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Abstract
The subject for this project is the disease myeloproliferative neoplasms which
is a subtype of blood cancer. The models formulated in this project are based
on the model describing the interaction of MPN and the inflammatory system
proposed in [1]. The model proposed in [1] is presented and their choice for
including a specific T-cell response is reflected upon. In particular their as-
sumption that the death rate of naive T-cells is significantly larger than the
amount of malignant stem cells is investigated and a new model is formulated
as a modified version of their model with a more complicated T-cell response.
The modified model is analysed using the theory of dynamical systems where
global existence is guaranteed by establishing a trapping region. A semi ana-
lytic investigation reveals that the dynamics of the modified model differs from
the model proposed in [1] if the mentioned assumption does not hold. This
finding is further supported by simulations showing that for the same choices
of parameters the model proposed in [1] may approach a non-fatal co-existing
state whereas the modified model approaches a fatal state. Secondly, a model
is formulated describing the impact of malignant cells becoming resistant. The
model is based on the parsimonious principle and it is shown that the solutions
of the model are well behaved by the establishing of a trapping region. The
simulations shows how a patient may develop fatal growth of malignant cells
despite continuous T-cell treatment.



Resume
Emnet for denne rapport omhandler sygdommen myeloproliferative neoplasms
(MPN) som er en form for blod cancer. De præsenterede modeller vil være
baseret på en model fra artiklen [1] hvor interaktionen mellem MPN og det
inflammatoriske system er beskrevet. Modellen i [1] vil blive præsenteret og
beskrevet. Der vil blive reflekteret over deres inklusion af et specifikt T-celle
respons. Reflektionen vil i sær omhandle deres antagelse om at dødsraten for
de naive T-celler er meget større end antallet af ondartede stamceller. En ny
model er formuleret med et modificeret udtryk for T-celle ledet. Den modifi-
cerede model er analyseret ved brug af teorien for dynamiske systemer. Global
eksistens og entydighed er garanteret ved at opstille en trapping region. En
semi-analytisk undersøgelse er udført og den viser at det er muligt at mod-
ellerne vil udvise forskellig opførelse for det samme sæt af parametre. Denne
undersøgelse er yderligere understøttet af simuleringer af modellerne. Dernæst
er en ny model formuleret som inkluderer muligheden for at ondartede celler
kan blive resistente for T-celle responset. Denne model er også analyseret ved
brug af teorien for dynamiske system og de vises at modellen besidder global
eksistens og entydighed. Simuleringerne viser hvordan en patient kan udvikle
en fatal ondartet cellevækst på trods af forsat behandling.
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Introduction
Production of blood cells take place in the bone marrow where hematopoietic
stem cells proliferate into mature blood cells, namely leukocytes, erythrocytes
and thrombocytes. The production of blood (haematopoiesis) is a tightly reg-
ulated process and a disturbance in this regulation process may result in fatal
complications. Myeloproliferation neoplams (MPNs) is a subgroup of blood can-
cer where patients have an overproduction of one of the blood cell types due to
presence of malignant stem cells. Malignant stem cells may cause an overproduc-
tion of cells since they have an uncontrolled proliferation. MPN predominately
consists of chronic Myelogeneous Leukemia (CML), essential thrombocythemia
(ET), polycythemia vera (PV) and primary myelofibrosis (PMF) [2]. CML is
associated with the Philadelphia chromosome positive gen and develops over
a time scale of a year. ET, PV and PMF are associated with Philadelphia
chromosome negative and develop over a time scale of 10 years. These diseases
may ultimately develop into acute myeloid leukemia (AML) if left untreated.
AML is a progressive cancer form with a potential fatal prognosis. There are
currently effective treatments available for CML. However, there are limited ef-
fective treatments available for ET, PV and PMF [1] thus this is a motivating
factor for modeling these diseases.

Mathematical modeling is used to describe the dynamics of the development
of MPN. Mathematical modeling is a widely used tool and it’s used in several
areas of science, like information and communication technology, bioengineering,
financial engineering [3]. For complex systems it is often unknown how different
quantities depend on each other and a strength of mathematical modeling is that
for such complex systems a mathematical model may provide a detailed analysis
which may reveal the important dynamics of complex systems. An example of
a complex system is the development of cancerous diseases like MPNs. The
human body consist of several complex systems for which we know very little
about. Thus mathematical modeling have a huge potential within the area of
bio-technology since it may change the current view on a physiological system or
confirm/support the view. Moreover, the models allow for analysing the effect
of changing parameters and thereby reduce the need for physical experiments
which may be time consuming and a costly process. However, there a pit falls for
mathematical modeling. The models are almost never an exact representation of
the real system [3] whereby the models only represent an approximation of the
true underlying dynamics of the system. The models are therefore often based
on simplifying assumptions and if these do not hold, then the conclusions drawn
from the models may be incorrect and misleading. Thus the models should be
used for guidelines rather than as the ground truth.
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In this project the mathematical models will be based on differential equations.
Differential equations are often used to model biological phenomena since they
arise naturally from conservation laws. Conservation laws describe the change
in amount pr. time for a given quantity, i.e. they can be used to describe
the dynamics of the system. The systems will be analysed using the theory of
dynamical systems. A mathematical model describing the development of MPN
and its coupling to the immune system is proposed in [4]. This model has been
extended to include the effect of the T-cell response in [1].

1.1 Project Outline

In this project the model for modeling MPNs proposed in [1] is presented. The
modeling choices in [1] will be reflected upon and in particular the equation
describing the inclusion of the T-cells will be discussed. We will formulate a
new model where the T-cell specific term is modified. This new model will be
referred to as the modified T-cell model. Moreover, the concept of malignant
cells turning resistant to the T-cell specific response will be discussed and a new
model for modeling this phenomena is formulated. The models will be discussed
and reflected upon in context of the current biology theory and in relation to
the modeling process.

Thus the contribution of this project is mainly the two proposed models which
are both based on the T-cell model in [1]

• The Modified T-cell Model: The term including the T-cell specific response
is modified.

• The Resistant T-cell Model: An inclusion of a malignant stem cell line
which is resistant to the T-cell specific response.
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1.2 Method

The framework of the project consists of two introductory chapters, namely
Chapter 2 introducing the basic biology theory and Chapter 3 describing the
mathematical theory used for the analysis of the models. The models will be
formulated as nonlinear ordinary differential equations and will be analysed us-
ing the theory of dynamical systems. In Chapter 3 it is assumed that the reader
is familiar with the theory of linear dynamical systems. The theory presented
will be concerning nonlinear dynamical theory and for which conditions we may
analyse a nonlinear system by its linearization. Chapter 4 is concerning math-
ematical modeling. In this chapter the process of mathematical modeling is
discussed and the model proposed in [1] is presented and discussed. Moreover,
the two new model proposals the modified T-cell model and the resistant T-cell
model are formulated and discussed. In Chapter 5 numerical experiments are
made to investigate the analytic findings in Chapter 4. A discussion of the pro-
posed models and the numerical experiments are discussed in Chapter 6 along
with a discussion of the biological interpretations of the modeling and numerical
experiments. Lastly, the conclusion is presented in Chapter 7.



Biological Theory

In this chapter the reader is introduced to basic biological theory describing the
cell proliferation and the coupling to the immune response. Furthermore, the
disease myeloproliferative neoplasms (MPNs) is introduced and it is explained
how this group of diseases effect the cell proliferation.

2.1 Hematopoietic Cells

The organs of the human body are composed of a mixed of different special-
ized cell types. Cells are responsible for repairing and maintaining the organs
and protecting the body from infections and diseases. The hematopoietic cells
(blood cells) are the cells that live in the blood. There are three types of blood
cells namely, erythrocytes (red blood cells), thrombocytes (platelets) and leuko-
cytes (white blood cells) and in a healthy adult there are approximately 1012

erythrocytes, 1011 thrombocytes and 109 leukocytes [5]. The erythrocytes trans-
port oxygen throughout the capillaries to provide the tissue with oxygen. The
platelets are responsible for blood clotting and healing wounds and lastly the
leukocytes are cells of the immune system that protects against foreign invaders
like vira and bacteria [6]. All of these blood cells are produced by the hematopoi-
etic stem cells (HSCs). HSCs live in the bone marrow niches which are local
tissue micro-environments that maintain and regulate stem cells by stimulat-
ing proliferation and self-renewal. Thus the HSCs play an important role in
maintaining a healthy hematopoiesis (production of blood) [7]. Hematopoiesis
is a tightly regulated process and a disturbance in the hematopoisis may re-
sult in severe consequences like the development of blood cancer [8]. Based on
the observations in healthy adults, the numbers of hematopoietic stem cells are
approximately 2 · 104 [9].

2.2 Hematopoietic Stem Cells

Stem cells are distinguished from other cell types by their ability of self-renewal
and proliferation into all other types of cells. Cell proliferation is rapid mitosis
(cell division) thus proliferation enables a rapid increase in the number of cells.
New cells can thereby be continuously generated which enables the organism
to replace dead and damaged cells. Mitosis of a cell is defined by the mother
cell (the cell itself) dividing into two daughter cells. For mitosis of a HSC the
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daughter cell can either become a new HSC or a hematopoietic progenitor cell
(HPC). An HPC is slightly more differentiated than an HSC and will eventually
differentiate into a hematopoietic mature cell (HMC), which is a fully special-
ized cell. Hence the mitosis of an HSC has three different outcomes. Either the
HSC divide by symmetric self-renewal where the stem cell divides into two new
stem cells. Symmetric division where the stem cell divides into two progenitor
cells. Lastly, asymmetric division where the stem cell divide into one stem cell
and one progenitor cell. The three different outcomes of the HSC mitosis are
illustrated in Figure 2.1. Most differentiated cells are also capable of prolifera-
tion. However, they do not possess the ablility of unlimited self-renewal and as
they proliferate into mature cells they can not proliferate further [10].

Figure 2.1: Illustration of the three outcomes of hematopoietic stem cell (HSC)
mitosis. A: symmetric self-renewal producing two new HSC. B: symmetric di-
vision, producing two hematopoietic progenitor cells (HPC). C: asymmetric di-
vision, producing an HSC and an HPC.

