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1 Background

The exercise is designed to get you familiarized with a method used to deter-
mine the frequency dependent heat capacity of a material. The measurement
method is part of a number of methods used in the “liquid-laboratory”. These
methods, which were partly developed here on the site, are established with
the aim of measuring a complete set of electrical and thermo-mechanical re-
sponse functions.

In the preparation for this exercise, read this note thoroughly and try to work
out the various tasks herein. After the exercise, a report should be written
which contains a review of the theory behind the method (ie at least answe-
ring most “exercises” in this note), and a thorough analysis of the performed
measurements. The measurements must be treated and the results compared
with literature values and theory.

The heart of the method consists of a so-called NTC resistor (negative tem-
perature coefficient) which has a resistance, R, that depends on temperature.
The principle of the method is that the resistor simultaneously can deliver heat
(Joule heat) and register the corresponding temperature response. By sending
a known electrically current through the resistor and measuring the voltage
across this, one can thus calculate both heat production and temperature re-
sponse.

The NTC resistor has the form of a little pearl. It has a structure with a inner se-
miconductor portion and an outer glass capsule, and is connected through two
legs (electrodes) (see figure 1). The NTC-resistor is placed in a thermostated
chamber. We assume that the chamber walls, which consists of solid copper,
can be thermostated so that the temperature here does not depend on the heat
flow generated by the NTC resistor.

The thermal properties of a sample can be calculated if it is thermally coupled
to the resistor. In the laboratory weworkwith two different “geometries” a thin
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Figur 1: Left Sketch of the pearl with inner part and glass capsule. Right Pearl
in cryostat.

and a thick. In the thin geometry the liquid is applied onto the pearl and hangs
like a drop around this (due to surface tension). The specific heat capacity of the
liquid can then be determined from the drop’s weight, the total heat capacity
and the heat capacity of the pearl. In the thick geometry, the bead is placed in
a container (which is much larger than the bead) filled with liquid. These two
geometries each have their advantages and disadvantages.

Due to time constraints, we can in this exercise only determine the heat capa-
city of the pearl, total heat loss to the surroundings, and the heat conductivity
of air.

2 Modeling the thermal system

To understand the thermal properties of the system consisting of the pearl and
the cryostat, it is advantageous to provide a “network”model. In this model
we let the voltage be the temperature difference between the pearl and the
cryostat (∆T) and the power is the heat flow (P), both assumed to be harmonic
functions with a given frequency, and expressed as complex amplitudes. With
these definitions we can talk about the complex frequency dependent thermal
impedance (Z = ∆T/P), thermal admitans (Y = P/∆T) and thermal capacity
(C = Q/∆T, where Q is the total amount of heat, that is the integrated heat
flow). 1

1You have worked with this type of modeling on the “ Physical modeling”course, if necessary
see the notes from that course for a discussion of the generalized impedance.
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Figur 2: Electric equivalence network for the thermal system.

The thermal properties of the system can be described by the electric equiva-
lence network shown on figure 2.

The current generator represent the inner part of the bead. It is seen that the
current generator sends a current into a parallel connection of the heat capacity
of the pearl and three thermal admittance’s. The thermal properties of the bead
and the surroundings is typically represented by the total thermal impedance
Zth = ∆T/P.

In the following exercises you should consider the thermal admittance and
how it can be found.

Exercises

Why are the 4 elements coupled in parallel?Which heat conduction abilities are
represented by YR, YC og YE? How can we find CNTC and the total conductivity
from the measured thermal impedance Zth?

Think of a substance with the specific heat conductivity λ, which is placed
between two concentric sphere shells of radius r1 and r2 (see figure 3). Calculate
the temperature increment ∆T obtained in equilibrium at the inner shell, if
we maintain the temperature T0 on the outermost shell and sends a heat flow
I0 from the inner shell out into the medium. Now let the pearl be the inner
shell and the cryostat the outer, and calculate an expression for the thermal
admittance as seen at the inner shell assuming r2 ≫ r1.

Calculate an expression for the thermal admittance when heat is transported
by radiation. Finally calculate an expression for the thermal admittance due to
heat loss through the electrodes.

