we generally fall out of equilibrium when the loss peak of the measured quantity is at
approximately 10−3Hz.
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The cryostat

The cryostat is a liquid nitrogen cooled cryostat homebuilt at IMFUFA, RUC. The
temperature is controlled by having a constant flow of nitrogen giving a constant cool-
ing, and a variable heating produced by a heating coil.

The cryostat setup has an absolute certainty on the temperature better than 0.2K, and
a temperature stability better than 20mK Rasmussen [2003]. This uncertainty will in-
fluence the loss peak position and also the shape of the relaxation curve. However, the
effect is minor, especially compared to the uncertainty on the shear loss peak position.

A temperature calibration of the cryostat was performed during our work. We have
after this calibration recalculated the temperatures of the measurements, which were
performed before the calibration. This is why some of our measurements are taken at
unevenly spaced temperatures.



6 Raw data

The aim of this section is to give a complete overview of the data we have taken.

The raw data are shown on 6.2 to figure 6.8. There is a figure per substance, show-
ing imaginary part and Cole-Cole plot for both the shear modulus and the dielectric
constant. We only show a subset of the temperatures we have measured at, 3 or 4 tem-
peratures for each liquid, and generally with a step of 4 degrees between each meas-
urement. All data shown are measured at thermodynamic equilibrium and the shear
and the dielectric data shown are (except for the case of DHIQ) obtained at the same
temperatures.

Many of the curves appear similar, but the scaling on the axes of the dielectric data is
dramatically different from substance to substance, due to the big difference in strength.
We have plotted dielectric data from some of the substances together in figure 6.1 to
illustrate how different they are.
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Figure 6.1 Cole-Cole plots illustrating the difference in dielectric relaxation strength. The
substances shown are (listed in order of decreasing strength) TPG, PPE, DC704 and TPE. The
right plot is a zoomed version og the left plot (notice the axis). We have only included some of
the substances in order to make the figure readable. DHIQ has a strength comparable to PPE, the
strength of PB20 is close to that of DC704 and the strength of squalane is about 5 timed smaller
than that of TPE.

TPE and DC704 (figure 6.2 and 6.3) Both liquids are without any visible beta relaxa-
tion, and have small dielectric strength. TPE has such a small strength that noise is seen
in the dielectric signal.

PPE (figure 6.4) No beta relaxation is seen in the shear modulus or dielectric constant
of PPE. A deviation from power law behavior is seen in the high frequency tail of the
dielectric spectrum, but not in the shear data.
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Squalane (figure 6.5) Squalane has an extreemly small dielectric strength and it is
very difficult for us to get any decent data, with the available equipment. The alpha
peak can be seen in the low frequencies, but the high frequencies are heavily dominated
by noise and the systematic error of the LCR-mete. We have subtracted a loss from a
measurement deep in the glass (162K) to get rid of as much of the systematic error as
possible. The beta peak is still present in the glass, and this means that the beta peak is
not visible after this procedure.

We have been very fortunate that R. Richert has provided us with unpublished dielec-
tric data on squalane [Richert, 2003] which are obtained with a AH2700A “Andeen-
Hagerling ultra-precision capacitance bridge”. The data from R. Richert are in a very
limited frequency range (50Hz to 2000Hz), but have much less noise. The results agree
well with our data and we have been able to patch together 1 two of the measurements
with our own data. This all in all leads to a reasonable amount of dielectric data on
squalane.

PB20 (figure 6.6) A pronounced beta relaxation is seen in the shear mechanics and
a less pronounced dielectric beta relaxation is seen. The strength of PB20 is small and
the beta relaxation in the dielectric constant is unfortunately heavily disturbed, by the
LCR-meter artifacts, due to its even smaller strength.

At the low frequency side of the alpha peak, a pronounced deviation from power law
behavior is seen in the dielectric constant.

Similar2 polybutadienes have been investigated by dielectric spectroscopy by Deegan
& Nagel [1995] and Zorn et al. [1997]. Both groups find a behavior similarly to what we
see. In Deegan & Nagel [1995] the low frequency dielectric tail is attributed to what is
known as an alpha prime relaxation, which is commonly seen in polymeric systems.

DHIQ (figure 6.7) A very pronounced beta relaxation is seen in both the shear mecha-
nical and dielectric signal. The beta is positioned at such a low frequencies that we are
able to see the actual peak in the shear data.

The data on DHIQ are not obtained at the exact same temperature. This is because the
dielectric measurement used is from before a temperature calibration and the shear data
are from after. Our conclusions regarding DHIQ are not affected by the small deviations
in temperature because the quantitative agreement with the model is very poor in the
case of DHIQ, see section 9.3.

TPG (figure 6.8) The most prominent fact about TPG is the large strength. Conduct-
ance exist in TPG giving a raise in the imaginary part at the low frequency side of the
alpha peak. We are not interested in comparing the conductance to the shear behavior
and we have therefore limited the data range on the left side of the alpha peak – in the
plots of raw data as well as in the further investigations.

1A calculation equivalent to the one in section 5.2 shows that if the dielectric constant is measured (on the
same substance) using two capacitors with different filling and different ability to contract, the two measured
dielectric constants (ε1 and ε2) will (to first order) be connected as ε1 = aε2 + b, where a and b are temperature
dependent uncorrelated constants.

2Deegan & Nagel [1995] use a polybutadiene with the same composition as the one we study, but with
a molecular weight of 6000g/mol. Zorn et al. [1997] investigate a series of polybutadiene with different
compostion.
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A beta relaxation is again seen in both the shear modulus and the dielectric constant. It
is most pronounced in the shear modulus, which can be clearly seen by comparing the
two Cole-Cole plots.
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Figure 6.2 TPE shear and dielectric data. 256.0K, 264.0K, and 272.0K.
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Figure 6.3 DC704 shear and dielectric data. 215.5K, 223.5K, and 231.6K.
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Figure 6.4 PPE shear and dielectric data. 248.0K, 256.0K, and 264.0K.
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Figure 6.5 Squalane shear and dielectric data. 170.0K, 176.0K, and 180.0K. Bold line shows
dielectric data from Richert [2003].
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Figure 6.6 PB20 shear and dielectric data. 178.0K, 186.0K, and 194.0K.
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Figure 6.7 DHIQ shear data taken at 181.5K, 183.0K, 187.5K, and 189.5K, and DHIQ dielectric
data taken at 181.2K, 183.2K, 187.2K, and 189.2K.
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Figure 6.8 TPG shear and dielectric data. 192.0K, 200.0K, 208.0K, and 216.0K.



7 Elastic contribution to the high
frequency dielectric constant

In this chapter we look closer at the high frequency plateau values of the dielectric con-
stant, in order to establish if it behaves qualitatively in accordance with the DiMarzio-
Bishop model.

7.1 The DiMarzio-Bishop model in the high frequency
limit

The high frequency limit of the dielectric spectra is according to the DiMarzio-Bishop
model (equation 4.7.2) given by1

χh = εh − 1 =
N
ε0



αi +
µ2

3kBT
(

1 +
(

4πr3

kBT

)

G∞

)



 ,

indicating that there is an elastic contribution to the high frequency limit of the dielectric
constant. The elastic contribution cannot be detected directly from our measurements
due to the uncertainties on absolute values of the dielectric constant. However, we
have performed an analysis which enables us to detect the elastic contribution via its
temperature dependence.

7.2 Possible effects of expansion

Taking the experimental problems, described in section 5.2.1, into account it is found
that the following effects control the change in the measured εh as the temperature is
increased.

• Model predictions
Effect giving increasing εh

– G∞ decreases

Effects giving decreasing εh

– N decreases due to thermal expansion

– T increases

1We here use the model in the Maxwell field approximation, but the conclusions are general because ε

always is a monotonic growing function of α.

75



76 Elastic contribution to the high frequency dielectric constant

• Experimental problems
Effect giving increasing εh

– Liquid expands in the radial direction

Effects giving decreasing εh

– Spacing between capacitor plates increases due to the thermal expansion

We assume that the microscopic molecular induced polarizability, αi is temperature in-
dependent2. This assumption implies that εi only is temperature dependent via the
density.

It can be seen that there are two effects giving a increase in the measured dielectric
constant: The elastic contribution and the contribution from radial expansion. We will
however show that an actual increase in the measured εh with temperature is a finger-
print of an elastic contribution, because it can not be due to the expansion of the liquid
alone.

To analyze this we look at the hypothetic situation where the liquid only expands in
the radial direction and no elastic contribution exist. This means that the microsopic
polarization is considered temperature independent leading to εh = Nαi/(ε0) + 1.

We start with a situation where the capacitor is not necessarily completely filled. The
measured dielectric constant εm can, in this situation, be described by an equation of the
same type as equation 5.2.6.

The measured capacitance becomes

Cm =
εε0 A0(1 − ∆b)

d
+

ε0 A0∆b
d

+
ε0(Ag − A0)

d
,

where A0 is the area that is filled at T0. Ag is the total area of the capacitor plates,
and d is the fixed distance between the capacitor plates. ∆b is redefined to describe the
difference between the actual temperature dependent filling and A0.

Dividing with the geometric capacitance ε0 Ag

d yields the measured dielectric constant

εm = Arε(1 − ∆b) + Ar∆b + 1 − Ar (7.2.1)

= Ar∆b(1 −ε) + Arε + 1 − Ar, (7.2.2)

where Ar = A0
AG

. It is seen that at the initial situation (corresponding to ∆b = 0) the
measured capacitance is given as εm = Arε + 1 − Ar.

We would like to know how a differential change in the temperature, changes the meas-
ured dielectric constant. Given an initial temperature T0 with a corresponding A0, we
want to find εm(T0 + ∆T). This can be achieved by looking at a first order expansions in
temperature of the controlling parameters εh and ∆b, as the relevant change in tempera-
ture is differential.

Expanding the change in εh and ∆b to first order around T0 gives (recalling that
εh(T0) = 1 + N(T0)

ε0
αi

)

εh(T0 + ∆T) = εh(T0)−
αi

ε0
αN(T0)∆T

∆b(T0 + ∆T) = −α∆T,
2This assumption is standard [Böttcher, 1973], [Jonscher, 1983] and it is for example applied to determine

expansion coefficients of glass forming liquids from dielectric measurements in Bauer et. al. [2000] and Bauer
et. al. [2001].
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where α is the thermal expansion rate.

Using these approximations in equation 7.2.1 and only keeping first order terms in ∆T
leads to

εm(T0 + ∆T) = Ar

(

−α∆T
(

1 −

(

εh(T0)−
αi

ε0
αN(T0)∆T

)))

+

Ar

(

εh(T0)−
αi

ε0
αN(T0)∆T

)

+ 1 − Ar

= Ar

(

−α∆T
(

−
N(T0)

ε0
αi +

αi

ε0
αN(T0)∆T

))

+

Ar

(

εh(T0)−
αi

ε0
αN(T0)∆T

)

+ 1 − Ar

= Arεh(T0) + 1 − Ar = εm(T0). (7.2.3)

The final equality is seen from the equation describing the measured capacitance, and
by remembering that ∆b = 0 at T0.

The result shows that a pure radial expansion and a temperature independent micro-
scopic polarizability yields a temperature independent measured εh, because two coun-
teracting effects cancel out each other. Radial expansion is expected to dominate at high
temperatures where the liquid easily will flow between the plates in the transducer.

A decrease in the measuredεh can occur if the liquid expands in the direction perpendic-
ular to the capacitor plates whereby the distance between the plates grows. Expansion
perpendicular to the plates is expected at temperatures close to Tg, because the rigid
liquid will be clamped to the plates.

The conclusion of this calculation is that an increase in the measured εh value with in-
creasing temperature has to be due to an increase in the microscopic polarizability itself.

7.3 High frequency data

In order to study the temperature dependence of the high frequency dielectric limit it is
necessary to have a number of temperatures, at which this limit is well determined. In
practice this means that the liquid has to be well relaxed at about 100kHz because our
maximum frequency is 1MHz. The three liquids without beta relaxation (TPE, DC704
and PPE) fulfill this requirement. We have used Havriliak-Negami fits to get εh values
which were unaffected by noise on the curve. The fits were good for TPE and DC704,
while the PPE fits were less convincing due to the deviation from power law behavior.
The values found in the fit might underestimate the temperature dependence. However,
the tendencies of the temperature dependence found is indisputable. This can be seen
directly from the raw data in figure 7.1.