The risk for mutations in the cell is increased during mitosis. This form for muta-
tion is called somatic mutation [11]. Most of the somatic mutations are harmless
to the organism but in some cases a sequence of mutations may lead to stem
cells mutating into malignant stem cells. The malignant stem cells are like the
healthy stem cells able to self-renew and proliferate. However, the malignant
stem cells are characterized by an uncontrolled proliferation and self-renewal
that may result in an excessive overproduction of cells. An overproduction of
cells can disturb the homoeostasis which may have severe consequences for the
organism. One of the possible outcome of these somatic mutations is blood can-
cer. Cancer is a group of diseases where the malignant cells have uncontrolled
proliferation which invades or spreads to other organs [12]. In this project it
is assumed that the mutation triggering cancours development occurs for the
malignant stem cells and not the malignant mature cells. This theory is called
the cancer stem cell hypothesis and is based on stem cells having several char-
acteristics that are considered critical for the acquisition of cancer, namely the
potential for unlimited cell replication, self-renewal, and long-term survival [9].



2.3 Myeloproliferation Neoplasms 6

2.3 Myeloproliferation Neoplasms

A type of blood cancer is myeloproliferation neoplasms (MPN). MPN is a
group of blood cancers that arise in the bone marrow. They are caused by
somatic mutations that result in an overproduction of both mature and im-
mature hematopoietic cells [13]. There are two subgroups of MPN, namely
Philidelphia chromosome positive (Ph-positive) and Philidelphia chromosome
negative (Ph-negative). Ph-positive is associated with the presence of a recip-
rocal translocation between chromosomes 9 and 22, i.e. parts of chromosome 9
and 22 have swapped resulting in an elongated chromosome 22 and a truncated
chromosome 9 [8]. Ph-negative is associated with the absence of this mutation.
The consequence of the presence of this mutation is a persistently enhanced
tyrosine kinase (KT) activity. Tyrosine kinase is a protein that signals prolifer-
ation resulting in an uncontrolled cell division [14]. Chronic myeloid leukemia
(CML) is associated with Ph-positive where the patients have an overproduc-
tion of leukocytes. The disease develops over a time line of about a year [15].
There are available treatments called tyrosine kinase inhibitors (TKI) [16] and
this form of treatment has improved the prognosis for patients with CML [17].

There are three Ph-negative diseases. Namely, polycythemia vera (PV), essen-
tial thrombocythemia (ET) and primary myelofibrosis (PMF) [18]. PV denotes
an overproduction of erythrocytes (red blood cells), ET denotes an overproduc-
tion of thrombocytes and primary myelofibrosis (PMF) is where excessive scar
tissue forms in the bone marrow which results in a shortage of blood cells. These
diseases result in an increased risk of thrombosis with cardiovascular complica-
tions, chronic inflammatory diseases and a 40% increased risk of second cancers
[4]. The diseases are associated with the gene encoding Janus kinase 2 (JAK2)
[18]. Almost 100% of PV and 50% of ET and PML patients have this mutation.
The Ph-negative associated MPNs develop over a time line of 10 years [15] and
they are considered a less progressive form for blood cancer than the Ph-positive
CML. However, they may transform into acute myelogenous leukemia [19] which
progresses rapidly and can be fatal if left untreated. There are limited effective
treatments for the Ph-negative associated MPNs [1] which is a motivating fac-
tor for considering modeling of this group of diseases. Moreover, the equations
describing the relation between healthy stem cells and malignant stem cells are
similar despite the biological differences at a cellular level [1]. Thus a single
model can be formulated for the development of PV, ET and PMF.

Factors like smoking, obesity and pollution are factors known to induce a chronic
inflammation and thereby increases the risk of cancers [20]. Up to 20% of cancers
are linked to chronic infections, where 30% can be attributed to smoking and
pollutants and 20% of cancer burden is linked to obesity [21]. The inflammation
level is closely connceted to the immune system and especially to the immune
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surveillance which is a part of the immune system that plays a major role in
the surveillance against tumors [22]. Thus in recent years research it has been
argued, that the risk of developing MPNs is closely connected to the chronic
inflammatory level and the immune response [4].

2.4 Immune Response

The immune response is the body’s natural defence system and the cells of the
immune response are specialized to fight diseases in order to ensure the survival
of the organism [23]. The immune response is partly controlled by leukocytes.
Leukocytes may either stimulate or suppress the self-renewal rate of the HSCs
whereby the immune system may affect the hematopoisis. The immune response
can be split into two parts namely the innate immune response and the adaptive
immune response [23]. The innate immune response provides an immediately
but non-specific response. The innate response consists of granulocytes, den-
drites, macrophages and natural killer cells. These cells are responsible for the
first line of defence against invaders by inducing inflammation and phagocytosis
where phagocytosis is the process where foreign invaders are engulfed [24]. The
adaptive immune response is activated by the innate immune response if the
foreign invaders are not eliminated by the innate immune system. Thus a delay
is introduced from exposure to maximal response and this delay may be up to
7 days [23]. The adaptive immune response are B-cells and T-cells also denoted
lymphocytes. Lymphocytes are a subgroup of leukocytes and they represent
20% to 45% of the leukocytes blood count [25].

B-cells are involved in protecting the body against invaders by producing anti-
bodies that detects foreign invaders and neutralize them [23]. Another impor-
tant quality of the B-cells is that they have memory in the sense that if the
body is exposed to the same kind of invader, the B-cells know which antibody
they should produce and thereby they reduce the delay between exposure and
maximal response [6] . There are several types of T-cells, in this project we will
focus on naive T-cells and effector T-cells since these have been argued to have
an important role in inhibbiting the development of cancer [26]. Effector T-cells
are responsible for a direct defense, where they enduce death to the malignant
cells. Naive T-cells are activated by Antigen Presenting Cells (APC). APC are
dendrites (the most effective in activating naive T-cells), macrophages and B-
cells, i.e. they are primarily activated by the innate immune response [27]. The
function of naive T-cells is maturation and activation of B cells into plasma cells
and memory B cells, and activation of effctor T-cells and macrophages. Fur-
thermore, they may differentiate into effector T-cells and thereby contributing
directly to the adaptive response [26]. The activation of the adaptive response is
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based on intercellular communication through secretion of cytokines. Cytokines
are a broad varity of small proteins that are used in intercellular communica-
tion. The cytokines play an important role in maintaining a balanced immune
response and therefore the levels of cytokines can serve as markers of disease
progression [23]. A motivating factor for considering the T-cell response is that
gene therapy and interferon treatment focus on boosting the immune response
T-cells of the patient.

As mentioned the immune system plays a major role in the surveillance against
tumours and the T-cell response is active especially in the early stages of the
malignant development. Patients with a low amount of immune response have a
high incidence of tumours compared to patients with a normal level of immune
response [22]. However, many patients develop cancer even though they have
an apparently normal immune system. This indicates that the malignant cells
may be able to escape the immune surveillance by becoming resistant after some
time of exposure to the T-cell response [1].



Mathematical Theory

In this chapter the reader is introduced to the theory of nonlinear dynamical
system. The theory of nonlinear dynamical system will be used to analyse the
mathematical models and to ensure that these models are appropriate to model
biological systems. It is assumed that the reader is familiar with the basic theory
of linear dynamical systems and the focus of this chapter will be on the stability
analysis of nonlinear systems and the global existence and uniqueness theorem.
Furthermore, the concept of dimensionless analysis is introduced and lastly an
instructive example is presented, illustrating the strength of dynamical system
theory and dimensionless analysis.

3.1 Dynamical Systems

A dynamical system often arise from a system of differential equations. A dy-
namical system describes the evolution of the system over time. This quality
makes dynamical system theory appropriate to model physical and biological
phenomena like the dynamics of healthy and malignant cells in the MPNs.

Consider the nonlinear autonomous system of ordinary differential equations
(ODEs)

ẋ = f(x), x ∈ U ⊂ Rn, t ∈ R (3.1a)
x(t0) = x0, (3.1b)

where dx
dt = ẋ, f : U ⊂ Rn → Rn and (3.1b) is the initial condition of the

system. The solution of the initial value problem is often called the flow of the
differential equation. The flow φt(x0) describes the solution curve or trajectory
through x0 ∈ U .

The initial value problem in (3.1) is guaranteed to possess local existence and
uniqueness if the function f is either Lipschitz continuous or a continuously
differentiable function (C1 function) [28]. Note that locally refers to that there
exist a finite interval for which the solution is guaranteed to exist and is unique.
Often we are interested in themaximal interval of existence of the solution which
is the maximal interval for which we may guarentee that the solution possesses
existence and uniqueness. When modeling biological systems it’s desirable to
ensure that the solution possesses global existence and uniqueness, since this
will ensure that the solution exists for all time and is well behaved. It turns out
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if f is a C1 function and in addition the solution is bounded then the solution
exists for all time. This result is summarised in Theorem 3.1 (global existence
and uniqueness theorem) which is stated in [29].

Theorem 3.1 (Global Existence and Uniqueness) Let U ∈ Rn
be an open set and f : U ⊂ Rn be a C1 function.

(a) Given x0 ∈ U , let (t−, t+) be the maximal interval of existence for φt(x0).
If t+ < ∞ then given any compact set C ⊂ U , there is a time tC with
0 ≤ tC ≤ t+ such that φtC (x0) 6∈ C. Similarly if If t− > −∞ there is a
time tC− with t− ≤ tC− ≤ 0 such that φtC−(x0) 6∈ C.

(b) In particular if f : Rn → Rn and |f(x)| is bounded, then the solution exists
for all time.

Therefore we need only to show that the solution is bounded to ensure that the
solution exists for all time. A method to show that the solution is bounded is to
establish a trapping region. We will define a trapping region as a bounded region
for which the flow of the differential equation is either vanishing or pointing
towards the interior on the boundary of the region. This ensures that if a
solution enters the region, then for all forward time the solution will stay inside
this region, i.e. the solution will be bounded.

3.2 Stability of Nonlinear Systems

Dynamical systems are often analyzed by their fixed points and the stability
of these since we are interested in how the system behaves when it reaches a
steady state. A steady state is a state of the system for which the system is at
rest and does not change for future times. Thus the steady state may be used
to analyze the outcome of a disease and in this project the steady state may
be used to describe if a patient will reach a healthy state where the malignant
cells are eradicated, a fatal state where the malignant cells have eradicated the
healthy cells or if the disease progresses to a co-existing state where the patient
may live with an amount of malignant cells without fatal consequences.