The thermal conductivity of the air can be changed by changing the pressure
of the cryostat chamber. How does the conductance λ depend on the pressure?

Sketches the theoretical thermal impedance as a function the frequency of the
harmonic heat (power) input.

In the exercise we will be measuring the total thermal conductivity at various
pressure, consider what we gain from this and how it enables us to find the
thermal conductivity of air.

3



T0

r2

r1

Figur 3: Sketch of two spheres for calculating the thermal admittance

3 A short section on complex notation

In what follows, we use complex notation to represent a periodic signal. In
principle the same technique as in the “ Physical modeling course”, but in this
context, we need to be a little more thorough. This is because the system is
not linear and we therefore need to explicitly express the real time-dependent
periodic signal on the basis of the complex quantities.

A periodic signal A(t) can be generally written as a sum of harmonic terms:

A = A0 + |A1| cos(ωt+ φ1) + . . .+ |An| cos(nωt+ φn) (1)

where A0, |Ak| are real amplitudes and φk phases. Such a sum of harmonic
terms can be written as (if you can not see this immediately try to work it out)

A =
1

2

(

A0 + A0 + |A1|e
i(ωt+φ1) + |A1|e

−i(ωt+φ1) + . . .+ |An|e
i(nωt+φn) + |An|e

−i(nωt+φn)
)

.

(2)

By introducing the complex amplitude Ak = |Ak|e
iφk and a shorthand notation

Ek = eikωt the sum can be written as

A =
1

2
(A0 + A1E1 + . . .+ AnEn + c.c.), (3)

where +c.c. means that the complex conjugated of all terms in the parenthesis
are to be added (including the conjugated of the real constant).

Some algebraic rules apply (convince yourself):
E0 = 1, EkEl = Ek+l , and EkE

∗
l = Ek−l .

Exercise

Let A = 1
2 (A0 + A1E1 + c.c.) og B = 1

2 (B0 + B1E1 + c.c.), calculate A · B and
express it in terms of the above introduced notation (that is give the complex
amplitudes). 4
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Figur 4: Circuit for measuring,U is the input voltage,V is the measures voltage
over the pre-resistor Rpre and R(T) is the temperature dependent resistance of
the NTC-resistor.

4 The electric setup and the fundamental equations

The electric current/voltage relation is measured by the circuit shown on figure
4. The NTC resistor is placed in what is known as a voltage divider together
with a known resistor, Rpre, which is temperature independent.

The voltage generator is custom build (by the workshop) and delivers a time
dependent voltage U(t) = A cos(2πνt), where the amplitude A can be chosen
between 0 and 10V in 256 steps, while the frequency ν can be changed between
1mHz and 100Hz.

The time-dependent output voltage U(t) is measured using a 26-bit digital
voltmeter. Measurements are presented as an array of 512 measurements ta-
ken at equal distances over a period of the input signal. In the design of the
setup much care is taken to keep track of the phase between the input voltage
and the measured voltage.

Exercises

Derive the voltage divider formula:

V(t) =
Rpre

Rpre + R(T(t))
U(t). (4)

The temperature dependency of the bead can be described as: R(T) = R∞eTa/T ,
discuss why this is the case?
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Assume that the temperature of the bead is close to the temperature of the cry-
ostat, T0, now show that one may express R as function of ∆T to first order as
R = R0(1+ α∆T) (where ∆T is the difference in temperature from the cryostat
temperature. What is the physical interpretation of R0?

Show that the temperature coefficient α can be expressed as α = d lnR
dT , and

derive an expression for the dependence of T and Ta.

Now take advantage of this first order approximation to write V(t) as function
of U(t) and R(T) to first order in ∆T as:

V =
1

A+ 1

(

1−
Aα

1+ A
∆T

)

U. (5)

Finally derive the two following expression for the effect delivered to the bead:

P =
1

Rpre

A

(1+ A)2

(

1+
1− A

1+ A
α1∆T

)

U2 (to first order in ∆T) (6)

P =
(U −V)V

Rpre
, (7)

what is the advantage of each of these expressions?