The temperature dependencies of εh are shown explicitly in figure 7.2. TPE shows a
decrease in εh with temperature. The tendency is the same for DC704 but the tempera-
ture dependence is not as strong. PPE, on the other hand, shows an incraese in εh with
increasing temperature.
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Figure 7.1 Dielectric data from TPE, DC704 and PPE (shown in this order from left to right). The
figure shows zooms of the high frequency end of the Cole-Cole plot.
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7.4 Interpretation

The increasing value of εh of PPE with increasing temperature is an inevitable sign of an
increase in the microscopic high frequency polarizability with temperature. Returning
to equation 4.3.1, we see that the microscopic polarizability in terms of the DiMarzio-
Bishop model is given by:

αh = αi +
µ2

3kBT + 12πr3G∞

. (7.4.1)

All our data show that G∞ decreases with increasing temperature (see chapter 6), corres-
ponding to a softening of the elasticity as the liquid becomes warmer. This means that
the DiMarzio-Bishop model predicts an increase in αh if the following relation holds

3kB∆T <
∣

∣12πr3∆G∞

∣

∣ , (7.4.2)

where ∆G∞ is the change in G∞ which corresponds to ∆T. A comparison of the orders
of magnitudes show that the above relation holds if r is greater than approximately
0.5Å. Thus, an increase of αh with temperature is consistent with the DiMarzio-Bishop
model. We noted in section 4.4 that the elastic contribution to εh is larger for smaller
values of r. The above inequality shows us that the temperature dependence of the
elastic contribution is stronger if r is large.

The physical interpretation of an increasing αh is simply that the elastic forces which
determine how much the dipoles can turn get weaker as temperature is increased. This
interpretation is not dependent on the DiMarzio-Bishop model, in the sense that any
“elastic contribution” to the polarizability is expected to show this behavior. Hence it
could also be an elastic contribution which is coupled to the shear modulus in a different
way, or a contribution which is also (or only) related to the bulk modulus.

The decreasing εh values which are seen for TPE and DC704 do not necessarily mean
that αh decreases with temperature, because a decrease of the measured εh can be due
to expansion of the liquid in the direction perpendicular to the capacitor plates.

In the following we suggest a consistent interpretation of the different behaviors of the
three liquids in terms of their in dielectric strength.

The difference between the high frequency and the low frequency values of the dielec-
tric constant for TPE is approximately 1%, indicating that the dipoles contribution to
the total dielectric constant is very small. In the notation of section 3.2.1 it can be put as
αr � αi. This means that a relative change of the high frequency limit of αr has little
relative effect on the total αh, making the latter virtually temperature independent. It is
therefore the expansion which controls the temperature dependence of the total meas-
ured high frequency dielectric constant. DC704 has a relative strength of approximately
10%. This implies that the less pronounced decrease of εh with increasing temperature
can be attributed to a greater significance of αr on the total temperature dependence.
PPE has a relative strength of approximately 50%, and this is why the high frequency
value of αr dominates over the other effects, which influence the total temperature de-
pendence of εh.

It is reasonable to assume that PPE expands in the direction perpendicular to the ca-
pacitor plates just as the other liquids. The increase in εh is therefore a sign of a larger
increase in αh than what is seen directly. If the expansion coefficient under the given cir-
cumstances was well determined then it would be possible to make a quantitative com-
parison of the temperature dependence of εh and G∞. However with our uncertainties
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it is not possible to neither prove nor falsify the DiMarzio-Bishop models quantitative
predictions regarding the relation between the temperature dependencies of εh and G∞.



8 Shear mechanical and dielectric loss
peak shape and position

After focusing on merely the high frequency behavior in last chapter, we will consider
the entire relaxation spectrum, in terms of the DiMarzio-Bishop model, in this and the
following two chapters.

The objective of this chapter is to establish whether the DiMarzio-Bishop model
provides qualitatively correct predictions regarding the relationship between the ac-
tual dielectric and shear mechanical relaxation spectra. We consider the results of this
chapter cardinal to our discussion of the DiMarzio-Bishop model’s quality as a tool for
understanding the fundamental mechanisms of dielectric relaxation.

8.1 Predictions from the DiMarzio-Bishop model

When characterizing relaxation spectra it is often done in terms of the loss peak width,
shape and position. The relation between the shear and dielectric behavior with respect
to these features is therefore central for a qualitative comparison between the two relax-
ations. Therefore, we examine what the DiMarzio-Bishop model predicts regarding the
differences between the shear mechanical loss peaks and the dielectric loss peaks, and
compare these predictions to our data.

Our general procedure for determining predictions of the DiMarzio-Bishop model is to
calculate a fictive shear mechanical spectrum using a realistic phenomenological model,
and to subsequently use this shear spectrum as input to calculate the corresponding
dielectric spectrum, from the DiMarzio-Bishop model.

We start by rewriting the model expression (see section 4.4), to a form where the nor-
malized elastic contribution a = εh−εi

εe−εi
is explicitly uses as a parameter

ε(ω)−εi

εe −εi
=

1

1 + 1/a−1
G∞

G(ω)
. (8.1.1)

The parameter a is a measure of how big the high frequency rotational polarization
(εh − εi) is compared to the total equilibrium rotational polarization (εe − εi). From this
formulation it also becomes clear that a controls how the relaxation shape and position
changes when going from shear modulus to dielectric constant.

8.1.1 Alpha peak

We start by considering a simple spectrum with an alpha peak, but no beta peak, and
we analyze the connection between the shear modulus, the dielectric constant, and the
dielectric modulus.

81
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The shear spectrum was calculated using an extended Maxwell model (see equation
B.2), and the dielectric constant and modulus were calculated from this, using the
DiMarzio-Bishop model in the formulation above. The results are illustrated on fig-
ure 8.1 (see the caption on the figure for details about the parameters used). It can be
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Figure 8.1 Simulated shear modulus (full lines), dielectric constant (dashed lines), and dielectric
modulus (dash-dotted line). The shear data is calculated according to an extended Maxwell
model (equation B.2) with G∞ = 1.0GPa, α = 0.5, q = 1.5 and τM = 0.1s. The dielectric
data is found from these shear data by using the DiMarzio-Bishop model (equation 8.1.1) and
εe = 10.0, εi = 2.0 and a = 0.1 (corresponding to εh = 2.8). The left plot shows the raw loss
peaks illustrating the difference in loss peak position. The right plot shows a comparison of the
shape of the relaxation plots. This is done in a log-log plot, and the data have been scaled by
the maximum loss and plotted against a reduced frequency in order to make the peak positions
coalesce.

seen that the dielectric loss peak frequency attains a lower value than the shear mecha-
nical loss peak frequency. Moreover, it can be seen that the loss peak in the dielectric
signal is narrow compared to the loss peak in the shear modulus.

This is of course only an example and care must be taken not to make conclusions, which
would be altered if another set of parameters was used. By looking at the DiMarzio-
Bishop model (e.g. equation 8.1.1), it can be seen that the choice of εi and εe cannot
change the shape of the imaginary part of the dielectric constant nor the dielectric loss
peak position. A complete analysis of the DiMarzio-Bishop model’s predictions can
consequently be performed merely by letting a vary through values between 0 and 1. It
is found by inspection that the qualitative findings are universal. However, the dielec-
tric constant approaches the shear modulus in both shape and position as a is increased.
The limiting behavior, corresponding to a ≈ 1, is thus perfect agreement between the
two relaxations.

The dielectric modulus will always have a higher loss peak frequency than the dielectric
constant1. The DiMarzio-Bishop model predicts that the dielectric modulus lies between
the dielectric constant and the shear modulus, both regarding loss peak position and
curve width. This predicted relation between shear modulus and dielectric modulus,
is contrary to the predicted relation between shear modulus and dielectric constant,
dependent on the dielectric relaxation strength. The DiMarzio-Bishop model predicts

1 M′′ = − ε′′

|ε|2
where |ε| is the absolute value of ε, which is a monotonic decreasing function of frequency.
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that the dielectric modulus approaches the shear modulus as the dielectric strength is
increased (keeping a constant).

8.1.2 Beta peak

To analyze what the DiMarzio-Bishop model predicts about a case with a beta relaxa-
tion, a shear mechanical signal with a beta relaxation was constructed using the “mecha-
nical alpha-beta-model” (equation B.3) choosing the same shape of the alpha peak as
above, and a rather pronounced beta peak. The results can be seen in figure 8.2 along
with details about the simulation.
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Figure 8.2 Simulated shear (full lines), dielectric constant (dashed lines) and dielectric modulus
(dash-dotted line). The shear data is calculated according to an extended Maxwell model with
a beta contribution (equation B.3) with G∞ = 1.0GPa, α = 0.5, q = 1.5, τα = 10s, G f = 1,
τβ = 1 · 10−3s and β = 0.25. The dielectric data is found from these shear data by using the
DiMarzio-Bishop model (equation 8.1.1) and εe = 10.0, εi = 2.0 and a = 0.1.

It is seen that the DiMarzio-Bishop model predicts that the beta relaxation becomes
much less pronounced in the dielectric signal. By close inspection it is additionally seen
that the dielectric beta peak is predicted at a lower frequency than the mechanical beta
peak, as it was seen for the alpha peaks. In the plot where the shapes of relaxation curves
are shown it is again seen that the dielectric modulus, according to the DiMarzio-Bishop
model, lies between the dielectric constant and shear mechanical modulus, which is
broadest of the three.

8.2 Comparisons on our data

In this section a qualitative comparison of the dielectric and shear mechanical data is
presented. The focus is of course on testing whether the model predictions made in last
section hold.
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8.2.1 Position of loss peak

Looking at the raw data (see section 6), it is seen that the loss peak of the dielectric
constant is shifted to lower frequencies compared to the loss peak in the shear modu-
lus. This is in perfect agreement with the prediction of the DiMarzio-Bishop model. To
substantiate this, and to test how the two loss peaks changes with temperature, a loss
peak decoupling plot is presented on figure 8.3. This type of plot has been introduced
by Zorn et al. [1997].

It was in section 5.3.5 found that we measure the loss peak position in the shear mech-
anics with an uncertainty of maximum 0.2 decade, and it was argued that there is a
systematic error which makes it more likely to measure a too high loss peak frequency.
However, the differences between the ε and G loss peaks (ranging from 0.4 to 1.2 dec-
ade), are significantly greater than experimental uncertainties.

The difference between the loss peak position of shear modulus and dielectric modulus
are also shown for the substances with large dielectric strength (PPE and TPG). The
dielectric modulus of PPE lies at lower frequencies than the shear mechanical modulus
as predicted from the DiMarzio-Bishop model, but this does not hold for TPG. The
difference between the shear loss peak and the dielectric modulus loss peak of TPG is,
according to the DiMarzio-Bishop model, expected to be small due to the very large
dielectric strength of TPG, and the difference between the two is not much bigger than
our uncertainty on the shear loss peak position. We do however believe the difference
is significant and indicates a genuine deviation from the model predictions.

For the substances with only an alpha peak, it is seen that the shift in loss peak is fairly
temperature independent. On the contrary for the substances with a beta relaxation, it is
generally seen that the shift becomes very temperature dependent (TPG being a counter
example).

We have used the simple maximum loss peak as a substitute for the alpha loss peak
position, because it is impossible to perform a reliable separation of the beta and the
alpha peak, especially in the case of the shear data, where the shear loss peak is not
reached by our measurements. The merging with the beta peak will alter the behavior
of the maximum loss frequency compared to a situation with a pure alpha peak. The
decoupling between the loss peaks for the substances with a beta relaxation can there-
fore be interpreted as a difference in how the alpha and beta relaxation merges in the
shear mechanical and dielectric relaxation.

8.2.2 Shape of the relaxation curve

We have showed that, if the DiMarzio-Bishop model is correct, then the alpha loss
peak of the dielectric constant will be narrower than the peak of the shear modulus.
This is generally consistent with what we see on figure 8.4 (the figure only shows one
temperature for each substance, but we will in section 13.1 show that the shape is nearly
temperature independent). For DC704, PPE, and TPG it is easily seen that the shear peak
is wider than the dielectric peak, though the difference is small.

For squalane no clear difference between the two curves can be seen around the alpha
peak. TPE exhibits a very small difference between the two relaxation curves, but the
difference seen is in contrast to the model prediction because the dielectric peak is wider
than the shear peak. The widening of the dielectric curve on the left side of the peak seen
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Figure 8.3 The logarithmic shift in shear loss peak compared to the dielectric loss peak at the
same temperature. This is sometimes referred to as the decoupling index between dielectric and
shear mechanical relaxation. The dielectric constant is generally used for the dielectric data.
The loss peak of the dielectric constant and the dielectric modulus coalesce for liquids of small
strength (TPE, DC704, squalane and PB20); for PPE and TPG both the M and ε loss peaks are
compared to G loss peaks.

in PB20 is possibly due to the alpha prime relaxation, which is only seen in the dielectric
spectrum.