A fixed point of the differential equation is defined as a point x0 such that
f(x0) = 0 resulting in φt(x0) = x0 for all t ∈ I. A common approach to analyse
nonlinear systems and the stability of their fixed points is to apply Hartman-
Grobman theorem [30].
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Theorem 3.2 (Hartman-Grobman) If x0 is a hyperbolic fixed point for
the autonomous differential equation, then there is an open set U containing x0

and a homeomorphism H with domain U such that the orbits of the differential
equation are mapped by H to orbits of the linearized system ẋ = Df(x0)(x− x0)
in the set U .

Note that the linearization is simply a first order taylor expansion around x0

since x0 satisfies that f(x0) = 0 whereby only the first order term remain. More-
over, the existence of a homeomorphism between the nonlinear and linear system
ensures that they are topologically equivalent, i.e. the Hartman-Grobman the-
orem states that the properties of the nonlinear system are preserved by the
linear system with A = Df(x0) near a hyperbolic fixed point where hyperbolic
refers to the eigenvalues of the matrix A have real part different from zero. The
stability of the nonlinear fixed point may therefore be described by the stability
of the linear system, i.e. the stability of the fixed point x0 is solely determined
by the eigenvalues of the Jacobian at x0. The stability of a hyperbolic fixed
point may be classified by the following defintion [30].

Definition 3.3 (Stability of Hyperbolic fixed points) Let the
point x0 denote a hyperbolic fixed point for the differential equation. If all
eigenvalues have negative real parts, then x0 is called a hyperbolic sink and x0

is a stable fixed point. If all eigenvalues have positive real parts, then x0 is
called a hyperbolic source and x0 is an unstable fixed point. A hyperbolic fixed
point x0 that is neither a source nor a sink is called a hyperbolic saddle and x0

is an unstable fixed point.

3.3 Dimensionless Form

Biological models often have a large number of free parameters due to complex
interactions and various production rates, death rates, ect. Often it is hard
to know if it’s the specific choice of parameters which are important for the
qualitative behaviour of the model or if it the ratios between these parameters
that matters [31]. A mathematical analysis of the impact of the parameters can
be performed by bringing the model into dimensionless form. Dimensionless
form is a scaling of the variables such that they are dimensionless. By using this
approach it’s often possible to reduce the number of parameters by grouping
the original parameters into clusters of parameters.

Another advantage of bringing a model into dimensionless form is that it may
reveal large differences in the time scale for the variables. This is often referred
to as the slow and fast dynamics of the system. If the difference in the time



3.4 Example: Predator-Prey Model 12

scale is significant, a quasi steady state approximation may be applied. A quasi
steady state approximation is an approximation where the equations of either
the fast or slow dynamics are set to zero depending on which type of dynamic
we are interested in. For modeling of blood cancer we are mainly interested in
the slow dynamics since the MPNs developed over several years which is a much
slower dynamic than the dynamics of the immune response. Setting a differen-
tial equation with fast dynamic to zero changes the equation into an algebraic
equation which may be solved for the variable. Thereby the variable may be
substituted by the found algebraic expression and the number of differential
equations is reduced for each quasi steady state approximation.

3.4 Example: Predator-Prey Model

An instructive example is given to illustrate the strengths of the analysis. The
chosen example is a variant of the predator-prey model

ẋ = ξx(γ − x)− λxy, (3.2a)
ẏ = λy(ηx− y)− ωy, (3.2b)

where x, y ≥ 0 are the variables and ξ, γ, λ, η and ω are real constants and
the free parameters of the model. This system models the interaction of the
population y of a predator and the population x of its prey. The model is brought
into dimensionless form in attempt to reduce the number of free parameters. The
dimensionless variables X, Y and T are introduced by

x = x̄X, y = ȳY and t = t̄T,

where x̄, ȳ and t̄ are scaling constants with the units of x, y and t. The derivative
of x can be expressed in terms of the dimensionless variables by applying the
chain rule

ẋ =
x̄

t̄
X ′,

where X ′ = d
dTX and by the same argument we may write the derivative of y

in terms of the dimensionless variables as

ẏ =
ȳ

t̄
Y ′.

The aim is now to choose the scaling constants such that the number of free
parameters is reduced. Change of variables into dimensionless variables in (3.2)
yields

X ′ = t̄ (ξX(γ − x̄X)− λXȳY ) ,

Y ′ = t̄ (λY (ηx̄X − ȳY )− ωY ) .
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Note that the scaling constants may be chosen in several different ways resulting
in different reduced systems. However, the qualitative behavior of the different
possible models will remain the same. By choosing the scaling constants as

x̄ = γ, ȳ = ηγ and t̄ =
1

ληγ
,

the following reduced system is obtained

X ′ = αX(1−X)−XY, (3.3a)
Y ′ = Y (X − Y )− βY, (3.3b)

where α = ξ
λη and β = ω

ληγ . Hence the number of free parameters are reduced
from 5 to 2. This allows analysis to be carried out for the simpler system with
only two free parameters. For simplicity the capital letters are discarded for the
remainder of the analysis. Furthermore, the parameters are chosen to be α = 1
and β = 1

2 .

The predator-prey model is nonlinear with f ∈ C1 since the function f is a
polynomial. Thus the dynamics of the system near hyperbolic fixed points may
be analyzed by the eigenvalues of the Jacobian by Theorem 3.2. The fixed points
for (3.3) are

(0, 0) ,

(
0,−1

2

)
, (1, 0) , and

(
3

4
,

1

4

)
,

but only the fixed points in the nonnegative orthant will be analyzed. The
Jacobian of the system is

Df(x0, y0) =

[
1− 2x0 − y0 −x0

y0 x0 − 2y0 − 1
2

]
.

By inserting the three nonnegative fixed points into the Jacobian and computing
the eigenvalues the stability of the fixed point can be found by applying Theorem
3.3. The analysis shows that the fixed points at (0, 0) and (1, 0) are hyperbolic
with eigenvalues of opposite signs thus they are hyperbolic saddle points. At(

3
4 ,

1
4

)
both eigenvalues have negative real part and thus the fixed point may be

classified as a hyperbolic sink. The phase portrait of (3.3) is shown in Figure 3.1.
The phase portrait illustrates how important the fixed points and their stability
are for the dynamics of the system since all trajectories are drawn towards the
stable fixed point at

(
3
4 ,

1
4

)
.
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Phase portrait for the predator-prey model

Figure 3.1: Phase portrait for the predator-prey model in (3.3) with the param-
eter choice α = 1 and β = 1

2 . The figure depicts the nullclines, fixed points and
a trapping region. The stability of the fixed points are indicated by the type of
circle. A full circle indicates a stable fixed point whereas an open circle indicates
an unstable fixed point. The blue lines correspond to the x-nullclines, the red
lines correspond to the y-nullclines. The dashed green line indicates a trapping
region found by connecting the line y = b− x, the vertical line passing through
(x, y) = ( 1

2b + 1
4 ,

1
2b −

1
4 ), the x-axis and the y-axis for the specific choice of

b = 2.
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The aim is now to establish the existence of a trapping region. Based on the
model in (3.3) it can be seen that the y-axis is a nullcline for x and the x-axis
is a nullcline for y. A x-nullcline is a set of points in the phase plane such that
ẋ = 0. Thus if the solution starts in the nonnegative orthant it will remain
there for all time due to existence and uniqueness of the solution. Let b > 3

2
and consider the line

y = b− x.

On this line, the flow satisfies that

ẋ = x(1− x)− x(b− x) = x(1− b) < 0, for x > 0,

ẏ = y(b− y − y)− 1

2
y = y

(
b− 1

2
− 2y

)
< 0, for y >

1

2
b− 1

4
.

Now consider the vertical line passing through (x, y) = ( 1
2b + 1

4 ,
1
2b −

1
4 ). On

this line the flow satisfies that

ẋ =

(
1

2
b+

1

4

)(
1−

(
1

2
b+

1

4

))
−
(

1

2
b+

1

4

)
y

≤
(

1

2
b+

1

4

)(
1−

(
1

2
b+

1

4

))
< 0,

since b > 3
2 . Thus a trapping region can be established by connecting the x-axis,

y-axis, y = b−x and x = 1
2b+ 1

4 for b > 3
2 . Thus global existence and uniqueness

may be guaranteed by Theorem 3.1 for the dimensionless predator-prey model in
(3.3). Moreover, the established trapping region also guarantees global existence
and uniqueness for the predator-prey model in (3.2) since the dynamics of this
two systems are equivalent. The trapping region for the predator-prey model is
depicted in Figure 3.1 for the specific choice of b = 2.



The Mathematical Models
In this chapter the reader is introduced to the concept of mathematical modeling
where the strengths and weaknesses of mathematical modeling will be reflected
upon. The models presented in [4] and [1] will be introduced and explained
in details. The inclusion of T-cells in [1] will be reflected upon and a more
complicated model for the T-cell response is proposed and analysed. Moreover,
the concept of the malignant cells turning resistant to the T-cell response is
included in the model in [1].

4.1 Mathematical Modeling

Mathematical modeling is becoming increasingly acknowledged within areas of
science, like information and communication technology, bio-engineering and
financial engineering [3]. Physical and biological systems may be expressed
in terms of force and mass balances, according to the laws of conservation.
The conservation laws result in mathematical equations which may constitute a
mathematical model. A mathematical model is a theoretical representation of a
physical system and often it can be used for simulating highly complex systems.
A strength of mathematical modeling is that mathematics is a concise language
that may grant insight into the dynamics of the system and thereby obtaining
information about how the dynamics depend on the parameters and which of
these that are most important for the evolution of the system [31]. This insight
may reduce the need for physical experiments which are often time consum-
ing and costly. Thus mathematical modeling provides potential advantage to
industries [3].

The process of mathematical modeling may be described by the modeling cycle.
A simple illustration of the modeling cycle is shown in Figure 4.1. A current
preption of a phenomena may be formulated as a mathematcal model. The
model can then be analyzed using mathematical tools. The analysis of the
model and the results may change this perception of the reality by potentially
granting new insight for the modeled phenomena. Thus often models are for-
mulated in several iterations due to new insight obtained in one or several of the
stages of modeling. The modeling process for this project may be interpreted
as iterations of the modeling cycle. Based on the current model in [1], possible
extensions of the model is proposed based on a new perception of the reality.
The proposed extended models may then again give rise to considering other
changes or investigating the chosen phenomena further whereby the cycle keeps
on iterating.
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Perceived
Reality

Model

Analysis

Results

Figure 4.1: Illustration of the modeling cycle. The modeling cycle is an iterative
process and the models may adjusted through several iterations due to new
obtained knowledge and/or changed perception of the reality.