5 From time to frequency domain

As described earlier we measure the time-dependent signal V(t)when a perio-
dic signal U(t) is applied. We want to convert this signal to a sum of harmonic
contributions. This is done in the computer by use of a so-called “Fast Fourier
Transform” (FFT).

In matlab it looks like this:

x=fread(multi,512,’int32’)*iscale;

xfft=fft(x)/256;

The first line retrieves the 512 measurements of voltage (this is multiplied by
a factor from the voltmeter). In the second line the discrete Fouier transform is
taken of this signal (to get the absolute values to fit you must divide by half the
number of points (see also matlab help page about fft)). The result is an array
where the first place contains 2 times the amplitude of the 0 harmonic, the 2nd
place the complex amplitude of the first harmonic, 3rd place the complex am-
plitude to the second harmonics and so on (why we get 2 times the amplitude
to the 0’te harmonics lie in the definition of the Fouier transformation, which
we do not get into here). A simple example is illustrated in Figure 5.
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%number of points

n=512

% array with evenly spaced points between 0 and 2pi

x=linspace(0,2*pi,n)

%A function

y=1+0.5*cos(x+12/180*pi)+0.75*cos(2*x+30/180*pi)

% the FFT transform scaled by n/2

yfft=fft(y)/n*2
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Figur 5: Example of the resulting values after transforming a signal sampled
over one periode. Only the first 5 lines of the array is shown.
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In the following we work in the frequency domain. In general we define (only
including up to 4th order terms)

V(t) =
1

2
(V0 +V1E1 +V2E2 +V3E3 +V4E4 + c.c.)

U(t) =
1

2
(U0 +U1E1 +U2E2 +U3E3 +U4E4 + c.c.)

P(t) =
1

2
(P0 + P1E1 + P2E2 + P3E3 + P4E4 + c.c.)

∆T(t) =
1

2
(T0 + T1E1 + T2E2 + T3E3 + T4E4 + c.c.) .

We likewise define the thermal impedance for all the harmonic, that is:

Zth,1 = T1/P1

Zth,2 = T2/P2

...
...

.

Exercises

Generally, we measure the frequency dependent thermal impedance Zth,i(ω).
What is the relationship between Zth,1(ω) and Zth,2(ω)? (This is a very im-
portant but difficult point, use some time thinking about it).

Convince yourself that the values seen in figure 5 fit with the function which
has been transformed.

6 Calibrating the temperature dependent resistance

of the bead

When the bead sits in the cryostat its temperature-dependent resistance can be
determined by measuring V at different temperatures and by pre-measuring
U and Rpre which does not depend on temperature. When R is measured this
way by sending a current through the bead, the bead will not have the same
temperature as the cryostat.

Assume hereafter that the generator is “perfect”, that is it delivers a pure har-

monic signal, U = 1
2 (U1E1 + cc) and that the measured voltage can be written

as V = 1
2 (V0 +V1E1 + cc) (that is we ignore any higher-order harmonic parts).
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Exercises

Express the heat-effect of the pearl as a harmonic series using equation 7, what
is the dominant part? How does temperature vary on the bead (which terms
must be included if the temperature is written as a sum of harmonic terms).

Show that the DC amplitude of the heating effect can write as:

P0 =
1

4Rpre
((U1 −V1)V

∗
1 + (U∗

1 −V∗
1 )V1) (8)

Show that the first harmonic in the measured signal (V1) can be expressed as:

V1 =
1

A+ 1

(

U1 −
Aα

1+ A
T0U1 −

1

2

Aα

1+ A
T2U

∗
1

)

(9)

(where A = R0/Rpre).

By measuring at different amplitudes of U one can by extrapolation determine
R at the current cryostat temperature, how is this done? (Note that the term
1
2

Aα
1+AT2U

∗
1 can be assumed to be small).

Based on this expression it is also possible to find the DC level of the thermal
impedance (Z0), how?

7 The 3ω method

We now have (hopefully) seen that a purely harmonic input, give rise to a heat
flow which varies as 2ω, and thus a temperature which varies with 2ω. As
the resistance of the NTC-bead is dependent on temperature, its resistance also
vary with 2ω. The voltage drop across the NTC-resistor is give by Ohm’s law
(the product of resistance and current) and as the current has a dominant first
harmonic part, one gets a 3 harmonic term in the voltage across the resistor.