The position of the dielectric modulus of TPG deviated from the prediction of the
DiMarzio-Bishop model, and the same is found for the shape of the curve. This is il-
lustrated in figure 8.5

The last qualitative prediction we showed was that the beta peak, according to the
DiMarzio-Bishop model, becomes less pronounced in the dielectric constant than in the
shear modulus. This is also found in our data, and seen in figure 8.4, or perhaps more
convincing in the raw data in chapter 6. Notice for example the beta peak of TPG, which
can hardly be seen in the dielectric Cole-Cole plot, while it is clearly seen in the shear
data (figure 6.8).

DHIQ was not included in the analysis in this chapter, because we do not have proper
shear and dielectric data, which are obtained at the same temperature. The raw data in
figure 6.7 do however indicate that the findings hold for DHIQ as well. An exception is
the beta peak of DHIQ, which is very pronounced in both response functions.

8.3 Summary

The qualitative predictions from the DiMarzio-Bishop model were generally found to
be true for all the substances we have instigated.

The shear and dielectric loss peak positions has been compared several times before.
The main focus is usually on the differences in temperature dependence sometimes re-
ferred to as the decoupling, because, as it is in phrased in Zorn et al. [1997]: “there is
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(a) TPE at 258.0K
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(b) DC704 at 225.5K
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(c) PPE at 256.0K
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(d) PB20 at 178.0K
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(e) Squalane at 176.0K
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(f) TPG at 196.0K

Figure 8.4 Comparison of the dielectric and shear mechanical loss peak shape. Dashed line is
dielectric constant, full line is shear modulus.
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Figure 8.5 TPG. Comparison of the dielectric and shear mechanical modulus. Dashed line is
dielectric modulus, full line is shear modulus. Temperatures are 196.0K to 212.0K in steps of 2K.

no reason why an arbitrarily chosen characteristic time 1/ωmax should be identical for
dielectric and rheological measurements”. The general finding is that there is little or no
decoupling between the two characteristic times. [Menon et al., 1994], [Christensen &
Olsen, 1994], [Donth et al., 1996], [Deegan et al., 1999], [Ferri & Castellani, 2001] [Paluch,
2000], [Schröter & Donth, 2000], [Schröter & Donth, 2002], [Ribierre et al., 2003].

We have found that the DiMarzio-Bishop model predicts the shear loss peak at higher
frequencies than the loss peak of the dielectric constant. This model based prediction
makes it interesting to look at the absolute difference between the two loss peak po-
sitions rather than just their different temperature dependence. It is not always pos-
sible to extract the absolute difference in loss peak position from the reported data, but
where it is possible, it is seen that the predictions regarding dielectric constant and shear
modulus holds. Shear loss peaks are found at a higher frequency than dielectric loss
peaks, with differences ranging from 0.1 to 2 decades. [Menon et al., 1994],[Christensen
& Olsen, 1994], [Donth et al., 1996], [Deegan et al., 1999], [Schröter & Donth, 2000],
[Schröter & Donth, 2002].

In Paluch [2000] the loss peak frequency of the dielectric modulus is found to be higher
than the shear loss peak frequency. This is in contrast to the predictions of the DiMarzio-
Bishop model but consistent with our experimental findings on TPG, which has a large
dielectric strength. The dielectric relaxation strength is not reported in Paluch [2000] but
a dielectric loss peak plot of the data from one of the two studied substances, reveals
that the strengths also is large in this case, (∆ε ≈ 20).

The width of the shear mechanical and dielectric relaxations have not been compared
as often. Deegan et al. [1999] reports a difference in the temperature dependence of the
width, but the width itself is not compared.

It is in Suchanski et al. [2000] found that the shape of the dielectric response is narrower
than the shear mechanical response in agreement with the predictions of the DiMarzio-
Bishop model. It is in Suchanski et al. [2000] suggested that this is because the dielectric
response only couples to the charged modes, and that slow modes might not carry any
dipole moments. This is discussed without any model saying that the two shapes ought
to be the same.

Our analysis of the DiMarzio-Bishop model offers a simple framework for understand-
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ing a lot of the differences between shear and dielectric relaxation which have been re-
ported. This agreement between model and data supports the DiMarzio-Bishop model
as a qualitative model for understanding the connection between the dielectric and
shear mechanical relaxation.



9 One parameter test of the
DiMarzio-Bishop model

Our objective with this chapter is to formulate and test the model in a simple version,
where only one macroscopic parameter controls both shape and position of the loss
peak. An analysis on how known possible errors in the measurements affect the results
is also presented.

We have earlier showed (see section 4.7) that the local field question is of lesser import-
ance if the dielectric strength is small. We exploit this result by using a simple field
and testing the model on substances with different dielectric strength (approximately
1% to 50%). This will lead to a systematic greater deviation with greater strength, if the
deviations seen, are due to local field problems.

9.1 Formulation of the one parameter test

Most of the earlier test on the DiMarzio-Bishop model have been performed in the sus-
ceptibility formalism. The essence of our one parameter model test is the modulus for-
mulation of the model in the version where the Maxwell or Lorentz field is used, as we
have already presented it in equation 4.7.8:

G(ω) = K1
1

ε(ω)−εi
+ K2 (9.1.1)

Taking the imaginary part leads to

G′′(ω) = K1

(

1
ε(ω)−εi

)′′

, (9.1.2)

because K1 and K2 are real.

In this formulation it is easily seen that εi controls both the position and the shape of the
loss peak when shear behavior is predicted from dielectric data by using the DiMarzio-
Bishop model. K1 only gives a scaling, which corresponds to a simple vertical transla-
tion in a log-log plot of the loss.

εi has a great advantage over r, which is the main parameter in the susceptibility for-
mulation, because it is a macroscopic quantity and its expected values can be given
with much higher precision. εi relates to the easily measurable refraction index through
εi = n2. n2 is generally known at room temperature, and will increase with decreasing
temperature, making the room temperature value a lower boundary of εi values at low
temperatures. Moreover, εi is bounded from above by the plateau value εh as the latter
is a sum of εi and a contribution from rotational polarization.

The quantity (ε(ω) − εi) is the frequency dependent rotational contribution to the sus-
ceptibility. In the last chapter we used the elastic contribution (εh − εi) normalized by

89
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the total rotational contribution (εe −εi) as a controlling parameter in theoretical studies
of the model. In this section we have data as a starting point and εh and εe are there-
fore a given (even if they are not always known). This means that there is a one to one
connection between εi and the elastic contribution (εh −εi)/(εe −εi).

A complication in finding εi is introduced due to the absolute errors on the ε(ω) data
used in the test of the model. We will discuss this in the next section.

9.2 The implications of data with absolute errors

In the chapter on experimentals we showed that systematic absolute errors can some-
times appear, especially on the absolute values of the dielectric constant. The absolute
errors can be expressed in the following way

Gm(ω) = b1G(ω) εm(ω) = b2ε(ω) + b3 (9.2.1)

where b1 ≈ 1, b2 ≈ 1 , b3 ≈ 0 and where the subscript m refers to the measured value as
opposed to the actual physical value.

Inserting this in the model (equation 9.1.1) gives

Gm(ω) = b1





K1
(

εm(ω)−b3
b2

−εi

) + K2



 =
b1b2K1

εm(ω)− (b2εi + b3)
+ b1K2, (9.2.2)

which shows that the absolute errors can be absorbed in the three fitting parameters.
Hence, the predicted relation between shear modulus and dielectric constant holds for
the values we measure in spite of the absolute errors. This result is quite important,
because the best we can do is of course to test the model with our data.

Another way of phrasing the above result is that the errors on the dielectric experiments
will have no influence on the agreement between model and data; it is only the values
found for the parameter εi which is affected. The εi value which should be used in the
one parameter model test is really (b2εi + b3). That is the value of εi encumbered with
the same errors as the measured ε(ω) data.

Our analysis of the shear measurements revealed that the shear loss peak position might
be determined with an error of up to 0.2 decade. This will effect the agreement found
between the model and data in a more direct way. We return to the implications of this
in the next chapter.

9.3 Test on data

In the following section we present tests of the DiMarzio-Bishop model on all the sub-
stances we made shear and dielectric measurements on, by using the one parameter
formulation presented above.

We have just argued that the εi value which should be used is the hypothetical εi, which
would be measured if it was possible to reach the εi limit with the applied method. This
has the consequence that the analysis from section 7.2, regarding the T dependence of
the measured εh, applies to the εi, which is to be used. Thus it is only possible to have an
εi which decreases or is constant with increasing temperature. This means that the room
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temperature n2 is a true lower bound for the εi values to be used. The only exception for
this is the case where the capacitor is poorly filled. This would lead to an error on our
“room temperature” εi which would make it smaller than the table value of n2. The very
lowest possible εi value is 1 (χi = 0) as this is the value corresponding to no induced
polarization at all.

Our starting point was to fit εi values by using equation 9.1.2, but the fits of εi are always
quite poor at the high and low temperatures where we only have measured part of
the relaxation curves. We have therefore restricted the fitting of the εi value to one
appropriate temperature, where the whole relaxation was obtained in both shear and
dielectric measurements, and where the loss peak of the shear data is in the center of
the measured frequency range.

We expect the measured εi to decrease with increasing temperature, because this is the
temperature dependence we have seen in our measurements on TPE and squalane,
which have very small rotational contributions, making the measured εh value close to
εi. We have used the temperature dependence of εh of TPE as a reference for estimating
the temperature dependencies of all the liquids, by assuming an equivalent1 tempera-
ture dependence in εi for all liquids. Hence, εi is found by fitting at one temperature
(T0), and this εi value is extrapolated to other temperatures by a decreasing first order
function of temperature

εi(T) = ε′i −γ(T − T0). (9.3.1)

where ε′i is the fitted value at T0.

When εi values have been determined in this way G data are calculated from the dielec-
tric data at all temperatures using equation 9.1.2. This means that the shear relaxa-
tion at the different temperatures are predicted from just one fit of εi and the estimated
temperature dependence given by γ.

The parameter K1 (which only changes the scale of G′′) has been chosen subsequently
such that the loss peak of the calculated and real shear modulus are at same level. Dif-
ferent values of K1 correspond to vertical translations of the loss peak in the log-log
plot. We have chosen K1 as described, because it is simple and unbiased. A better over-
all agreement between the model and the data, could in most cases be found by using a
different K1 value.

For some of our substances the model predictions are so poor that it is impossible to
carry out the above described procedure, because the εi values found from fitting were
way out of the physically reasonable range. In these cases we chose a reasonable value
of εi for the model calculation. To confirm that the tendencies are general we changed
εi over the physical reasonable range and observed that no qualitative changes in the
results were seen.

All graphs are collected at the end of this section and the results are discussed in section
9.4.

1By equivalent we mean the same relative change in the actual χi value, and the same contraction of the
liquid in the vertical direction.
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TPE

Data from T = 262.0K was fitted treating εi as a fitting parameter (εi = 2.6611), the fit
is show on figure 9.1. The fitted value is within the reasonable range (εh ≈ 2.71 and
∆ε ≈ 0.05).

Using this fitted εi and an γ value of γ = 0.0013 (the value is estimated from the change
in εh) in equation 9.3.1 the temperature dependent G was calculated from the model, the
result is shown in figure 9.1.

DC704

The value εi = 2.50 was found by fitting to the data at 221.5K This value of εi is in the
reasonable range, between εh ≈ 2.63 and n2 = 2.42 (see table 4.1). γ = 0.0012 was used
to extrapolate εi.

As for TPE we see that the fits are reasonable but not extremely convincing.

PPE

Data from T = 256.0K was fitted treating εi as a fitting parameter, and it was found that
the optimal value was εi = 1.946. Given that n2 = 2.659 and εh ≈ 2.95 the fitted value
of εi is totally out of the physical range, and it is not possible to use this value for the
test over more temperatures. Choosing a εi = 2.7 and γ = 0.0013, the model was tested
over a temperature range as shown in figure 9.5. It is seen that the loss peak frequency
of the calculated shear modulus is too high.

Choosing a different value of γ in equation 9.3.1 does not change the overall picture,
and changing εi in the physical range does not change the picture of a to high loss peak
frequency either.

Squalane

Data from T = 172.0K was fitted treating εi as a fitting parameter, the frequency range
was chosen around the alpha peak, the fit is show in figure 9.6. Because of the very
noisy data above 50Hz a rather low temperature was chosen. The fitted εi = 2.144 is
within the reasonable range, for squalane (εh ≈ 2.15 and n2 = 2.105).

The model was tested on the two data sets where we have high frequency data from
Richert [2003] (see figure 9.7) using this value for εi. The γ value in equation 9.3.1 was
estimated from the temperature change in the εh value of squalane itself.

PB20

Data from T = 182.0K was fitted treating εi as a fitting parameter, the frequency range
was chosen around the alpha peak, the fit is show in figure 9.8.