However, there are limitations to mathematical modeling. For complex systems,
the model are rarely capable of capturing the total complexity of the dynam-
ics whereby the model only present a simplified model of the true underlying
dynamics, i.e. the mathematical model becomes an idealization of the studied
phenomenon [31]. Thus the models are often based on simplifying assumptions
and if these do not hold, then the conclusions drawn from the model may be
incorrect and misleading. Moreover, even if every dynamic of a complicated
system were included we would likely end up with an extremely complex model
with lots of parameters such that the analysis may become very difficult and
not revealing the important factors for the dynamics. Thus mathematical mod-
eling is a challenging discipline where the aim is to include the features with
the greatest influence and omit the rest. This idea is also formulated as par-
simonious principle. Parsimonious principle states that we aim to choose the
simplest model that fits the data, i.e. only the essential dynamics are included
in the model and everything else are excluded. Often it is not trivial which fea-
tures to include and which to omit or which assumptions that are appropriate
for the system. Thus the best model is often found by iterating through the
modeling cycle in Figure 4.1.

In this project the mathematical models will be based on compartment model-
ing. Compartment modeling assumes that each compartment is homogeneous
and is based on conservation laws. Hence the model allows material to either
flow from one compartment to another, being added through a source, or being
removed through a sink [32]. Compartment modeling is chosen for the model of
MPNs since we are not interested in the events for a single cell but in the overall
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dynamic between the healthy cells and the malignant. A ordinary differential
equation will be formulated for each compartment based on conservation laws,
i.e.

Accumulated = Generated− Eliminated,
where accumulated refers to the change in amount of a compartment pr. time,
generated refers to the rate of generation times the generating source and elim-
inated refers to the rate of elimination times the current amount in the com-
partment.

4.2 The Basic Model

This project will be based on the model proposed in [4] which will be refered
to as the basic model. Moreover, the model with the extension to include T-
cell response as proposed in [1] will be referred to as the T-cell model. First an
outline of the basic model is presented and then the T-cell response is introduced.
For this project a compartment will refer to the amount of a specific type of
cell, healthy stem cells (HSC), healthy mature cells (HMC), malignant stem
cells (MSC) or malignant mature cells (MMC) or the level of infection (immune
response). An ordinary differential equation is formulated for each compartment
based on the conservation principle. The basic model is illustrated in Figure
4.2. The model consists of six compartments where x0 denotes the amount of
HSC, x1 denotes the amount of HMC, y0 denotes the amount of the MSC, y1

denotes the amount of MMC, s denotes the inflammatory level, i.e. the immune
response and a is the amount of dead cells.

The generated amount of HSC per time, x0 depends on the self-renewal rate, rx,
the inhibitory niche feedback described by the function ϕx and the inflammatory
level s and the current amount of x0. The immune response stimulates HSC
self-renewal due to potential high necrosis whereas the inhibitory niche feedback
inhibits the self-renewal. Thus the function ϕ is chosen to be a decreasing
function of x0 and y0. The eliminated amount of HSC per time is described by
the death rate of x0, denoted dx0 and the proliferation rate, ax. In addition,
there is a chance for a HSC to mutate into a MSC which is described by the
mutation rate, rm. The probability of mutating is further increased by a high
inflammatory level and the mutation rate therefore also depends on the variable
s, thus this the mutating term is modeled as a second order reaction kinetics.
Formulating this in the language of mathematics yields the following differential
equation

ẋ0 = (rxϕx(x0, y0)s− dx0 − ax)x0 − rmsx0,

where ẋ0 = d
dtx0. The same considerations can be applied to the accumulation

of MSC, y0. However, the difference is that the probability of mutation generates
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Figure 4.2: The conceptual model describes the dynamic between the healthy
cells and the malignant cells and is based on the model presented in [4]. The
light grey boxes are the cell compartments where x0 denotes the number of
healthy stem cells, x1 denotes the healthy mature cells, y0 that of maglinant
stem cells, and y1 the number of malignant mature cells. The light blue com-
partment a denotes the amount of dead cells and the light orange compartment
denoted s describes the inflammatory level. The black arrows indicate a flow
from one compartment to another, red stipulated arrows illustrates regulation
of the cytokines and the green stipulated line indicates the inhibitory effect in
the bone marrow niche.

MSC instead of eliminating MSC. Hence the accumulation of MSCs pr. time
can be described by

ẏ0 = (ryϕy(x0, y0)s− dy0 − ay)y0 + rmsx0.

The accumulation for HMC, x1 can be described by the amount of HSC that
proliferate into mature cells. HSC proliferates into progenitor cells with rate
ax. However, in this model we consider the mature cell and not the progenitor
cells. Thus the generation rate of mature cells is found by multiplying the rate
of proliferation of the HSC by a constant, Ax which describes the total amount
of generated mature cells pr. stem cell proliferation, i.e the generated amount
of HMC is given by the rate axAx. The elimination of HMC is given by the
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death rate dx1 and the differential equation for x1 is therefore given by

ẋ1 = axAxx0 − dx1
x1.

Similarly the following differential equation is obtained for the MMCs y1,

ẏ1 = ayAyy0 − dy1y1.

The generated amount of dead cells is governed by the total amount of dead
cells from the four light grey compartments in Figure 4.2. The elimination of
dead cells is assumed to depend on the inflammatory level and the total amount
of dead cells as second order reaction kinetics. Thereby the following differential
equation is obtained for the accumulation of dead cells

ȧ = dx0
x0 + dy0y0 + dx1

x1 + dy1y1 − eaas.

Lastly, the inflammatory level is govern by

ṡ = rsa− ess+ I,

where rs is the rate for which the number of dead cells up regulates the immune
response, es is the elimination rate for the inflammatory level and I is an external
stimuli of the immune response such as smoking, pollution or obesity. Hence we
end up with a system of coupled nonlinear differential equations

ẋ0 = (rxϕx(x0, y0)s− dx0 − ax)x0 − rmsx0, (4.1a)
ẏ0 = (ryϕy(x0, y0)s− dy0 − ay)y0 + rmsx0, (4.1b)
ẋ1 = axAxx0 − dx1x1, (4.1c)
ẏ1 = ayAyy0 − dy1y1, (4.1d)
ȧ = dx0x0 + dy0y0 + dx1x1 + dy1y1 − easa, (4.1e)
ṡ = rsa− ess+ I. (4.1f)

The ϕ functions are chosen as

ϕx(x0, y0) =
1

1 + (cxxx0 + cxyy0)
,

ϕy(x0, y0) =
1

1 + (cyxx0 + cyyy0)
.

where it is assumed that cyy ≤ cyx ≤ cxy ≤ cxx such that the malignant cells
are less sensitive to inhibitive niche feedback than the healthy hematopoietic
cells. Other choices of function may be considered. However, the investigations
in [1] showed no qualitative difference in the results and thus this function will
be used throughout the project. Furthermore, for the rest of the project it is
assumed that a mutation sequence has occurred resulting in y0 = 1 at t = 0
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and that rm = 0 for all time which is based on the assumption that the first
malignant mutation will drive the dynamics of the malignant cells which is the
assumption proposed in [1]. The default parameters for the basic model in (4.1)
which will be used for simulation throughout the project are listed in Table 4.1.

Parameter Value Unit
rx 8.7 · 10−4 day−1

ry 1.3 · 10−3 day−1

ax 1.1 · 10−5 day−1

ay 1.1 · 10−5 day−1

Ax 4.7 · 1013 -
Ay 4.7 · 1013 -
dx0

2 · 10−3 day−1

dy0 2 · 10−3 day−1

dx1 129 day−1

dy1 129 day−1

cxx 5.6 · 10−5 -
cxy 5.4 · 10−5 -
cyx 5.2 · 10−5 -
cyy 5.0 · 10−5 -
es 2 day−1

ea 2 · 109 day−1

rs 3 · 10−4 day−1

I 7 day−1

Table 4.1: Default parameters for the model (4.1).

All the interactions expect the φ function are modeled as either 1. order or 2.
order terms. This approach is often used to model cell interaction due to the
great advantage of simplifying the mathematical analysis. The basic model is
based on a model for CML presented in [9] where they argue that the cancerous
development is driven by the malignant stem cells. Moreover, they argue that
including a more complex negative-feedback system did not lead to significant
differences from the conclusions derived from this simple model whereby the
simpler model was preferred by the parsimonious principle.
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4.3 The T-cell Model

In [1] the basic model presented in (4.1) is extended to include the effect of the
T-cells specific response. This inclusion is inspired by [33] where T-cell response
is argued to have a significant impact on the cancerous development for CML.
The extension considers the impact of naive and effector T-cells on the death
rates of the malignant cells. It is assumed that the naive T-cells Tn are produced
by a constant rate, pn and and that the naive T-cells may transform into effector
T-cells, Te proportional with the amount of malignant cells y by the constant
rate kn. Moreover it is assumed that the dynamic is driven by the stem cell
dynamics, i.e. the important impact from the T-cell response comes from the
elimination of malignant stem cells. Thus the T-cell response is only considered
explicitly in the equation governing the accumulation of malignant stem cells
and it is assumed that this elimination is a second order reaction kinetics with
rate γy0 . The new expression for y0 taking the T-cell response explicitly into
account is given by

ẏ0 = (ryϕy(x0, y0)s− dy0 − γy0Te − ay)y0 (4.2)

The naive T-cell are eliminated by a constant rate η due to apoptosis and hence
the differential equation for the accumulation of naive T-cells is given by

Ṫn = pn − knTn(y0 + η). (4.3)

The naive T-cells turns into effector T-cells Te when exposed to malignant stem
cells with rate αn. They are eliminated by a constant rate γe due to apoptosis.
Thus the accumulation of effector T-cells may be governed by the differential
equation

Ṫe = αnknTny0 − γeTe. (4.4)

Note that the equations in (4.3) and (4.4) are inspired by the equations pro-
posed in [33] but are simpler since they consists of polynomial equations whereas
the equations proposed by [33] includes Michaelis–Menten terms based on the
assumption that effector T-cells encounter MPN cells in the lymph and arguing
that there are limitations of the immune response, due to the large numbers of
APC presenting malignant antigen which saturate the lymph, but the relatively
few specific naive T cells, i.e.

knTn
y

y + ξ
.