That is you can find the temperature amplitude by studying the third harmoni-
cs in the measured signal.

Exercises

Show that the amplitude of the third harmonic in the measured signal (V3) can
be written as:

V3 = −
1

2

Aα

(A+ 1)2
T2U1. (10)

Furthermore show that the amplitude of the second harmonic of the power can
be written as:

P2 =
1

2Rpre
(U1 −V1)V1. (11)

9



Use equation 8, 9, 10 and 11, to finde the frequency dependent thermal impe-
dance and the DC impedance.

At which thermal frequency is the frequency dependent thermal impedance
evaluated?

8 The two measurements

First exercise

The NTC-resistor is mounted in a specimen holder with a pre-resistor Rpre,
whose value is determined with a multi-meter. The specimen holder is pla-
ced in a cryostat and connected to the measuring setup. Test how everything
works.

The temperature dependence of the NTC resistor is found by measuring V and
U at (least) 3 different amplitudes (50, 75 and 100) and at (least) three diffe-
rent temperatures (300K, 275k and 250K). The measurement is done at 10Hz.
Based on these measurements find Ta and R∞ and an initial guess of the DC
thermal impedance (called hereafter DC method), and DC temperature ampli-
tude (consider how this is related to the amplitude of the second harmonic heat
flow).

Consider how we “online” may follow if the temperature has reached its equi-
librium.

Second exercise

At a suitable temperature eg. 200Kmeasure V andU as a function of frequency
in the range 0.1 to 100Hz, and analyze the result.

Evacuated the sample chamber and repeat the measurement.

If you want we can now create a somewhat longer measurement over a few
days, so we get better low-frequency data.

Calculated the thermal impedance in two ways, respectively by the “DC”-
method and the “3ω- method”.

Determine the thermal conductivity of air and heat capacity of the pearl from
the two measurements, and compared with literature values.

9 Background literature

The following articles contains the background of the discussed method. It is
not necessary to read these to do the exercise or write the report, but the refe-
rences are include for completeness.
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Measuring the frequency dependent specific heat by using the pearl and a thick
layer of liquid. The articles contains a detailed review of the 3ω technique:

• Bo Jakobsen, Niels Boye Olsen & Tage Christensen. Frequency dependent
specific heat from thermal effusion in spherical geometry. arXiv:0809.4617v1
[cond-mat.soft], 2008. (Note that it is version 1 of this paper that is most re-
levant for this exercise).

• Bo Jakobsen, Niels BoyeOlsen& Tage Christensen. Frequency-dependent
specific heat from thermal effusion in spherical geometry. Phys. Rev. E,
2010, 81, 061505.

Measuring the frequency dependent specific heat by using the peal and a thin
layer of liquid:

• Tage Christensen & Niels Boye Olsen. Thermoviscoelasticity of glass-
forming liquids. J. Non-Cryst. Solids, 1998, 235–237, 296–301.

Detailed descriptions of the cryostat and the electric setup can be found in the
following two articles:

• B. Igarashi, T. Christensen, E. H. Larsen, N. B. Olsen, I. H. Pedersen, T.
Rasmussen & J. C. Dyre. A cryostat and temperature control system op-
timized for measuring relaxations of glass-forming liquids. Rev. Sci. In-
strum., 2008, 79, 045105

• B. Igarashi, T. Christensen, E. H. Larsen, N. B. Olsen, I. H. Pedersen, T.
Rasmussen & J. C. Dyre. An impedance-measurement setup optimized
formeasuring relaxations of glass-forming liquids.Rev. Sci. Instrum., 2008,
79, 045106.

An introduction to modeling by the use of electric network models can be fo-
und in:

• Niels Boye Olsen, “Modellering med elektriske netværk — Noter fra Fy-
sik B kurset”, IMFUFA tekst nr. 466 (2009) (In danish).

• Tage Christensen, “Notes for the Physical modeling Course” (found on-
line at http://dirac.ruc.dk/~tec/FysMod).
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