The fitted εi = 2.308 is within the reasonable range, for Pb20 (εh ≈ 2.35 and n2 = 2.304).
The model was tested on a number of data sets (see figure 9.9) using this value for εi,
and γ = 0.0011 in equation 9.3.1.
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DHIQ

Data from T = 178.5K (a temperature where alpha and beta relaxation are well separ-
ated) were fitted using the automatic procedure treating εi as a fitting parameter. How-
ever it was not possible to get physical reasonable εi values from the fitting procedure
(the returned values of the fitting procedure were large negative numbers).

To get a qualitative comparison, a model calculation was performed on a dielectric data
set using εi = 1.8. The result is shown in figure 9.10 together with shear mechanical
data taken at comparable temperatures. It is seen that the beta peak is far too big in the
calculated shear modulus. The chosen value of εi is rather low (n2 = 2.221), but raising
it only increases the seen discrepancy between the model and experiment.

TPG

We attempted to fit data from T = 192.0K (a temperature where alpha and beta re-
laxation are well separated) by using the automatic procedure treating εi as a fitting
parameter. However, it was not possible to get physical reasonable εi values from the
fitting procedure (the returned values were approximately −1).

We have used εi = 2.1 in testing the model, while n2 = 2.085 and εh ≈ 2.8. The used
εi value is rather low, however raising it to a higher value only makes the agreement
between model and data worse.

In figure 9.11 the result from εi = 2.1 is shown. It is seen that the beta relaxation in the
calculated shear modulus are too big, and that the loss peaks found from the model are
shifted relative to the data.
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Figure 9.1 Test of the DiMarzio-Bishop model. TPE shear data (solid line), and shear spectrum
calculated from TPE dielectric data using equation 9.1.2 (solid dotted line). Data taken at 262.0K.
The result of the fit is εi = 2.6611.
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Figure 9.2 Test of the DiMarzio-Bishop model. TPE shear data (solid line), and shear spectrum
calculated from TPE dielectric data using equation 9.1.2 (solid dotted line). Temperatures are
258.0K to 274K in steps of 4K. εi calculate according to 9.3.1, with ε′

i = 2.6611, T0 = 262.0K, and
γ = 0.0013.
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Figure 9.3 Test of the DiMarzio-Bishop model. DC704 shear data (solid line), and shear spectrum
calculated from DC704 dielectric data using equation 9.1.2 (solid dotted line). Data taken at
221.5K. The result of the fit is εi = 2.500.
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Figure 9.4 Test of the DiMarzio-Bishop model. DC704 shear data (solid line), and shear spectrum
calculated from DC704 dielectric data using equation 9.1.2 (solid dotted line). Temperatures from
215.4K to 231.6K in steps of approximately 2K. εi calculate according to equation 9.3.1, with
ε′i = 2.5, T0 = 221.5, and γ = 0.0012.
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Figure 9.5 Test of the DiMarzio-Bishop model. PPE shear data (solid line), and shear spectrum
calculated from PPE dielectric data using equation 9.1.2 (solid dotted line). Temperatures are
248.0K 256.0K and 264.0K with εi calculate according to equation 9.3.1, with ε′

i = 2.7, T0 = 256.0,
and γ = 0.0013.
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Figure 9.6 Test of the DiMarzio-Bishop model. Squalane shear data (solid line), and shear
spectrum calculated from squalane dielectric data using equation 9.1.2 (solid dotted line). Data
taken at 172.0K. The result of the fit is εi = 2.144.
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Figure 9.7 Test of the DiMarzio-Bishop model. Squalane shear data (solid line), shear spectrum
calculated from squalane dielectric data using equation 9.1.2 (solid dotted line), and shear
spectrum calculated by using equation 9.1.2 and squalane dielectric data from Richert [2003]
(dashed line). Temperatures are at 170.0K and 180.0K. εi calculate according to 9.3.1, with
ε′i = 2.144, T0 = 172.0K, and γ = 0.0009.
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Figure 9.8 Test of the DiMarzio-Bishop model. PB20 shear data (solid line), and shear spectrum
calculated from PB20 dielectric data using equation 9.1.2 (solid dotted line). Data taken at 182.0K.
The result of the fit is εi = 2.308.
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Figure 9.9 Test of the DiMarzio-Bishop model. PB20 shear data (solid line), and shear spectrum
calculated from PB20 dielectric data using equation 9.1.2 (solid dotted line). Temperatures are
178.0K, 182K and 188K. εi calculate according to equation 9.3.1, with ε′

i = 2.308, T0 = 182.0, and
γ = 0.0011.
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Figure 9.10 Test of the DiMarzio-Bishop model. DHIQ shear data (solid line), and shear spectrum
calculated from DHIQ dielectric data using equation 9.1.2 (solid dotted line). Dielectric data
taken at 181.2K and 189.2K shear mechanical data taken at 181.5K and 189.0K. Used ε i = 1.8.
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Figure 9.11 Test of the DiMarzio-Bishop model. TPG shear data (solid line), and shear spectrum
calculated from TPG dielectric data using equation 9.1.2 (solid dotted line). Data taken at 192.0K
and 200.0K. Used εi = 2.1.
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9.4 Discussion of the results

We see the following pattern in the data presented above. The model fits reasonably on
data with a simple alpha relaxation and a small dielectric strength. It fits very poorly on
substances with great dielectric strength, and it fits moderately well on substances with
small dielectric strength and a beta relaxation.

The model always predicts too broad a relaxation peak, even in the case of TPE and
DC704 where the results of the model have the best resemblance with the data. On
the substances with great dielectric strength this broadening is dramatic, and the loss
peak position becomes overestimated at the same time. The greater strength might lead
to a bad agreement due to the field or due to the stronger interactions between the
molecules in the liquid. We elaborate on these points in chapter 11 and chapter 12. A
third possibility is that the difference between big and small strength arises from our
different limits when fitting εi. The freedom to fit εi is always limited by εh and n2 (or
the extreme minimum 1). For the liquids of small strength this leaves room for a large
elastic contribution (εh −εi) when compared to the total rotational contribution (εe −εi).
Expressed in terms of the parameter a = (εh − εi)/(εe − εi), which we have introduced
in section 8.1, this means that a can attain values ranging from 0 to at least 0.5. This
is not the case for liquids with great strength because the interval between εh and n2 is
relatively smaller. For TPG the minimal physically realistic εi corresponds to an a value
of approximately 0.05.

The model strongly overestimates the beta peak. This is very dramatic in the case of
liquids with great dielectric strength, where we also saw a strong overestimation of the
width of the alpha peak.

On the substances with small dielectric strength and a beta relaxation the pattern is
that the position, and to some extend the shape of the alpha peak is well determined,
whereas the beta peak is somewhat overestimated. This seems to indicate that the model
is less appropriate for the beta relaxation than for the alpha relaxation. This possibility
was also suggested in Zorn et al. [1997] on the basis of data from polybutadienes, even
though the mechanical beta relaxation was not reached by their measurements.

We do not have much data where the beta and alpha relaxations are well separated, but
the lowest temperature on squalane show such a situation. It is, a little surprisingly,
seen that the model seems to hold better in this case. This raises the possibility that
the model holds for both relaxations but captures the merging poorly, though we find
this conjecture difficult to interpret from a physical point of view. It should also be
recalled that the squalane data are obtained by patching together measurements from
two different laboratories, via two parameters to adjust for absolute differences, why
we do not want to draw very strong conclusions based on these data alone.
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In this chapter we will focus on the situations were the DiMarzio-Bishop model gives
reasonable results, in order to establish to which degree these results support a quantit-
ative agreement between the model and data.

The chapter has two objectives. To analyze whether the discrepancies that do appear
between model and data are due to experimental uncertainties, and to discuss whether
the DiMarzio-Bishop model provides a good method to estimate shear behavior from
dielectric behavior.

10.1 Dependence on the parameter εi

We start by analyzing how sensitive the results are on the value of the parameter εi. The
results are used in the next section to evaluate how the uncertainty on measuring the
shear loss peak position affect the determination of εi and the predicted shape of the
curve.

The question we pose is howεi controls the position of the loss peak and the shape of the
imaginary part of the calculated shear modulus. To do so, we analyze the simulated data
we used in section 8.1, in this frame. The data was produced by calculating a shear mo-
dulus from the extended Maxwell model (with reasonable parameters), and from this
shear modulus a dielectric constant was calculated using the DiMarzio-Bishop model
(equation 8.1.1), choosing, among other parameters, the molecular induced dielectric
constant (εi,r). The dielectric spectrum calculated in this way corresponds to the fictive
shear data if the DiMarzio-Bishop model is correct. We subsequently calculate shear
spectra from these dielectric data via the DiMarzio-Bishop model using different values
of the parameter εi. This gives us a measure of how sensitive the test of the DiMarzio-
Bishop is on a correct determination of εi.

Notice thatεi,r is the induced dielectric constant used when calculating the fictive dielec-
tric spectra, whereas εi is the parameter value used when going from these dielectric
spectra to shear spectra as we do it when testing the DiMarzio-Bishop model.

The first test is on the alpha system presented in figure 8.1. The simulated dielectric sig-
nal is used as input in the simple formulation of the DiMarzio-Bishop model (equation
9.1.2), choosing different values of εi. The found imaginary part of the shear modulus is
naturally a perfect match to the input shear modulus when the εi value is chosen to be
the one that was used in calculating the dielectric signal (εi,r).

In figure 10.1 it is seen that if the chosen εi parameter value is close to εh, the loss peak
changes fast with εi. It is also seen that if the εi value is low compared to εi,r, then the
loss peak positions becomes less dependent on the precise value of εi.

To get an impression on how the shape changes with εi, values on both sides of the ac-
tual value (εi,r) were chosen. In figure 10.2 the shapes from these calculations are shown

101
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together with the shape of the imaginary part of the shear modulus. It is seen that if a
too small molecular induced dielectric constant is used (εi < εi,r), the model predicted
loss peak becomes too narrow. The opposite (εi > εi,r) leads to a model predicted loss
peak which is too wide and too asymmetric with a pronounced change of shape in the
low frequency side of the peak.
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Figure 10.1 Loss peak frequency of the shear modulus calculated from the DiMarzio-Bishop
model and simulated dielectric data (using equation 9.1.2), as a function of the parameter εi. The
two vertical lines gives the position of the real molecular induced dielectric constant (εi,r) and the
high frequency limit of the dielectric constant (εh), the horizontal line indicates the loss peak of
the real shear signal. See caption of figure 8.1 for details on the simulated data.
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Figure 10.2 Imaginary part of the shear modulus. Original simulated shear data (solid line) and
shear data calculated using simulated dielectric data (εi,r = 2.0) and equation 9.1.2 (solid dotted
lines), the inner curve is with εi = 1.4, the outer curve is with εi = 2.6 . See caption of figure 8.1
for details on the simulated data.
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10.2 Details of shape and position found from data

The figures shown in the last chapter smear the deviation in loss peak with the deviation
in shape of the relaxation curve. In the following analysis we separate the discrepancies
in loss peak position and the shape of the relaxation curve in order to get a clearer
picture.

We include comparisons between the shear modulus, the DiMarzio-Bishop model and
the raw dielectric data, represented by the dielectric modulus M. The reason for choos-
ing M instead ofε is that it generally resembles the shear spectra more. Albeit, the choice
of M makes very little difference for the substances with small dielectric strength, as it
is illustrated in figure 13.7.

The substances with small strength, pure alpha relaxations and reasonable fits were
DC704 and TPE.

DC704

The loss peak position as a function of temperature is shown in figure 10.3. It is seen that
the loss peak position of the shear modulus calculated from the DiMarzio-Bishop model,
agrees well with the the real shear mechanical loss peak position. The temperature
dependence of the loss peak position is predicted with a quite small error. However, it
is a systematic error, which is clearly seen in the right part of figure 10.3.

In figure 10.4 we have zoomed in on a loss peak from the fit which was earlier shown
in figure 9.4. Two temperatures, respectively above and below the 221.5K, which was
used to fit anεi starting point, are depicted to illustrate that there is little temperature de-
pendence in the shape predicted by the DiMarzio-Bishop model. All the data are scaled
to make the loss peaks coalesce in order to make a pure comparison on the shape of
the relaxation. It is clear that the DiMarzio-Bishop model predicts too wide a relaxation
curve, as has been seen already.

The loss peak positions given by the model can be brought to agree perfectly with the
measured shear loss peaks without altering the shape of the model loss peak signific-
antly. The problem with such a fit is that it leads to an increase in εi with temperature,
of about the same magnitude as the decrease we expect.