Thus in the T-cell model proposed in [1] then these modifications may be based
on the assumption that there is no limiting effect of the encounter in the lymph
and that the encounter between naive T-cells and malignant stem cells occur in
a manner similar to how the encounter would be in the blood stream. Another
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interpretation could be that the T-cell model includes a linearization of the
Michalis-Mentel term since

knTn
y

y + ξ
≈ k̃nTny for ξ � y,

with k̃n = kn
ξ . The strength of the simpler term is that it simplifies the analysis

due to it being a simple second order term and thereby simplifying the quasi
steady state approximation.

4.3.1 Quasi Steady State Approximation

Based on the biology response the T-cell response is assumed fast compared to
the slower development of the MPNs. Hence a quasi steady state approximation
may be applied to (4.3) and (4.4) in order to reduce the number of differential
equations, i.e. we assume that Ṫe ≈ 0 and Ṫn ≈ 0. From the first approximation
we get that Tn can be approximated by

Tn ≈
pn

kn(y0 + η)
,

and similarly by substituting the found expression for Tn into the second ap-
proximation we get

Te ≈
αnpn
γe

y0

y0 + η
. (4.5)

Thus the effector T-cells may be described by a Michalis Mentel term, indicating
that the amount of effector T-cells have a saturation and does not increase
proportional to the amount of malignant stem cells. Thus this term may provide
the model with the saturating effect of the T-cell response which was ommited
in the differential equations for Tn and Te. However, in [1] it is assumed that the
death rate of naive T-cells is significantly larger than the amount of malignant
stem cells, i.e. it is assumed that η � y0, resulting in the linear approximation

Te ≈
αnpn
γeη

y0. (4.6)

This assumption simplifies the expression for the effector T-cells such that they
are simply proportional to the amount of malignant stem cells whereby there
are no saturation of the T-cell specific response. The death rate of naive T-cells
η is suggested to be η ≈ 0.04 day−1 in [34] and based on this estimate it does
not seem likely that the approximation hold. Hence the consequences of this
approximation is a subject for further investigation.

As mentioned the effect of T-cells only changes the death rate of the malignant
stem cells since it was assumed that the important impact of the T-cell response
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was the impact on the death of malignant stem cells. Thus only (4.1b) and (4.1e)
have to be modified whereas the other equations in (4.1) remain unchanged. The
expression found in (4.6) is then substituted into (4.2) and the T-cell model then
becomes

ẋ0 = (rxϕx(x0, y0)s− dx0
− ax)x0, (4.7a)

ẏ0 = (ryϕy(x0, y0)s− dy0 − d̃y0y0 − ay)y0, (4.7b)
ẋ1 = axAxx0 − dx1

x1, (4.7c)
ẏ1 = ayAyy0 − dy1y1, (4.7d)

ȧ = dx0x0 + (dy0 + d̃y0y0)y0 + dx1x1 + dy1y1 − easa, (4.7e)
ṡ = rsa− ess+ I, (4.7f)

where d̃y0 = γy0
αnpn
γeη

is the new parameter describing the effect of the T-cell
response.

The model has a high number of free parameters and thus the model is converted
into dimensionless form to reduce the number of parameters. The number of
free parameters are reduced by grouping the original parameters into clusters of
parameters. These clusters of the original parameters become the dimensionless
parameters.

4.3.2 Dimensionless Form

This strategy is proposed in [1]. The equations in (4.7) are put into dimen-
sionless form by using the same strategy as in the instructive example for the
predator-prey model in (3.3). Thus the variables are scaled by constants having
the same unit as the variable if any. The dimensionless variables are denoted
by capital letters and the scaling constants are denoted by the same symbols
as the corresponding original variable with a bar, an example is for the HSC
compartment where x0 can be expressed by x0 = x̄0X0 whereas the derivative
can be expressed

ẋ0 =
x̄0

t̄
X ′0,

with X ′0 = d
dTX0. Hence the model in (4.7) is equivalent with
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X ′0 = t̄

(
s̄rx

S

1 + (cxxx̄0X0 + cxy ȳ0Y0)
− dx0 − ax

)
X0,

Y ′0 = t̄

(
s̄ry

S

1 + (cyxx̄0X0 + cyy ȳ0Y0)
− d̂y0(Y0)− ay

)
Y0,

X ′1 = t̄

(
x̄0

x̄1
axAxX0 − dx1

X1

)
,

Y ′1 = t̄

(
ȳ0

ȳ1
ayAyY0 − dy1Y1

)
,

A′ = t̄
(
dx0

x̄0

ā
X0 + d̂y0(Y0)

ȳ0

ā
Y0 + dx1

x̄1

ā
X1 + dy1

ȳ1

ā
Y1 − eas̄SA

)
,

S′ = t̄

(
rs
ā

s̄
A− esS +

I

s̄

)
,

where d̂y0(Y0) = dy0 + d̃y0 ȳ0Y0. The dimensionless model is then simplified by
choosing the scaling constants such that the parameters are clustered into the
new dimensionless parameters. The choice of scaling is chosen as proposed in
[1], i.e.

s̄ =
dx0 + ax

rx
,

ā =
es
rs
s̄,

x̄0 =
1

cxx
,

x̄1 =
axAx
cxxdx1

,

ȳ0 =
1

cyy
,

ȳ1 =
ayAy
cyydy1

,

t̄ =
1

dx0 + ax
.
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Inserting the scaling constants into the dimensionless model yields

Ẋ0 =

(
S

1 + (X0 +
cxy

cyy
Y0)
− 1

)
X0, (4.8a)

Ẏ0 =

(
ry
rx

S

1 + (
cyx

cyy
X0 + Y0)

− d̂y0(Y0) + ay
dx0

+ ax

)
Y0, (4.8b)

ε1X
′
1 = X0 −X1, (4.8c)

ε1Y
′
1 =

dy1
dx1

(Y0 − Y1) , (4.8d)

ε2S
′ = A− S +

I

ess̄
, (4.8e)

ε2ε3A
′ = bx0X0 + by0(Y0)Y0 + bx1X1 + by1Y1 −AS, (4.8f)

where ε1 = rx
dx1

s̄, ε2 = rx
es
s̄, ε3 = es

ea
s̄, bx0

= dx0

x̄0 t̄
s̄ā

dx0
+ax
ea

, by1 = dy1
ȳ1 t̄
s̄ā

dx0
+ax
ea

,

by0(Y0) = d̂y0(Y0) ȳ0 t̄s̄ā
dx0

+ax
ea

. The magnitudes of the parameters are shown in
Table 4.2.

Parameter ε1 ε2 ε3 bx0 bx1 by0 by1

Magnitude 10−5 10−3 10−10 10−13 10−1 10−13 10−1

Table 4.2: Magnitudes of the parameters in the dimensionless T-cell model in
(4.8).

This formulation of the model reveals that the processes evolve on different
time scales and that the system has slow and fast dynamics. This change in
time scale is due to the multiplication of the ε parameters on (4.8c)-(4.8f). We
are mostly interested in the slow dynamics of the system since these are the
dynamics describing the development of the MPNs thus we may consider the
slow manifold approximation by studying the equations in the limit of ε → 0
and thereby obtaining a system of two equations. In the limit of ε → 0 the
left hand side vanishes and the following algebraic equations are obtained from
equation (4.8c)-(4.8d)

0 = X0 −X1, (4.9a)
0 = Y0 − Y1, (4.9b)

0 = A− S +
I

ess̄
, (4.9c)

0 = bx0
X0 + by0(Y0)Y0 + bx1

X1 + by1Y1 −AS. (4.9d)

These four equations can be solved for X1, Y1, A and S. The first two are simple
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and are given by

X1 = X0,

Y1 = Y0.

Substituting these expressions into (4.9d) gives

0 = bx0X0 + by0(Y0)Y0 + bx1X0 + by1Y0 −AS.

Introducing new parameters as 2Bx = bx0
+ bx1

and 2By = by0(Y0) + by1 , then
the equation can be expressed

0 = 2BxX0 + 2ByY0 −AS. (4.10)

Note that the difference in magnitude is large for bx0 and bx1 since bx1 ∼ 10−1,
bx0 ∼ 10−13 and Y0 is scaled such that it will not attain values much larger
than 1, thus we may choose to approximate 2Bx by 2Bx ≈ bx1

. The same
approximation is made for 2By, i.e. 2By ≈ by1 . Note that this approximation
makes By independent of Y0 which simplifies the expression and results in that
the only change by adding T-cell response appears in equation (4.8b). Solving
the equations (4.9c) and (4.10) give

S = J ±
√
J2 + 2BxX0 + 2ByY0,

A = ±
√
J2 + 2BxX0 + 2ByY0,

where J = I
2ess̄

. However, only the positive solutions are considered to be in
accordance with the biological theory thus A and S are found to be

S = J +
√
J2 + 2BxX0 + 2ByY0, (4.11a)

A =
√
J2 + 2BxX0 + 2ByY0, (4.11b)

By inserting (4.11a) into (4.8a) and (4.11b) into (4.8b), the model (4.8) can be
approximated by the following reduced model

X ′0 =

(
J +

√
J2 + 2BxX0 + 2ByY0

1 +X0 + CyY0
− 1

)
X0, (4.12a)

Y ′0 =

(
R
J +

√
J2 + 2BxX0 + 2ByY0

1 + CxX0 + Y0
−D0 −D1Y0

)
Y0, (4.12b)

where R =
ry
rx
, Cx =

cxy

cyy
, Cy =

cyx

cxx
, D0 =

dy0+ax
dx0

+ax
and D1 =

d̃y0 ȳ0
dx0

+ax
. Thereby

the model in (4.8) has been reduced to a system of two equations and the num-
ber of parameters have been reduced from 19 to 8. The default dimensionless
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parameter choice is shown in Table 4.3. These are based the default parameters
presented in Table 4.1 and they are the parameters used in the simulations un-
less stated otherwise. Note that the clustering of the parameters reveals which
ratios of parameters that are important for the development of the MPNs. R
describes the ratio of self-renewal, since R > 1 this reflects that the MSCs have a
higher rate of self-renewal than the HSCs. J describes the dimensionless inflam-
matory stimuli, D0 describes the T-cell independent death rate of Y0 whereas
D1 describes the T-cell dependent death rate of Y0. Cx and Cy express the in-
hibitory niche effect favouring the self-renewal of malignant stem cells whereas
Bx and By describe the dimensionless death rates.