The analysis of the model’s dependence on εi, which was reported in last section, indic-
ates that a too wide relaxation corresponds to an overestimation of εi. The analysis also
shows that if εi is overestimated, then the loss peak predicted by the model will be too
large. The loss peaks were seen to agree quite well, but the discrepancy could be due
to an error on the measured shear loss peak. Our analysis of the shear measurements
showed that we have up to +0.2,−0.1 decade error on the position of the loss peak (see
section 5.3.5).

The model data in the right plot of figure 10.4 is obtained by using the lowest physically
reasonable value ofεi, which is the square of the room temperature refraction index. The
corresponding loss peak position is 0.21 smaller than the measured shear loss peak, thus
not quite within the uncertainty of the determination of the shear loss peak position.

The agreement on the relaxation shape is seen to be extremely good on the right hand
side of the peak. The left hand side is still estimated too wide, though the fit is better
than the original fit. The overestimated width can not be due to errors in our meas-
urements, because the width of the shear peek is measured with high accuracy and
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Figure 10.3 DC704. The loss peak position predicted by the DiMarzio-Bishop model, Gm, shear
data and pure dielectric data. The model data are the same as in figure 9.4. This means that εi

is found from an overall fit at 221.5K and extrapolated to other temperatures. The right figure
shows log10 of the decoupling index between the shear modulus, G, and the dielectric modulus,
M, and the log10 of the decoupling index between the shear modulus, G, and the shear modulus
given by the DiMarzio-Bishop model, Gm. The latter is simply the residual of the shear and model
data in the left figure, hence the slope reveals a systematic error in the determination of loss peak
as a function of temperature.
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Figure 10.4 DC704. The shape of the relaxation peak found from the DiMarzio-Bishop model
(solid dotted line), shear data (solid line) (both at 215.5K and 227.6K) and pure dielectric modulus
(dashed line) (221.5K). All curves are scaled by peak position, to allow for a comparison of the
shape alone. In the left figure the model data are the same as in figure 9.4. This means that
εi is found from an overall fit at 221.5K and extrapolated to other temperatures. In the right
figure εi used in the DiMarzio-Bishop model is chosen as the smallest physically possible value
εi = n2 = 2.43.
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deviations, if present, will tend to make the measured relaxation wider than the real re-
laxation, while there is virtually no error on the measured dielectric loss peak position
and relaxation shape.

The raw dielectric modulus (M) is depicted along with the shear modulus and the
model shear peak in figure 10.4. The shape of the dielectric relaxation curve agrees
quite well with the shear data, but it is slightly too narrow. In figure 10.3 it is seen that
the loss peak position of the dielectric modulus evolves very close to the same way as
that of the shear modulus, that is virtually no decoupling is seen. The pure dielectric
modulus gives a better quantitative estimate of the shear modulus, than the model, if
the position of the loss peak is shifted by a temperature independent frequency, which
in practice could be found from comparing measurements at a single temperature.

TPE

Figure 10.5 and 10.6 show the correspondence between loss peak postions and relaxa-
tion shape for TPE shear data, dielectric data and model predictions. The figures reveal
that the DiMarzio-Bishop model’s prediction regarding TPE are very analogously to the
predictions on DC704. The DiMarzio-Bishop model predicts too wide a relaxation peak
and gives quite good predictions of the loss peak position.

The main difference is in the temperature dependence of the model predicted loss peak
position. The right hand plot in figure 10.5 shows that for TPE there is only a small error
on the loss peak position and there is no (or very little) systematics in the temperature
dependence of the error. This indicates that the temperature dependence of εi has been
better extrapolated in the case of TPE than in the case of DC704. This is not surprising
because the temperature dependence of εi has in all cases been approximated from the
temperature dependence of TPE’s εh values (See section 9.3).

The model predicted TPE relaxation curve can of course be made narrower by choosing
a smaller εi. We have not depicted such a figure, as we have no known refraction index
to give a lower limit on the possible εi in the case of TPE. Refraction indexes are not
given because TPE is solid at room temperature.

It is possible that the too wide model curves in both the case of TPE and DC704 are partly
due to errors in the determination of the shear loss peak, and not to inadequateness of
the DiMarzio-Bishop model. If this is the case, then it indicates that we systematically
measure too high shear loss peaks. Our analysis of the errors on the shear loss peak,
due to erroneous determination of the degree of filling of the shear transducer, and due
to the inversion algorithm used when shear data are extracted from the raw capacitance
data, signal that such a systematic overestimation is in fact likely.
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Figure 10.5 TPE. The loss peak position predicted by the DiMarzio-Bishop model, Gm, shear
data and pure dielectric data. The model curves are the same as in figure 9.2. This means that εi

is found from an overall fit at 262.0K and extrapolated to other temperatures. The right figure
shows log10 of the decoupling index between the shear modulus, G, and the dielectric modulus,
M, and the log10 of the decoupling index between the shear modulus, G, and the shear modulus
given by the DiMarzio-Bishop model, Gm. The latter is simply the residual of the shear and model
data in the left figure, hence the slope reveals a systematic error in the determination of loss peak
as a function of temperature.
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Figure 10.6 TPE. The shape of the relaxation peak predicted by the DiMarzio-Bishop model
(solid dotted line), shear data (solid line) and pure dielectric modulus (dashed line) at 256.0K.
All curves are scaled by peak position, to allow for a comparison of the shape alone. The model
curve is the same as in figure 9.2. This means that εi is found from an overall fit at 262.0K and
extrapolated to 256.0K.
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10.3 Fits of the real part of the shear modulus

The general picture from the analysis in this section is that quantitative agreement
between the DiMarzio-Bishop model and the data is quite good though not perfect.
If the DiMarzio-Bishop model really holds quantitatively, it should also agree with the
real part of the shear modulus. The real part of the predicted modulus is also crucial if
the DiMarzio-Bishop model is to bee used for making qualified estimates regarding G∞

and its temperature dependence. Such estimates could (as described in our motivation)
be of great importance in testing the shoving model.

The problem with including the real part of the signal is that the two other parameters
play an important part. We have this far paid little attention to a proper determination
of K1 (the parameter which scales the loss peak) and none to K2, which is a real number
added to the signal (see equation 4.7.8). These parameters are both of great importance
when the real part of the DiMarzio-Bishop model is studied.
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Figure 10.7 DC704. Test of the DiMarzio-Bishop model’s ability to fit the real and imaginary part
of the spectrum. Shear data (solid line) and shear spectra calculated from the DiMarzio-Bishop
model and dielectric data (solid dotted line). The temperatures are 211.4 − 231.6K in steps of
approximately 2 degrees. The high temperature model curves, which are plotted with a thinner
line have been determined by extrapolating the parameter temperature dependence found from
the low temperature data. See the text for more details.

Figure 10.7 shows DC704 model and shear data with imaginary and real parts. In these
calculations the second form of the simple formulation of the model, see equation 4.7.8,
is used, that is we use, εi, εe − εi and the lumped parameter K3 as the three parameters.
The εi values used are those which were determined in section 9.3. εe values used are
taken directly from dielectric data and K3 is determined such that the high frequency
plateau value of the calculated shear modulus agrees with the shear data. For the tem-
peratures, where we have not been able to make proper determination of high and low
frequency limits for shear and dielectric data, a simple linear extrapolations was used
to estimate the temperature dependence of εe and K3.

The agreement is reasonable, for the data where we have a good determination of high
and low frequency values of shear as well as dielectric data. The loss peak is too wide
as always, and this broadening can also be seen in the real part of the model predicted
spectra.

The extrapolated model curves are difficult to evaluate as it is impossible to decide if
the G∞ values are in agreement with the real G∞.
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10.4 Summary

The quantitative agreement is reasonable for TPE and DC704, but the model signific-
antly overestimates the width of the relaxation peak.

It would be a great improvement if estimations of the shear modulus could be made dir-
ectly from the dielectric data. This does not seem as a realistic prospect in our opinion,
because it has been necessary to find the K3 values via G∞. An alternative route would
be to use the microscopic parameter r, if its value was claimed to be known somehow.
By isolating the value of r from the K3 values we have used, we find an r value of ap-
proximately 0.7Å which is weakly increasing with increasing temperature (≈ 3% in 10
degrees). We have made similar test on the other liquids, and the finding of an unreas-
onably small molecular radius is general. This indicates that the stokes friction term
used in the DiMarzio-Bishop model need to be modified or reinterpreted, if the model
should give even coarse shear data estimates with dielectric data and a molecular ra-
dius as starting points. A possibility is to extrapolate the modes parameters from ranges
where they are well defined in both shear and dielectric measurement, but the result is
no better than an equivalent extrapolation made by using an phenomenological fitting
function on the shear data.

To test the shoving model (see section 2.2 and the introduction) the high frequency shear
modulus is needed, and it is exactly in the cases where the high frequency behavior is
unknown that it is impossible to use the DiMarzio-Bishop model to predict the shear
behavior. So the hope of using this approach to get better tests of the shoving model
does not seem realistic.
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In chapter 9 poor quantitative agreement between the DiMarzio-Bishop model and the
data was seen for all the substances which have a larger strength than approximately
10%. The general picture is that the DiMarzio-Bishop model predicts too wide relaxa-
tion curves and too high loss peak positions.

In section 4.7 we argued that the choice of local field is of minor importance in the
case of liquids with a small strength. Contrary the choice of local field might have
greater importance in the case of liquids with a great dielectric strength. It is therefore
possible that the poor agreement seen for substances with a great strength is due to the
inadequateness of the Maxwell or Lorentz field1. We will in this chapter examine how
the local field alters the results in practice, in order to test this hypothesis.

PPE is the only of the relevant substances with no visible beta relaxation peak. This
makes matters much more simple and we will therefore restrict the detailed analysis to
PPE.

11.1 Possible experimental explanations of poor fits

Before looking at the local field we analyze if the deviation could be due to uncertainties
or errors in the measurements, but find that this is not the case.

Figure 11.1 illustrates how the model strongly overestimates the width of the relaxation
peak, and that the peak shapes disagrees especially at the high frequency end of the
spectrum. Likewise, figure 11.2 shows that the model strongly overestimates the posi-
tion of the loss peak. The analysis in section 10.1 shows us that both these deviations
could be a sign of an overestimated εi value. Agreement between model and shear data
for both shape and loss peak position could in fact be obtained by using an εi value
which was considerably lower than the smallest physically reasonable value.

A small value could be explained if the capacitor had been poorly filled. This is unlikely
because the liquid is quite viscous at room temperature, which made it possible to over-
fill the capacitor, and because we have made two different dielectric measurements on
PPE which agree perfectly. The deviation of 1 decade in loss peak position and the large
deviation in shape is much too dramatic, to be accounted for by the uncertainty on the
shear measurements. Unless the error is due to a bad shear experiment. To test this
we performed a second measurement which agreed nicely with the first one both in
shape, loss peak and absolute values indicating that the shear transducer was properly
filled both times. An alternative explanation could be that the n2 value of the liquid was
smaller than the one reported in table 4.1. To test this we made a measurement of the
refraction index using a “PZO RL3 refractometer” and found that n2 = 2.653 at 28◦C,

1In the test of the model, which we presented in chapter 9, there was no distinction between using the
Maxwell or the Lorentz field. See section 4.7.
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Figure 11.1 PPE. The shape of the relaxation peak found from dielectric data and the DiMarzio-
Bishop model (solid dotted line), shear data (solid line), and pure dielectric modulus (dashed
line) at 254.0K. All curves are scaled by peak position, to allow for a comparison of the shape
alone. The model predicted curve is the same as in figure 9.5. This means that εi is set to 2.7
at 256.0K and extrapolated to other temperatures. The two figures show the same curves with
different scaling.
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Figure 11.2 PPE. The loss peak position predicted by the DiMarzio-Bishop model, Gm, shear
data and pure dielectric data. The model data are the same as in figure 9.5. This means that εi is
set to 2.7 at 256.0K and extrapolated to other temperatures. The right figure shows log10 of the
decoupling index between the shear modulus and the dielectric modulus M, and the log10 of the
decoupling index between the shear modulus and the shear modulus given by the model Gm.
The latter is simply the residual of the shear and model data in the right figure.
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in good agreement with the table value. A final possibility for having a smaller n2 than
the table value could be that the assumption about the temperature independence of α i

is wrong, and it decreases with temperature (this would destroy our argument for the
lower limit of εi). We performed a measurement of the refraction index at approxim-
ately 20◦C below room temperature and found a significant increase in n as expected
from our assumption, but this does of course not guarantee that the temperature de-
pendence is the same at lower temperatures.

We are confident that the poor agreement we have found between the DiMarzio-Bishop
model and data is due to a genuine poor agreement and will thus proceed by discussing
the possible physical explanations.