Parameter R J D0 D1 Cx Cy Bx By
Value 1.49 0.76 1.00 0.10 0.93 1.08 0.06 0.07

Table 4.3: Default dimensionless parameter values for the T-cell model in (4.12).

In the following analysis and simulations we will mainly consider the effect
of changing the parameter describing the T-cell dependent death rate of Y0

since the later proposed changes for the T-cell model concern the effect of this
term. However, the T-cell model proposed in [1] reveals interesting results and
constitutes to the idea that chronic inflammation may trigger and drive blood
cancer whereby the parameter J describing dimensionless inflammatory stimuli
is shown to guarantee the existing of a leukemic steady state if chosen large
enough [1]. Thus the T-cell model supports the theory that cancerous diseases
may be driven by chronic inflammation as proposed in [21].

In Figure 4.3 simulations with the full model (4.8) and the reduced model (4.12)
are shown. The simulations show how the MPNs develop for different choices of
D1, i.e. simulations for different levels of T-cell dependent response. The figure
shows that the reduced model is in accordance with the full model. Moreover
the simulations show that if a patient has the standard parameters in Table 4.3,
then an increase in the T-cell response may change the development of MPN
from a fatal scenario to a scenario where the patient may live with the disease
due to a co-existing steady state which is verified by the corresponding phase
portraits for the reduced T-cell model in Figure 4.4. In Figure 4.4 a full circle
indicates that all the eigenvalues have negative real part resulting in a stable
fixed point and an open circle indicates that there is at least one eigenvalue
with positive real part resulting in an unstable fixed point. The fixed points are
classified as either trivial, hematopoietic, leukemic or co-existing where they are
defined as
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• Trivial fixed point: having X0 = 0 and Y0 = 0

• Hematopoietic fixed point: having X0 > 0 and Y0 = 0

• Leukemic fixed point: having X0 = 0 and Y0 > 0

• Co-existing fixed point: having X0 > 0 and Y0 > 0
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Figure 4.3: Simulations of the full dimensionless T-cell model in (4.8) and the
reduced dimensionless T-cell model in (4.12) (stipulated lines) proposed in [1].
The blue lines are the healthy HSC and the red are the malignant MSC. The
simulations show that the reduced model is in accordance with the full model.

The phase portraits show that for D1 = 0.1, D1 = 0.5 and D1 = 1 system
is drawn towards the leukemic steady state as time goes to infinity. This can
be seen in the corresponding simulations in Figure 4.3 where the dynamics
approaches a fatal leukemic state. For the case with D1 = 5 the figure shows
that the dynamics are drawn to a stable co-existing state which is in accordance
with the findings in Figure 4.3. This may be interpreted as the prognosis based
on the model may change from a fatal leukemic state to a co-existing non-
fatal state by increasing the T-cell specific immune response while fixing the
other parameters. Thus the impact of including the T-cell response seems to be
significant which is a motivating factor for considering the changes that occur
by modifying the effect of this term.
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Figure 4.4: Phase portraits of the reduced T-cell model for increasing values of
the parameter D1 describing the strength of the T-cell specifik response. The
black circle corresponds to a trivial fixed point, blue circles indicate hematopoi-
etic fixed points, red circles corresponds to leukemic fixed points and green
circles correspond to to co-existing fixed points. Full circles indicates that the
fixed point is stable and open circles indicates an unstable fixed point.
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4.4 The Modified T-cell Model

In the T-cell model in (4.12) it was assumed that η � y0 meaning that the
death rate of naive T-cells is significantly larger than the amount of malignant
stem cells. As mentioned in the paper [34] the parameter for the death rate of
naive T-cells η was estimated to η ≈ 0.04day−1 indicating that this assumption
might not be suitable based on the biology. Thus a new model is formulated
where the T-cell response is based on (4.5) instead of (4.6). The modified y0

dependent elimination term may be expressed

γy0Tn ≈ γy0
αnpn
γe

y0

y0 + η
= d̂y0

1

η + y0
y0.

Hence the model for the modified T-cell model is given by

ẋ0 = (rxϕx(x0, y0)s− dx0 − ax)x0, (4.13a)

ẏ0 =

(
ryϕy(x0, y0)s− dy0 − d̂y0

1

η + y0
y0 − ay

)
y0, (4.13b)

ẋ1 = axAxx0 − dx1
x1, (4.13c)

ẏ1 = ayAyy0 − dy1y1, (4.13d)

ȧ = dx0
x0 +

(
dy0 + d̂y0

1

η + y0
y0

)
y0 + dx1

x1 + dy1y1 − easa, (4.13e)

ṡ = rsa− ess+ I, (4.13f)

where d̂y0 = γy0
αnpn
γe

. Note that d̂y0 relates to d̃y0 from the T-cell model in
(4.7) with the relation

d̂y0 = γy0
αnpn
γeη

η = d̃y0η.

From the relation it can be seen that the T-cell model relates to the modified
T-cell model by providing an upper bound for the T-cell specific elimination
given by

d̂y0
1

η + y0
y0 ≤ d̂y0

1

η
y0.

Let the functions g and h be defined by

g(y0) = d̂y0
1

η
y0 (4.14)

and

h(y0) = d̂y0
1

η + y0
y0, (4.15)
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where d̂y0 and η are non-negative constants. The behavior of the functions g
and h and their relation is further investigated in Figure 4.5 where the functions
are depicted as a function of y0 for different values of η. The figure shows that
the approximation

h(y0) ≈ g(y0), (4.16)

is reasonable as long as η � y0 but as y0 increases and becomes equal to or larger
than η, then g(y0) may not provide a good approximation for h(y0). From the
function h(y0) it can be seen that the modified T-cell specific response term has
a saturation since for a fixed value of η then h(y0) → d̂y0 as y0 → ∞, i.e. the
expression is approaching a constant and does not increase further with y0 for y0

large enough. Thus it is expected that the dynamics for η � y0 will mimic the
dynamics of the basic model in (4.1) where the y0 elimination term is constant.
The function g(y0)→∞ as y0 →∞ since the term keeps increasing linearly as
a function of y0 thus this function does not have a saturation for large values of
y0.
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Figure 4.5: Plot of the functions g(y0) in (4.14) (full lines) and f(y0) in (4.15)
(dashed lines) depicted as functions of y0 for different values of η. The figure
shows that the function g provides an upper bound for the function f . The figure
also depicts how the quality of the approximation made in (4.16) is reasonable
as long as η � y0. Note that the plot is shown in dimensionless form and it
is the ratio between y0 and η which is the important factor. In the case that
η � y0 then the function f is approximately constant as y0 increases further.

Thus comparing the T-cell model with the modified T-cell model it is expected
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that the malignant stem cells are less restricted by the T-cell response in the
modified T-cell compared to the T-cell model. It is therefore expected that the
T-cell model will present a best case compared to the modified T-cell model and
it may be possible that a parameter set which gives rise to a co-existing steady
state for the T-cell model may give rise to dynamics approaching a leukemic
steady state for the modified T-cell model.

4.4.1 Dimensionless Form

The modified T-cell model is brought into dimensionless form to reduce the
number of parameters and number of equations. The scaling is chosen as for
the T-cell model. Thus the dimensionless modified T-cell specific response may
be expressed as

d̂y0
dx0 + ax

1

η + ȳ0Y0
ȳ0Y0 ⇔

d̂y0
dx0

+ ax

1
η
ȳ0

+ Y0
Y0 ⇔

D̂1
1

κ+ Y0
Y0,

where κ = η
ȳ0

is the new introduced dimensionless parameter and D̂1 =
d̂y0

dx0+ax

is independent of η. The constant D̂1 relates to the constant D1 from the
dimensionless T-cell model by

D̂1 =
d̂y0

dx0 + ax
=

d̃y0η ȳ0

(dx0 + ax)ȳ0
=

d̃y0 ȳ0

dx0 + ax

η

ȳ0
= D1κ.

Thus the relation between the modified T-cell model and the T-cell model is
the same for the models in dimensionless form, i.e.

D̂1
1

κ+ Y0
Y0 ≤

D̂1

κ
Y0. (4.17)

The relation in (4.17) implies that the approximation made in (4.10) also holds
for the modified T-cell model. Hence the dimensionless T-cell modified model
becomes

X ′0 =

(
J +

√
J2 + 2BxX0 + 2ByY0

1 +X0 + CyY0
− 1

)
X0, (4.18a)

Y ′0 =

(
R
J +

√
J2 + 2BxX0 + 2ByY0

1 + CxX0 + Y0
−D0 − D̂1

1

κ+ Y0
Y0

)
Y0. (4.18b)



4.4 The Modified T-cell Model 34

Note that κ > 0 and thus the right hand side of the model is still a C1 function,
i.e. we may apply the dynamical system theory presented in Chapter 3. More-
over there are not introduced new equations and only a single new parameter is
added to the model. Thus this is a minor modification of the T-cell model and
the complexity of the model is not increased dramatically by the modification.

In dimensionless form the amount of malignant stem cells does not exceed the
value of 1 by much thus based on Figure 4.5 it is expected that for κ ≥ 10 the
modified T-cell model will be in accordance with the T-cell model and for κ < 1
it is expected that they are not in accordance.

4.4.2 Trapping Region

The existence of a trapping region is established to ensure the global existence
and uniqueness of the modified T-cell model. The approach follows the approach
for the T-cell model given in [1]. Consider the nonnegative orthant, i.e. the
orthant obeying the biological restrictions that the amount of cells must be
nonnegative. From the equations in (4.18) it follows that the y-axis is a nullcline
forX0 and that the x-axis is a nullcline for Y0, this implies that if the solution for
a given time t is in the nonnegative orthant then it must be in the nonnegative
orthant for all time due to the existence and uniqueness of the initial value
problem.