11.2 Different local field tested on data

In order to analyze the significance of the local field, and how this depends on the dielec-
tric strength, we have compared the result of the model in the Maxwell (equation 4.7.6),
Lorentz (equation 4.4.7), and Fatuzzo-Mason (equation 4.5.3) field formulations for PPE
and TPE respectively.

Figure 11.3 shows a comparison of the three versions of the model made on TPE. The
same value of εi, εe and r has been chosen. r has been determined such that the high fre-
quency plateau value agrees in the Maxwell formulation of the DiMarzio-Bishop model.
There is no visible difference, as expected for TPE, which has very small (≈ 2%) dielec-
tric strength (see section 4.7).

The same type of comparison is shown for PPE in figure 11.4. It is clearly seen that
the results of the three versions of the model differ largely in the predicted absolute
value, but the predicted peak shape and loss peak position is hardly affected. A closer
inspection shows that the loss peak position differs by as little as 0.003 decade, and the
shape of the relaxation curves when scaled to agree in hight are indistinguishable.

The comparison above is analogous to the comparison between the Fatuzzo-Mason and
the Lorentz versions of the field, which is presented in Díaz-Calleja et al. [1993]. A
different approach is to use the same εe and εi but let r be a fitting parameter in the three
versions of the model. We have presented such a comparison in figure 11.4. r is in all
three cases determined such that the high frequency plateau values agree. The Maxwell
and the Lorentz fields give exactly the same prediction when this approach is used, as
it has been accounted for in section 4.7.2. The figure illustrates that the Fatuzzo-Mason
curve agree with the two other curves as well2.

The three versions of the model predict different values of r, but they are all of the same
order of magnitude (1.1Å − 1.3Å) and it is impossible to say if any of these values is
more reasonable than the others. (A discussion on how r should or could be interpreted
is found in section 12). This shows that if the model is used or tested by a fitting pro-
cedure, then there is virtually no difference between the three versions of the model
which we have discussed, even for a liquid with a relatively large dielectric strength.
This strongly suggests that the poor model predictions we have seen for PPE should
not be explained by the chosen local field, because if this was the case, then the three
fields used should be expected to give different results, due to their differences. It is of
course possible, that all the fields we have used are equally dissatisfactory. We find that

2A close inspection reveals a difference between the Fatuzzo-Mason curve and the two others, because
they are not theoretically the same, whereas the Lorentz and the Maxwell curve are (see section 4.7).
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this is most likely the case if no chosen average continuum local field is adequate. If this
is the case then it is difficult to make any sense of the DiMarzio-Bishop model itself, as
it is derived from an overall continuum and average approach.
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Figure 11.3 Test of the significance of the chosen field on the results of the DiMarzio-Bishop
model made on TPE (264K). The shear modulus (solid line), Maxwell version of the model (solid
dotted line), Lorentz field formulation (dotted line), and the model with Fatuzzo-Mason field
(dashed line). The same values of r, εi and εe are used in the three versions of the model.
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Figure 11.4 Test of the significance of the chosen field on the results of the DiMarzio-Bishop
model made on PPE (254K). The shear modulus (solid line), Maxwell version of the model (solid
dotted line), Lorentz field formulation (dotted line), and the model with Fatuzzo-Mason field
(dashed line). The same values of r, εi and εe are used in the three versions of the model. r is
chosen such that the G∞ value of the Maxwell formulation of the model agrees with the actual
G∞ of the shear data.
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Figure 11.5 Test of the significance of the chosen field on the results of the DiMarzio-Bishop
model made on PPE (254K). The shear modulus (solid line), Maxwell version of the model (solid
dotted line), Lorentz field formulation (dotted line), and the model with Fatuzzo-Mason field
(dashed line). The same values εi and εe are used in the three versions of the model, r is in each
case chosen such that the high frequency value of the calculated shear modulus agrees with the
G∞ of the shear data. The three versions of the model yield almost identical results, therefore, the
curves are indistinguishable.
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12 Discussion of the DiMarzio-Bishop
model

12.1 Status of the model

In physics models serve many different purposes: From simple models, which aim to
capture the “underlying physics” and predict only the characteristic features of the phe-
nomena in question, to detailed models, which aim at making accurate quantitative pre-
dictions. In theory, the latter is easy to test; either the predictions of the model are true
or they are false. In contrast, the first kind of models is much harder to test, since the
success criteria is not well defined. It has to be decided firstly, what the characteristic
properties of the physical system are, and secondly how to evaluate if the model cap-
tures these properties. Furthermore, if the model can be pushed to make quantitative
prediction, it equally has to be assessed, how these predictions should be compared to
the details of the physical phenomena. Finally it should be established how the model
can be falsified!

It could be argued that some of our (and other’s) work on the DiMarzio-Bishop model
push it far in the quantitative direction compared to what was the original ambition of
DiMarzio and Bishop.

In their introduction DiMarzio and Bishop write:

The venerable Debye theory of the dielectric susceptibility predicts that the
Cole-Cole plot is a semicircle. However, for many systems of viscous liquids
and glasses (especially polymer systems) the Cole-Cole plot is a flat skewed
arc. [Dimarzio & Bishop, 1974]

and later in the introduction, they write the following about their results:

It is thereby suggested that the skewed-arc behavior is a manifestation of
the variation of the viscosity of the medium with frequency. [Dimarzio &
Bishop, 1974]

From these quotes and from looking at the model predictions, which they evaluate as “a
fair god fit”, it is seen that the original success criteria for the DiMarzio-Bishop model,
was that it should predict the right type of shape in a Cole-Cole plot. The impression is
thus that DiMarzio and Bishop think of the model as a “coarse grained” model, which
captures the essence of the underlying physics. The DiMarzio-Bishop model is suc-
cessful from this original point of view. It does in fact serve as an explanation for the
non-Debye dielectric relaxation spectra. (Though it is little surprise that a non-Debye
behavior emerges from a model, when a non-Debye shear modulus is used as input.)
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This is of course a very modest demand on what phenomenology the DiMarzio-Bishop
model should capture. Seen in this light, the qualitative results we find in chapter 8 and
7 are of great importance, as they give new testable predictions.

The DiMarzio-Bishop model gives an explanation of the difference which is always seen
between the shear loss peak position and the dielectric loss peak position. A connected
result of the DiMarzio-Bishop model, is that the shape of the loss peaks in the two sig-
nals should be slightly different. In general this result holds, however, exceptions exist.

The two predictions, mentioned above, are both directly testable, but have different
status. The predicted change in peak position is large and thus robust to small devi-
ations due to details that are not incorporated in the model. On the contrary, the pre-
dicted difference in shape is small, and it is therefore sensitive to smaller differences
between the model and the actual physics involved.

A third, but not directly testable, qualitative prediction is the prediction of an elastic
contribution to the high frequency plateau value of the dielectric constant. This pre-
diction would be testable if precise absolute values of the dielectric constant and the
refraction index at the relevant temperature were accessible. This is unfortunately not
the case since experimental problems interfere with the test. However by recasting the
prediction to a question of the temperature dependence of the high frequency plateau
value of the dielectric constant, the prediction becomes testable in practice. However,
the drawback is that the analysis becomes much more complex and moreover the effect
might not be seen in all substances.

With regard to quantitative predictions, the DiMarzio-Bishop model predicts the shape
and position of one relaxation process from the other via a few parameters. Needless to
say there are different ways to test if this connection holds, and our “on parameter test”
is one of them. Albeit the one parameter test places even higher demands on the model,
as the physically acceptable values of the parameter are limited.

The final test of the DiMarzio-Bishop model’s strength as a quantitative prediction
model is our test on the real part of the spectrum. Here the question is whether or
not the model can be used to find the high frequency shear modulus.

The general picture from our different tests is that when more demands are added to the
DiMarzio-Bishop model it starts to fail. In all cases we see the predicted change in loss
peak and in most cases we also see the predicted change in shape of the loss peak, yet the
difference in shape are generally small. The elastic contribution to the high frequency
plateau value of the dielectric constant is in fact seen for the one substance, where we
would expect the temperature dependency of the elastic contribution to dominate the
experimental problems. In the test on the entire relaxation spectrum, which involves the
exact connection of shape and position, there are several examples where the DiMarzio-
Bishop model fails. This shows that the model is inadequate for making reliable quant-
itative predictions, however, this might also effect how the DiMarzio-Bishop model is
perceived as a qualitative good model. One of the issues that will be discussed in the
following is the question of why the model gives much better fits for some substances
than for others.
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12.2 The physical limits on the fitting parameter

The DiMarzio-Bishop model was in section 8.1 rewritten, by using the high frequency
limit of the dielectric constant εh, and the high frequency limit of the shear modulus G∞

(see equation 8.1.1):

ε(ω)−εi

εe −εi
=

1

1 + 1/a−1
G∞

G(ω)
where a =

εh −εi

εe −εi

In the summary of the chapter “One parameter test of the model” (section 9.4) it was
discussed that the better fits on liquids with small dielectric strength might be due to a
larger freedom in the fitting parameter when expressed in terms of a. In the following
we will elaborate on this possibility.

The table below presents an overview of how the value of a controls the shift in loss
peak position (the precise values does of course depend on shape of the mechanical
signal, but the changes are minor. The shear data used here are the fictive data
described in figure 8.1).

a = εh−εi
εe−εi

log10(νlp,G/νlp,ε)

0.05 1.6
0.1 1.3
0.2 1.0
0.4 0.6

εh andεe are given by data and n2 is a lower limit onεi. Therefore a becomes bounded by
0 and the maximum value (εh − n2)/(εe − n2). On a practical level this yields a tighter
bound for liquids with large dielectric strength as the value (εh − n2) is relatively small
compared to (εe − n2).

By looking at figure 8.3 it can be observed that typical shifts in loss peak position are
about half a decade (TPG being a extreme with a shift of one decade). This signifies that
good fits require that the value of a should be around 0.4. High values like these can
be obtained, by using physically reasonable εi values, in the case of liquids with small
strength, whereas it is impossible for liquids with large dielectric strength.

The described model calculations were performed by calculating the dielectric constant
from a shear modulus, but the conclusion regarding the shift in loss peak position will of
course also hold when the DiMarzio-Bishop model is tested by the one parameter test.
For liquids with large dielectric strength the maximal value of a is small, thus the model
predicts a big difference between dielectric and shear mechanical loss peak positions.
This might be the reason why the shear peak position is overestimated in these cases
while it is well approximated for liquids with small dielectric strength.

The above discussion raises the question of whether the good fits for liquids with small
dielectric strength are merely due to the freedom of a, rather than an actual better agree-
ment between model and data. It should, however, be recalled that the DiMarzio-
Bishop model makes reasonable fits of both shape and position with the same phys-
ically reasonable εi (and hereby a) value for the liquids with small dielectric strength.
It is therefore very possible that the DiMarzio-Bishop model actually describes the dy-
namics of liquids with smaller strength better than the dynamics of liquids with larger
dielectric strength.
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12.3 The significance of the local environment

According to our quantitative tests, the DiMarzio-Bishop model is inadequate for de-
scribing the alpha process in the case of large dielectric strength, and moreover the
model generally gives a poor description of the beta process. As we have argued that
the choice of local field does not explain the poor agreement it indicates that the micro-
scopic model itself, gives a poor description for the beta relaxation and of the relaxation
in liquids with large dielectric strength.

It is very likely that the assumption about uncorrelated dipoles is good for liquids in
which the dipole is very weak, since other types of intermolecular forces will dominate
over dipole-dipole interactions; whereas it is a poor assumption for very dipolar liquids,
where the dipole-dipole interactions might introduce local order. The consequence of
such a local order in the liquid, is that each molecule “sees” a different environment,
and that the properties of this local environment will differ largely from the average
behavior of the liquid. This could be an explanation for the poor agreement between
the DiMarzio-Bishop model and data on substances with a large dipole.

It is likely that some local order exits even for liquids with small permanent dipoles, and
even if this is not the case, the local behavior will still differ from the average behavior
of the liquid.

The beta process is believed to be a local process. Such a local process is probably more
dependent on the local order of the liquid than the larger structural rearrangements of
molecules in the alpha process. This could offer an explanation to why the DiMarzio-
Bishop model fails to give a quantitative description of the beta process, while it works
better for the alpha process.

It could of course be argued that the shear modulus also depends on the intermolecular
forces, but as mentioned in an introductory chapter (section 2.3) it is easy to imagine two
different relaxation processes representing the underlying dynamics in two different
ways. Hence it is possible that the local structure has a different influence on the shear
modulus and the dielectric constant respectively.

12.4 The friction term and the molecular radius

In the test of the DiMarzio-Bishop model, which are presented in the literature, r is
normally used as a fitting parameter (see section 4.6).

By relating r to the elastic contribution in terms of a = (εh −εi)/(εe −εi) we can use the
physical limits on εi to determine limits for reasonable values of r.

Using the Maxwell formulation of the DiMarzio-Bishop model (equation 4.7.5) the fol-
lowing connection is found:

a =
1

1 + 4πr3

kBT G∞

giving r3 = (1/a − 1)
kBT

4πG∞

. (12.4.1)

If the Clausius-Mossotti approximation is used, a εi+2
εe+2 term enters the equation.

It can be seen that a large elastic contribution (large a) could be due to a small molecular
radius or a small G∞. Equally it is seen that bounds on r can be given from the bounds
on εi, if εh, εe and G∞ are known from the measurements. A lower bound on εi, cor-
responding to an upper bound on a, yields a lower bound on r. An example, using
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standard reasonable values of T (200K), and G∞ (1GPa), is that a bound of a < 0.05
corresponds to r > 1.6Å.

The differences we see between the shear and the dielectric loss peak positions corres-
pond to a values ranging from a = 0.1 to a = 0.4. Using physically reasonable values
for T, and G∞ (the results are rather robust regarding the precise values) it is found that
a = 0.1 leads to r ≈ 1Å and that a = 0.4 leads to r ≈ 0.7Å. Reasonable fits made with r
as a parameter will therefore give r values of this order of magnitude.

The radii found in the literature based on fits with the DiMarzio-Bishop model, agree
reasonably well with the above. However, a molecular radius of approximately 1Å is
smaller than physically reasonable for a molecular liquid. Hence, these r values could
be seen as an argument against the model, but the DiMarzio-Bishop model can easily
be adjusted to avoid this problem.

The actual form of the friction term ζ(ω) does not enter in the derivation of the
DiMarzio-Bishop model. It is therefor possible to choose this function after the general
derivation of the model.

In the derivation of the model it was assumed that the rotational friction is given by
a Stokes friction term in the no slip case. A simple modification could be a smaller
constant connecting ζ(ω) and η(ω). Changing the factor connecting ζ(ω) and η(ω)
could be interpreted as allowing some degree of slip. Such an approach will not lead to
any differences regarding the DiMarzio-Bishop model’s ability to describe the data. It
merely opens the possibility of using values of r, which are more physically reasonable,
without changing the essentials of the model.

The DiMarzio-Bishop model gives a very simple and consistent connection between the
shear modulus and the dielectric constant. Hence, the notion of a sphere rotating in
the liquid is not fundamental for the DiMarzio-Bishop model. It is the simple coupling
between rotation and macroscopic shear behavior which is essential.

The above discussion emphasizes how profitable it is to express the DiMarzio-
Bishop model in terms of macroscopic parameters, as the acceptable values of the mac-
roscopic parameters stay unaffected by the physical interpretation of the model.

12.5 The dynamics

One of the overall conclusions on our work is that it is reasonable to use the DiMarzio-
Bishop model as a tool for understanding the fundamentals of rotational dynamics. This
raises the question of which kind of dynamics the DiMarzio-Bishop model suggests.

The fluctuation dissipation theorem (equation 2.4.3) tells us that the response function in
terms of χ(t) is directly proportional to

〈

(P(t)− P(0))2
〉

. Therefore, the interpretation
of the model can be made in terms of the fluctuation in polarization, which is directly
related to the mean fluctuation in orientation.

The rotation of the molecules was in the original Debye model described by ordinary
(rotational) diffusion. This meant that the squared polarization fluctuation was pre-
dicted to be continuous and exponential. In the DiMarzio-Bishop model the dynamics
of the equilibrium liquid is somewhat different. At very short times the mean molecule
performs an angular jump, which brings it a finite distance away form the starting point,
whereas the molecular dynamics becomes dominated by ordinary diffusion at very long
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time scales. In the intermediate time ranges the dynamics changes gradually from very
fast dynamics to the diffusion regime.

An alternative way of receiving information about the rotational dynamics is NMR ex-
periments. By varying an experimental parameter in the NMR experiments a para-
metrized correlation function can be obtained, and this yields information about the
rotational dynamics (see for example Hinze [1998] and Böhmer et al. [2001]).

The general framework for interpreting results from this kind of NMR experiments is
in terms of angular jump models1. The main parameters in the jump models are the
jump angle distribution and the distribution of waiting times (rotational diffusion is a
special case of jump models where the jump angle goes to zero). The data are analyzed
by simulating a given jump dynamics and calculating the NMR signal, which would
emerge form a sample with this dynamics. A simple distribution consisting of a mixture
of small jumps (in the order of 5◦) and large jumps (in the order of 20 − 50◦) is usually
sufficient to describe the data2.

A simple interpretation is proposed in Hinze [1998], where the large jumps are the fun-
damental reorientation of the molecules and the small jumps are attributed to local reor-
ganization after a large jump has perturbed the local potential. Alternatively the small
jumps could initiate the large jumps, however, it is unknown if the first or the second
scenario is most correct [Böhmer et al., 2001].

The NMR-based understanding of the rotational dynamics is not necessarily in contra-
diction with the DiMarzio-Bishop model. The DiMarzio-Bishop model incorporates the
jump dynamics via the shear modulus, which in itself is believed to be controlled by
jump dynamics.

We have studied the simple NMR-based jump picture by performing a small simula-
tion3 where

〈

(P(t)− P(0))2
〉

was calculate for a system with this type of jump dynam-
ics. No abrupt differences between short time and long time behavior could be seen in
〈

(P(t)− P(0))2
〉

, thus no sign of an instantaneous contribution was found. This implies
that the elastic contribution that enters in

〈

(P(t)− P(0))2
〉

according to the DiMarzio-
Bishop model cannot be seen in the simple NMR-based jump picture.

12.6 The connection between shear mechanical and
dielectric relaxation

A final point to consider, is how the relation between shear and dielectric behavior could
be understood, if the DiMarzio-Bishop model really does give an adequate tool for un-
derstanding the relation.

We picture this by two different scenarios. The first of these scenarios is tightly connec-
ted to the traditional derivation of the model, whereas the latter is more abstract.

The rotation of a molecule in the liquid is inhibited by its interaction with its neighbor
molecules via intermolecular forces. This interaction will obviously be determined by

1The concept of jump dynamics is, as described in the introduction to “glass forming liquids”, part of
todays paradigm for understanding very viscous liquids.

2The ratio between large and small jumps depends much on the substance, it is as an example found in
Hinze [1998] that 80% small jumps and 20% large jumps should be used in the case toluene.

3The simulation method (a continuous time random walk algorithm) and choice of parameter, are based
on Hinze [1998]. The distribution of the size of jumps were: 80% 4◦ jumps and 20% 25◦ jumps. The waiting
time distribution was taken to be an exponential distribution. The average was taken over 105 trajectories.
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the local configuration around the molecule. The assumption of the DiMarzio-Bishop
model is that the averaged interaction is equivalent to the interaction between a macro-
scopic entity and the continuum liquid - a continuum liquid which is characterized by
the macroscopic shear modulus. The shear modulus is an average property, which is
directly related to the microscopic intermolecular forces. Hence, the DiMarzio-Bishop
model gives a prescription of how two different macroscopic quantities should be con-
nected.

When, recalling that both shear and dielectric behavior are governed by the liquids
fluctuation in the 6N + 1 dimensional energy landscape, the scene is set for a more
abstract interpretation. A movement in the landscape will be reflected some way in the
shear stress and some other way in the rotational polarization. The two do not a priori
need to be connected. However, if it is assumed that they are in fact connected, then the
DiMarzio-Bishop prescribes a simple and consistent connection.

The topology of the energy landscape is determined by the intermolecular forces.
Hence, it is the relation between the intermolecular forces, the shear stress, and the
polarization which is the key point, in both of the above interpretations. Therefore we
think of them as two different ways of picturing what might happen, rather than two
competing suggestions.
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13 A few other points

The aim of this chapter is to report and discuss our data in relation to some of the
fundamental questions of the phenomenology of relaxation in glass forming liquids.
These points are not directly linked to the DiMarzio-Bishop model, however they are
very central to the research area, and this is why we chose to include them. Needless to
say, the comparison of shear and dielectric behavior is in focus in this chapter as it for
the rest of our work.

13.1 Time temperature superposition (TTS)

An interesting question is whether or not the shape of the alpha peak is temperature
dependent (see section 2.5.2). This question relates closely to the question of the differ-
ences between the shape of the dielectric spectrum and the shape of the shear mecha-
nical spectrum, since these differences will be temperature independent if TTS is be
obeyed in both relaxations.

TTS plots of both the shear and the dielectric relaxations are shown in figures 13.1 to
13.5. In the plots it is seen that for the alpha substances (TPE, DC704 and PPE) the
dielectric constant and the shear modulus show an almost temperature independent
shape of the loss peak (see figure 13.1, 13.2 and 13.3). Especially the shear modulus of
DC704 and PPE and the dielectric constant of DC704 is seen to fall on master curves.

In the case of substances with a beta peak TTS breaks down. On TPG where the beta
peak is much less pronounced than in the case of DHIQ it does, however, look very
much as if the alpha peak alone exhibits TTS. The shear alpha peak of both DHIQ and
TPG get narrower as the temperature decreases. Equally this means that the alpha peak
gets narrower as the beta peak and the alpha peak separate from each other. (see figure
13.5 and 13.4). A close inspection of the dielectric data on DHIQ and TPG reveals a more
complicated temperature dependence. At high temperatures, where the alpha peak is at
higher frequencies than the beta peak, the alpha peak is rather narrow. As the tempera-
ture is decreased the peak gets broader, and the beta peak appears as a shoulder. At
even lower temperatures the two peaks separate and the alpha peak becomes narrower
again. (see figure 13.6). This suggests that it is the merging with the beta peak which
gives the temperature dependence of the alpha peaks width, hence that the alpha peak
itself has a temperature independent shape. Unfortunately, we are not able to test if this
scenario is also found in the shear mechanical relaxation, because we do not have any
substances where the beta peak appears at sufficient low frequencies.
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Figure 13.1 TTS plot of TPE data, at 254.0K to 266.0K in steps of 2K.
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Figure 13.2 TTS plot of DC704 data, at 215.4K to 231.6K in steps of approximately 2K.
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Figure 13.3 TTS plot of PPE data, at 250.0K to 264.0K in steps of 2K.
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Figure 13.4 TTS plot of DHIQ data, at 180.0K to 190.5K in steps of 1.5K.

−4 −2 0 2 4 6 8
−2

−1.5

−1

−0.5

0

log
10

(ν/ν
lp

)

lo
g 10

(ε
′′/

ε′
′ lp

)

−4 −2 0 2 4 6 8
−2

−1.5

−1

−0.5

0

log
10

(ν/ν
lp

)

lo
g 10

(G
′′/

G
′′ lp

)

Figure 13.5 TTS plot of TPG data, at 196.0K to 212.0K in steps of 2K.
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scale on the x-axis, the beta peak is outside this zoom.
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13.2 Dielectric modulus versus dielectric constant

When comparing dielectric and shear mechanical data, it is often discussed which
dielectric response function should be used. In this section we make a few comments
concerning this discussion.

13.2.1 Brief background

The most common ways of presenting the relaxations respectively are via the dielec-
tric susceptibility in terms of ε and the shear modulus G, and these two functions are
compared in several cases. An alternative which is sometimes used is a comparison of
the dielectric modulus M with G. We are not aware of any model based predictions re-
garding a direct connection between M and G, but it is a general assertion that moduli
ought to be compared to other moduli and susceptibilities to susceptibilities [Angell
et al., 2000], [Paluch, 2000].

It is difficult to compare the shear compliance to the dielectric constant because the
former diverges as the frequency approaches zero, while the dielectric constant has a
finite equilibrium value. Using the retardation part of the compliance (see section 3.1
for a definition) does, however, offer a way around this problem [Schröter & Donth,
2002], [Angell et al., 2000].

13.2.2 Our work in this view

We did find that the dielectric modulus, according to the DiMarzio-Bishop model,
should be closer to the shear modulus than the dielectric constant. This could on one
hand, be used to support the view that the dielectric modulus should be compared
to the shear modulus. On the other hand, we found that the behavior of the relation
between the dielectric modulus and the shear modulus was dependent on the dielectric
relaxation strength, whereas this was not the case for the dielectric constant, (see section
8.1.1).

In our quantitative analysis we cast the dielectric data into a modulus form, though
it was not the pure modulus (M = 1/ε) but a rotational dielectric modulus (1/(ε − εi)).
However, it is almost trivial that a model that gives the shear modulus from the dielectric
data should include something modulus-like.

The discussion on whether the modulus or the dielectric constant should be used is of
limited relevance on a practical level with regard to substances with a little dielectric
strength, as the two relaxation peaks have the same shape and position in these cases1.
An example of this can be seen in the right plot of figure 13.7.