The idea is to establish a region by connecting the x-axis and y-axis with a line.
This line should satisfy that X ′0 < 0 and Y ′0 < 0 on the line for large values of
X0 +Y0 since this will ensure that the flow of the differential equation will point
into the interior of the region or vanish. Consider the dimensionless reduced
modified T-cell model in (4.18). Assuming that X0 > 0 and Y0 > 0 we would
like to guaranty that the following relations are satisfied

J +
√
J2 + 2BxX0 + 2ByY0

1 +X0 + CyY 0
− 1 < 0 (4.19)

and

R
J +

√
J2 + 2BxX0 + 2ByY0

1 + CxX0 + Y 0
−D0 − D̂1

1

κ+ Y0
Y0 < 0. (4.20)

Introducing

K = max
{
J,
√

2Bx,
√

2By

}
and L = min {1, Cx, Cy}



4.4 The Modified T-cell Model 35

Considering (4.19) and (4.20) then the following relations hold

J +
√
J2 + 2BxX0 + 2ByY0

1 +X0 + CyY0
− 1 <

K

L

1 +
√

1 +X0 + Y0

1 +X0 + Y0
− 1

and

R
J +

√
J2 + 2BxX0 + 2ByY0

1 + CxX0 + Y 0
−D0 − D̂1

1

κ+ Y0
Y0

< R
K

L

1 +
√

1 +X0 + Y0

1 +X0 + Y0
−D0

= D0

(
R

D0

K

L

1 +
√

1 +X0 + Y0

1 +X0 + Y 0
− 1

)
.

Note that since D0 > 0 we need only to ensure that

α
1 +
√

1 +X0 + Y0

1 +X0 + Y0
− 1 < 0,

where

α =
max

{
1, RD0

}
max

{
J,
√

2Bx,
√

2By
}

min {1, Cx, Cy}
.

Introducing

z =
√

1 +X0 + Y0, (4.21)

reduces the problem to solve a 2. order polynomial, i.e.

z2 − αz − α > 0.

Solving this polynomial yields the solution

zsol =
1

2

(
α±

√
α2 + 4α

)
,

which has exactly one positive solution for all α > 0 since the square-root
function is a monotonic increasing function for α > 0. From the definition of z
we restrict that zsol must in addition satisfy that zsol ≥ 1 since both X0 and Y0

are nonnegative, i.e. we may choose z as

zsol = max

{
1,

1

2

(
α+

√
α2 + 4α

)}
.

Solving for X0 + Y0 in (4.21) yields that the bound M is

M = z2
sol − 1.

Thus for X0 +Y0 > M we have that X ′0 < 0 and Y ′0 < 0 and thereby the triangle
defined by the x-axis, y-axis and the line Y0 = M−X0 defines an trapping region
for the reduced dimensionless modified T-cell model in (4.12).
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4.4.3 Analysis by Descartes Rule of Sign

An analysis of the number of admissible fixed points is performed to investigate
the dynamics of the equations. Thus this analysis may be used as a theo-
retical support for the later numerical simulations. We will consider trivial ,
hematopoietic, leukemic and co-existing steady states.

From the dimensionless modified T-cell model in (4.18) it can be seen that there
exists a trivial steady state for all admissible choices of parameters.

A solution to the hematopoietic steady state is found as a solution to√
J2 + 2BxX0 = 1 +X0 − J.

Assuming that J < 1 +X0 the second order polynomial is obtained

X2
0 − 2(J +Bx − 1)X0 − (2J − 1) = 0. (4.22)

The solution for this second order polynomial is

X0 = (J +Bx − 1)±
√

(J +Bx − 1)2 + (2J − 1)

= (J +Bx − 1)±
√

(J +Bx)2 − 2Bx.

The roots of the polynomial are real if and only if

J ≥ −Bx +
√

2Bx.

However, note that the right hand side of the inequality satisfies that

−Bx +
√

2Bx ≤
1

2
, for all Bx > 0.

Thus by choosing J ≥ 1
2 the roots are real for all choices of Bx. It can be seen

from equation (4.22) that there for the choice of J ≥ 1
2 is exactly one change

of sign in the coefficients of the polynomial and by applying Descartes Rule
of sign [35] it can be concluded that for 1

2 ≤ J ≤ 1 there will be exactly one
hematopoietic steady state. For the standard parameters shown in Table 4.3 it
can be seen that the standard parameter choice for J satisfies that 1

2 ≤ J ≤ 1
thus for the simulations we can guarantee that there should be exactly one
hematopoietic steady state.

A leukemic steady state is a solution of

R
J +

√
J2 + 2BxX0 + 2ByY0

1 + CxX0 + Y0
−D0 − D̂1

1

κ+ Y0
Y0 = 0,
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which may be written as

(J2 + 2ByY0)(κ+ Y0)2 =

(
D0

R
(1 + Y0)(κ+ Y0) +

D̂1

R
Y0(1 + Y0)− J(κ+ Y0)

)2

,

(4.23)

with the constraint that

D0

R
(1 + Y0)(κ+ Y0) +

D̂1

R
Y0(1 + Y0)− J(κ+ Y0) ≥ 0. (4.24)

The expression in (4.23) can be rewritten into the standard form for 4. order
polynomial

α1Y
4
0 + α2Y

3
0 + α3Y

2
0 + α4Y0 + α5 = 0, (4.25)

where α1, α2, α3, α4 and α5 are constants depending on the parameters given by

α1 =
D2

0 + 2D0D̂1 + D̂2
1

R2
,

α2 = − (2D0R+ 2D̂1R)J

R2
+

2D2
0κ+ 2D0D̂1κ+ 2D2

0 + 4D0D̂1 + 2D̂2
1

R2
− 2By,

α3 =
D2

0κ
2 + 4D2

0κ+ 4D0D̂1κ+D2
0 + 2D0D̂1 + D̂2

1

R2

− (4D̂0Rκ+ 2D̂1Rκ− 2D0R− 2D̂1R)

R2
J − 4Byκ,

α4 =
2D2

0κ
2 + 2D2

0κ+ 2D0D̂1κ

R2
− (2D0Rκ

2 − 4D0Rκ− 2D̂1Rκ)

R2
J − 2Byκ

2,

α5 =

(
D0

2

R2
− 2

D0 J

R

)
κ2.

From the expressions it can be seen that α1 is positive for all admissible parame-
ters and that if D0 is chosen large enough then α2, α3,α4 and α5 will be positive
since the second order D0 terms will dominate the expressions. By Descartes
rule of sign this means that there is no admissible leukemic steady state if D0 is
chosen large enough. However, if J is chosen large enough then α2, α3,α4 are all
negative and a leukemic steady state becomes inevitable. Thus the existence of
a leukemic steady state depends on the same parameters as for the T-cell model
which may be verified by comparing the found coefficients to those of the T-cell
model presented in (A.1) in Appendix A.1.

The coefficients are expressed as a function of D1 and κ with the standard
parameters presented in Table 4.3 to examine if there is a leukemic steady state
for the standard parameters and varying values of κ and D1. The expressions
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for the coefficients as a function of κ and D1 based on the default parameters
are

α1 = D̂2
1 + 2D̂1 + 1,

α2 = (2D̂2
1 + 2D̂1κ+ 1.7352D̂1 + 2κ− 0.575614),

α3 = (D̂2
1 + 1.7352D̂1κ+ κ2 − 0.2648D̂1 − 1.151228κ− 1.264800),

α4 = −(0.2648D̂1κ+ 0.575614κ2 + 2.529600κ),

α5 = −1.264800000κ2.

The expressions for the coefficients show that α1 > 0 and α4, α5 < 0 for all
κ,D1 > 0. Isolating κ in α3 = 0 yields a second order polynomial and isolating
κ in α2 = 0 yields a linear function. The two functions are depicted as a function
of D1 in Figure A.1 in Appendix A.2. The figure shows that the sign of α3 will
change before α2 for any choice of D1 and κ. Both functions are continuous
thus for any combination of D1, κ ≥ 0 there is exactly one sign change for the
coefficients, i.e. by Descartes rule of sign there will be exactly one leukemic
steady state for the standard parameters in 4.3 and any choice of κ,D1 > 0
satisfying the constraint in (4.24).

A co-existing steady state is a solution of

J −
√
J2 + 2BxX0 + 2ByY0 = 1 +X0 + CyY0 (4.26)

and

J −
√
J2 + 2BxX0 + 2ByY0 = (1 + CxX0 + Y0)

(
D0

R
+
D̂1

R

1

κ+ Y0
Y0

)
.

(4.27)

If Y0 is known then the expression for the co-existing X0 can be found by
subtracting (4.26) from (4.27) and isolating X0. The expression for the co-
existing X0 as a function of the co-existing Y0 becomes

X0 =
(1 + Y0)

(
D0

R + D̂1

R
1

κ+Y0
Y0

)
− CyY0 − 1

1− Cx
(
D0

R + D̂1

R
1

κ+Y0
Y0

) .

Co-existing candidates for Y0 are found as a solution to the 4. order polynomial
obtained by substituting the expression for co-existing X0 into (4.26), i.e.

β1Y
4
0 + β2Y

3
0 + β3Y

2
0 + β2Y0 + β1,

where the coefficient for this 4. order polynomial are shown in (A.2) Appendix
A.3. Note that the solutions found must satisfy the constraints that

1 +X0 + CyY0 > J (4.28)
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and

(1 + CxX0 + Y0)

(
D0

R
+
D̂1

R

1

κ+ Y0
Y0

)
> J. (4.29)

Note that the first constraint is trivially satisfied for the standard parameter
choice of J . The expressions for the coefficients are not easily investigated
analytically. Thus further analysis of the co-existing steady state is performed
for specific parameter choices. The T-cell model reaches a co-existing steady
state as depicted in Figure 4.4 in the case D1 = 5. Thus to investigate how
the modified T-cell model behaves as κ changes the two following cases are
considered, namely the case where D̂1 = 50 and κ = 10 and the case where
D̂1 = 0.5 and κ = 0.1. These two cases satisfy that D̂1

κ = D1 = 5. In the
first case with D̂1 = 50 and κ = 10 the following coefficients for the 4. order
polynomial is obtained

β1 = −0.98,

β2 = −16.57,

β3 = 242.53,

β4 = −18.21,

β5 = 0.02.

The coefficients change sign three times thus by Descartes rule of sign there will
be 1 or 3 positive roots of the polynomial. The positive roots can be calculated
explicit and they are given by

Y01
= 0.11,

Y02
= 13.47,

Y03
= 789.51.

It is found that only Y01
satisfies the constraints thus it is expected that there

will be exactly one co-existing steady state and the dynamics of the modified
T-cell model is expected to behave similar to the dynamics shown in Figure 4.4
for this specific choice of parameters.

In the second case with D̂1 = 0.5 and κ = 0.1 the following coefficients for the
4. order polynomial is obtained

β1 = −0.98 · 10−4,

β2 = −0.36 · 10−2,

β3 = −0.17 · 10−2,

β4 = −0.20 · 10−3,

β5 = 1.96 · 10−5.
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Thus by Descartes rule of sign there is exactly one positive real root. The root
is found to be Y01

= 16.35. However, this root does not satisfy the constraints
thus we cannot guarantee the existence of a co-existing steady state and it
is expected that they may not be a co-existing steady state for this specific
choice of parameters. Hence it is expected that the modified T-cell model may
exhibit a different dynamics compared to the T-cell model for the same choices
of parameters based on this analysis.