For liquids with great relaxation strength very different curves are seen when going
from the susceptibility picture to the modulus, hence the conclusions drawn will cer-
tainly depend on which formulation is chosen. The dielectric relaxation spectra of TPG,
which has a very large dielectric strength and a beta relaxation, serves an example of

1The general relation between the two losses is M′′(ω) = −ε′′(ω)

(ε′(ω))2+(ε′′(ω))2 . The dielectric constant can be

expressed as, ε(ω) = εh + δ(ω) + iε′′(ω), where δ(ω) and ε′′(ω) are small compared to εh if the dielectric

strength is small. Thus the relation between the losses reduces to the proportionality M′′(ω) ≈ −ε′′(ω)

ε2
h

, for

substances with small strenght



13.2 Dielectric modulus versus dielectric constant 127

pronounces differences between the susceptibility and the modulus curves. The dielec-
tric modulus and the dielectric constant are shown for TPG on the left hand plot of
figure 13.7. The peak of the modulus is wider, furthermore it can be seen that the beta
relaxation is much more pronounced in the dielectric modulus than in the dielectric
constant.
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Figure 13.7 Comparison of the shape of the dielectric constant (dashed line) and the dielectric
modulus (dash dotted line). The left figure shows TPG at 190K to 224K in steps of two degrees.
The right plot shows TPE at 262K, it is almost impossible to distinguish the two curves.
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13.3 Fragility

The temperature dependence of the loss peak position, is as we mentioned numerous
pages back a thoroughly studied area. In this section we report how the liquids we
have studied behave in this respect. The focal point is an evaluation of how the results
depend on whether shear or dielectric data are used.

We have found both the Olsen index at Tg and the Angell fragility index (see section
2.2 for definitions). We have found that the uncertainties on determining the indexes is
large. Furthermore the result is strongly dependent on what exact procedure is used,
and on which precise definitions (eg. of Tg) are used. However, the general order of
the liquids on the fragile to strong scale seems to be the same for different methods
as long as the same method is used for all liquids. Therefore, we have used the exact
same method in determining the indexes for all liquids and for shear and dielectric data
alike2.

The results are shown in table 13.1. We have earlier reported that the shear loss peak
position is at a higher frequency than the dielectric loss peak position. The same result
is seen here as a lower shear Tg than dielectric Tg. Squalane falls out of this pattern; it is
seen in figure 8.3 that the difference between the two loss peaks approaches zero as Tg

is approach in the case of squalane, this is consistent with identical Tg.

The general trends regarding fragility is that the liquid appears to be more fragile when
studied via the shear relaxation, than when studied by the dielectric relaxation. It is
very dependent on substance how pronounced the difference is. The most important
conclusion to be drawn from table 13.1 is thus that very exact agreement should not be
expected for models that aim to explain the fragility if the model is not related to the
characteristic time of a specific relaxation. There is little qualitative difference regarding
which liquids are found to be strong or fragile respectively, but it should be kept in mind
that all the liquids (except DHIQ) have very similar fragility. It is therefore possible that
the picture changes if a greater span of fragilities is included.

The greatest differences seem to be seen for liquids with a beta relaxation. Recalling
figure 8.3 we also found that the loss peak positions of the two relaxations show stronger
decoupling for the beta liquids. These results might be due to our simple treatment of
the data, and might therefore be altered if the alpha loss peak position was found after
subtracting the beta relaxation by some appropriate procedure.

2

• The alpha loss peak positions, is taken to be the point of maximum loss and νlp(T) is found by using
a fitting routine.

• τ(T) is defined as 1/νlp(T).

• The glass temperature is defined as the temperature where τ(Tg) = 103s. This leads to a difference in
Tg depending on whether shear of dielectric data are used.

• τ0 = 10−13s is assumed.

• E(T) = kBT(ln τ(T) − ln τ0) is determined.

• The slopes γ(Tg) = −
d log E(T)

d log T

∣

∣

∣

Tg
and m =

d log10(τ)
dTg/T

∣

∣

∣

Tg
are estimated by using the last measured point

and the theoretical point
(

Tg/T, τ
)

=
(

1, 103s
)

. In this step much care is taken in order to determine Tg
correctly such that this estimate of the slope is actually right. The uncertainty of the determination of Tg
is the main flaw of this procedure. In the cases where we have a data point close to Tg the uncertainty
is much smaller, this is seen because the difference in m as found directly from the definition and found
via γ becomes significantly smaller.
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Contrary to what we generally see DHIQ comes out more fragile by the dielectric data.
DHIQ also deviates from the other liquids by being very fragile and by having an ex-
tremely pronounced beta relaxation, and both these features could affect the fragility or
the fragility found by the procedure we have used.

Dielectric Shear
Tg γ m Tg γ m

TPE
Triphenylethylene

248.7K 3.8 73 247.5K 4.1 78

DC704
Tetramethyltetraphenyl-

trisiloxane

210.5K 4.2 83 209K 4.6 83

PPE
Polyphenyl Ether

244.7K 4.2 80 243K 4.6 85

Squalane
Perhydrosqualene

166.7K 3.2 64 166.7K 4.5 87

Pb20
Polybutadiene

175.7K 4.0 79 175.2K 5.7 105

DHIQ
Decahydroisoquinoline

178.7K 9.0 154 178.2K 8.0 143

TPG
Tripropylene glycol

189K 3.3 65 187K 4.6 86

Table 13.1 The glass temperature and the fragility (in terms of the Olsen index γ(Tg), and the
Angell index m.) found from dielectric and shear relaxation respectively. Equation 2.2.5 does not
hold exactly due to numerical uncertainties.
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14 Conclusion

The DiMarzio-Bishop model which is a generalization of the Debye model has been
analyzed and tested.

We have given a macroscopic formulation of the model, which gives a correct treatment
of the high frequency behavior of the dielectric relaxation and have thereby avoided
earlier simplifying, but unphysical assumptions.

Measurements have been made on seven different liquids and we have in all cases taken
both shear mechanical and dielectric relaxation spectra under the same physical condi-
tions. All seven liquids exhibit different phenomenology when categorized by whether
a secondary relaxation can be seen and by their dielectric relaxation strength.

The DiMarzio-Bishop model predicts an elastic contribution to the high frequency
dielectric constant. We have shown that an increase in the high frequency dielectric
constant with increasing temperature has to be due to such an elastic contribution, and
we have demonstrated that this behavior can in fact be found in data.

Furthermore we have shown that the model predicts the shear loss peak to be found at
higher frequencies than the loss peak of the dielectric constant. This prediction concerns
both the primary alpha relaxation and the secondary beta relaxation. The prediction is
found to hold in all our data as well as in data, which are reported in the literature.

The model also predicts a shear relaxation that is broader than the dielectric relaxation
and that the secondary relaxation is more pronounced in the shear relaxation than in the
dielectric relaxation. Our data generally behave in accordance with these predictions.
There are, however, exceptions, and the broadening is not as unambiguous as it should
be expected from the DiMarzio-Bishop model.

We have formulated the DiMarzio-Bishop model in a version where the loss peak shape
and loss peak position of the shear modulus can be found from the dielectric constant
by using only one macroscopic parameter, εi. By using this formulation, the DiMarzio-
Bishop model can give reasonable quantitative fits for liquids with small dielectric
strength and no beta relaxation. For liquids with a small strength and a beta relaxa-
tion we see reasonable fits around the alpha peak, while the beta peak is overestimated.
The model cannot give reasonable fits for liquids with a large dielectric strength, if a
physically reasonable value is to be used for the macroscopic parameter, εi. The physic-
ally determined limit we have on εi is relatively stronger when applied to liquids with
large strength. It is therefore impossible to know if the strength dependent difference in
the quality is the fit is due to different physics or due to this practical difference.

By using different local fields in the DiMarzio-Bishop model, and by specifically study-
ing how the effects of the chosen local field is strength dependent, we have shown that
the deviations between data and model are unlikely to be due to the local field approx-
imation.

The quantitative agreement between the DiMarzio-Bishop model and data are all in
all moderate to poor. Resultantly, we do not think it is a realistic prospect to predict
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shear behavior from dielectric data by using the DiMarzio-Bishop model, nor to under-
stand the details of dielectric relaxation in terms of the DiMarzio-Bishop model. The
qualitative predictions of the DiMarzio-Bishop model do, however, capture a lot of the
phenomenology. Therefore, we believe that the model serves as a tool for understand-
ing the fundamental physics of dielectric relaxation. This implies that shear relaxation
and dielectric relaxation are in fact closely related.
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A Reaction field

A dipole in a dielectricum (which in our case is made up of the same type of dipoles) will
polarize its surroundings and this polarization of the surroundings will give rise to an
electric field at the position of the original dipole. This field is called the reaction field.
In the following we outline how the reaction field is found following the presentation
in Böttcher [1973].

The first step is to consider the case of a permanent dipole that cannot be further polar-
ized. That is no further polarization is induced when a field acts on the dipole.

The dipole itself is modeled as a spherical vacancy, with radius a, with an ideal dipole in
the center. The vacancy is labeled domain 2. The surroundings of vacancy are modeled
as a continuum with a dielectric constant ε. The surroundings are labeled area 1.

The potentials in the two domainsϕ1 andϕ2 are found by using the standard solution of
Laplace’s equation in spherical coordinates with the z-axis pointing the same direction
as the dipole. This is combined with the boundary conditions, which are standard when
solving the equation over an interface between vacuum and a dielectricum

ϕ1
∣

∣

r=a = ϕ2
∣

∣

r=a , ε
∂ϕ1

∂r

∣

∣

∣

∣

r=a
=

∂ϕ2

∂r

∣

∣

∣

∣

r=a
, (A.1)

the condition that the field goes to zero at long distances from the dipole

ϕ1
∣

∣

r→∞

= 0, (A.2)

and the condition that the divergence in the center has to correspond to the divergence
due to the ideal dipole that is placed there. Accordingly the only diverging term in ϕ2

should be

µ

r2 cos(θ). (A.3)

This procedure yields the following potential within the cavity

ϕ2 =
µ

r2 cos(θ)−
2(ε − 1)

2ε + 1
µ

a3 r cos(θ). (A.4)

The first term is the potential of the field due to the point dipole itself. The second term
is the potential of the reaction field. From this it follows that the reaction field is given
by

R =
2(ε − 1)

2ε + 1
µ

a3 ẑ, (A.5)

which is seen to be proportional to the dipole moment, µ:

R = fµ, f =
2(ε − 1)

2ε + 1
1
a3 (A.6)
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The next step is to generalize this to the case of a dipole that can be polarized. Such
a dipole will be polarized by the reaction field and this additional dipole moment will
also contribute to the reaction field. This means

R = f (µ +αiR) ⇔ (A.7)

R =
f

1 − fαi
µ, (A.8)

where αi is the induced polarization coefficient.



B Fitting functions

In this appendix we will present the fitting functions and models, which we have used
in our analysis. Both shear and dielectric fitting functions have been used to determine
high frequency plateau values, and the equilibrium values have also been found in the
case of dielectric data. The limiting values found in this manner have been used in 7,
10 and 11. There shear fitting functions have also been used for generating the fictive
shear data, which are used in chapter 8 and 10.

Havriliak-Negami function

This phenomenological fitting function is used to describe dielectric data.

ε = εh +
εe −εh

(1 + (iωτD)a)b . (B.1)

0 ≤ a ≤ 1 and 0 ≤ b ≤ 1.

If b = 1 the function reduces to the Cole-Cole function, if a = 1 the function reduces to
the Cole-Davidson function, and finally if a = b = 1 the function reduces to the Debye
function.

Extended Maxwell

This is a generalization of the Maxwell model based on the BEL model. The Exten-
ded Maxwell model is in this thesis used to describe the alpha relaxation in the shear
modulus.

G = G∞

1

1 + 1
iωτM

+ q
(

1
iωτM

)a (B.2)

η1

G∞

a

Figure B.1 Electric diagram showing the extended Maxwell model, the outer right element is a
generalized diffusion chain.
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The mechanical alpha–beta–model

We use this model to describe shear modulus spectra with both an alpha and a beta
relaxation.

The mechanical shear response is modeled as a parallel combination of an extended
maxwell element and a mechanical Cole-Cole element.

η1

G∞

α

1

Gβ

β

Figure B.2 Electric diagram showing the mechanical α–β–model. The α- and β-elements are
generalized diffusion chains.

The shear modulus is given as

G(ω) =
G∞

1 + 1
iωτα

+ q
(

1
iωτα

)α

+
G f

(iωτβ)β+1

(B.3)

where τα = η
G∞

, G f = G∞

Gβ
. The prefactor on the (iωτβ)β term has been set to one, but a

different value can be chosen with out loss of generality because τβ is a free parameter.