4.5 The Resistant T-cell Model

As mentioned in Chapter 2 biological theory, the effectiveness of the T-cell
response may wear off with time due to the malignant cells becoming resistant
to the T-cell response. A mathematical model for modeling the resistance is
proposed in [1]. However, this model is based on a mathematical approach. The
aim is to formulate a simple model desribing the phenomena based on biological
assumptions instead. Thus the T-cell model will be extended to include resistant
malignant stem cells inspired by the biological approach used in [36].

From a biological aspect, the malignant stem cells becoming resistant may be
interpreted as the y0 compartment being spilt into two compartments, namely
a compartment with the malignant stem cells that have not acquired resistance
to the T-cell response, z0 and those who have acquired the resistance, zr. Thus
the total amount of malignant stem cells may be described by the sum of the
two types of stem cells, i.e. y0 = z0 +zr. At time t0 we assume that the amount
of resistant malignant stem cells are zero and as time evolve the malignant stem
cells are allowed to turn into resistant stem cells. This approach is inspired by
[36] where a model for CML including resistance of malignant cells i proposed.
Assuming that the overall dynamics are similar to the T-cell model in (4.7), the
dynamics of the malignant stem cells may be described by

ż0 =
(
ryϕ̃y(x0, z0, zr)s− dy0 − d̃y0z0 − ay

)
z0 − ρz0, (4.30a)

żr = (ryϕ̃y(x0, z0, zr)s− dy0 − ay) zr + ρz0, (4.30b)

where ϕ̃y(x0, z0, zr) = ϕy(x0, z0 + zr) and ρ is a function that depends on the
resistance-biology and describes the how the non-resistant malignant stem cells
turn resistant which will be referred to as the second mutation rate. Substituting
the y0 equation in the T-cell model with (4.30), yields the resistant T-cell model
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ẋ0 = (rxϕ̃x(x0, z0, zr)s− dx0 − ax)x0, (4.31a)

ż0 = (ryϕ̃y(x0, z0, zr)s− dy0 − d̃y0z0 − ay)z0 − ρz0, (4.31b)
żr = (ryϕ̃y(x0, y0, zr)s− dy0 − ay)zr + ρz0, (4.31c)
ẋ1 = axAxx0 − dx1

x1, (4.31d)
ẏ1 = ayAy(z0 + zr)− dy1y1, (4.31e)

ȧ = dx0
x0 + (dy0 + d̃y0z0)z0 + dy0zr + dx1

x1 + dy1y1 − easa, (4.31f)
ṡ = rsa− ess+ I, (4.31g)

where d̃y0 = γy0
αnpn
γeη

describes the effect of the T-cell response in the same
manner as in the T-cell model. Note that the sum of the two new equations
satisfies that

ẏ0 = ż0 + żr =

(
ryϕ̃y(x0, z0, zr)s− ay − dy0 − d̃y0

z2
0

z0 + zr

)
(z0 + zr).

Hence as the malignant stem cells turn resistant, the effect of the T-cell response
wears off and the equations mimics the behavior of the basic model without the
T-cell response presented in (4.1) whereas as long as the resistant cells are
negligible then the dynamics mimic the T-cell model in (4.7). Moreover, since
the T-cell specific response is only included in the stem cell compartment we
will not split the mature malignant cells into two compartments since these two
compartments would be identical for this model formulation.

In the model proposed in [36] the function ρ(z0) was chosen as a constant. A
model where ρ(z0) was a more complicated expression given by a hill function
depending on the current exposure of malignant cells did not produce qualita-
tive different results thus the simpler model is preferred by the parsimonious
principle.

4.5.1 Dimensionless Form

The resistant T-cell model is brought into dimensionless form. For simplicity
the same scaling constants are chosen as for the T-cell model. Thus the resistant
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T-cell model in dimensionless form may be expressed by

X ′0 =

(
J +

√
J2 + 2BxX0 + 2By(Z0 + Zr)

1 +X0 + Cy(Z0 + Zr)
− 1

)
X0, (4.32a)

Z ′0 =

(
R
J +

√
J2 + 2BxX0 + 2By(Z0 + Zr)

1 + CxX0 + (Z0 + Zr)
−D0 −D1Z0 − P

)
Z0, (4.32b)

Z ′r =

(
R
J +

√
J2 + 2BxX0 + 2By(Z0 + Zr)

1 + CxX0 + (Z0 + Zr)
−D0

)
Zr + PZ0, (4.32c)

where R =
ry
rx
, Cx =

cxy

cyy
, Cy =

cyx

cxx
, D0 =

dy0+ax
dx0

+ax
, D1 =

d̃y0 ȳ0
dx0

+ax
and P = ρ

dx0
+ax

describes the dimensionless second mutation rate.

4.5.2 Trapping Region

A trapping region can be established for the dimensionless resistant T-cell model
in (4.32) to ensure that the solutions are well-behaved. Note that the Z0-Zr
plane is a nullcline for X0, i.e. X0 cannot not cross this plane. Similarly the
Z0-Zr plane is a nullcline for Z0. If we have X0, Z0 > 0 at some time t then
for all time X0, Z0 ≥ 0. The Z0 axis is a nullcline for Zr but the Z0-X0 plane
is not a nullcline for Zr due to the PZ0 term. However, since Z0 > 0 and
Z ′r → PZ0 ≥ 0 as Zr → 0 thus the vector field will be positive with respect
to Zr for vanishing Z0 and thus Zr cannot become negative as long as Z0 is
nonnegative. Thus we may use the same argument for a trapping region as for
the modified T-cell model, i.e. the aim is to show that for large choices of X0, Z0

and Zr then X ′0 < 0, Z ′0 < 0 and Z ′r < 0.

First it is shown that for negative for large values of X0, Z0 and Zr then X ′0 < 0,
Z ′0 < 0 and Z ′0 + Z ′r < 0 since if this holds then it follows that also Z ′r < 0.
Consider the equations for X ′0, Z ′0 and Z ′0 +Z ′r. Assuming that X0 > 0, Z0 > 0
and Zr > 0 the aim is to show

J +
√
J2 + 2BxX0 + 2By(Z0 + Zr)

1 +X0 + Cy(Z0 + Zr)
− 1 < 0, (4.33)

R
J +

√
J2 + 2BxX0 + 2By(Z0 + Zr)

1 + CxX0 + (Z0 + Zr)
−D0 −D1Z0 − PZ0 < 0 (4.34)

and

R
J +

√
J2 + 2BxX0 + 2By(Z0 + Zr)

1 + CxX0 + (Z0 + Zr)
−D0 −D1

Z2
0

(Z0 + Zr)
< 0. (4.35)
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This is equivalent to showing

α
1 +
√

1 +X0 + Z0 + Zr
1 +X0 + Z0 + Zr

− 1 < 0

with

α =
max

{
D0

R , 1
}

max
{
J,
√

2Bx,
√

2By
}

min {1, Cx, Cy}
.

Introducing

w =
√

1 +X0 + Z0 + Zr, (4.36)

it reduces to show that we can choose w such that

αw2 − αw − α > 0.

This inequality is satisfied if w is chosen larger than

wsol = max

{
1,

1

2

(
α+

√
α2 + 4α

)}
.

Solving for X0 + Z0 + Zr in (4.36) yields that the bound M is

M = w2
sol − 1.

Thus for X0 + Z0 + Zr > M it follows that X ′0 < 0, Z ′0 < 0 and Z ′r < 0 and
thereby we may guarantee the existence of a trapping region for the resistant
T-cell model.



Numerical Experiments
with Simulations

In this chapter numerical experiments in form of simulations will be carried
out for the three models, namely the T-cell model, the modified T-cell model
and the resistant T-cell model. The numerical experiments will be based on the
standard parameters given in Table 4.3 unless other is stated. The main focus of
interest for the simulations regarding the modified T-cell model is to investigate
the dynamics for varying strengths of the T-cell specific response, i.e. varying
parameter values of D̂1 and κ. For the resistant T-cell the aim is to produce
simulations which shows how the dynamics change with a resistant mutation.

5.1 Simulation Set-up

The initial conditions for the simulations will be based on the hematopoietic
steady state in the basic model in (4.1) and the standard parameters given in
Table 4.1. For a hematopoietic steady state we set y0 and y1 equal to zero. The
remaining variables are then found to be

x0 = 1.00 · 104,

x1 = 4.01 · 1010,

a = 7.18 · 102,

s = 3.61.

At time zero it is assumed that a malignant mutation of a stem cell has occurred
and thus at t = 0 the malignant initial conditions are

y0 = 1,

y1 = 0.

Furthermore, all the simulations will be presented in non-dimensionless form
whereas the phase plan portraits will be depicted in dimensionless form. The
simulations are made in MatLab and the code is provided in Appendix B.
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5.2 The Modified T-cell Model

Two experiments will be carried out for the modified T-cell model. First its
relation to the T-cell model will be investigated through simulations and phase
plan portraits. Secondly, the effect of changing the parameter κ will be tested
by simulations where all parameters except κ are kept fixed.

5.2.1 Comparing the Modified T-cell Model and the T-cell
Model

To investigate how the modified T-cell model in (4.18) differs from the T-cell
model we may consider numerical simulations of the modified T-cell model with
the same parameters used for the simulation of the T-cell model in (4.12), i.e.
the models will be compared for the same choices of parameters with the relation
found in Chapter 4

D1 =
D̂1

κ
. (5.1)

Thus in the simulations where the modified T-cell model is compared to the
T-cell model we will use this relation such that the all the parameters are the
same and only change between the models is the T-cell specific elimination term,
namely

D̂1

κ+ Y0
Y0 and

D̂1

κ
Y0,

i.e. for the simulations where the two models are compared the value of D1 is
kept constant such that when varying κ the value of D̂1 will be adjusted such
that the ratio in (5.1) is kept constant.

The numerical experiment is simulated for four different choices of κ, namely
κ = 0.01, κ = 0.1, κ = 1 and κ = 10. The simulations are shown in Figure 5.1.
In Figure 5.1 the full lines correspond to the healthy (blue) and malignant (red)
stem cell amounts of the T-cell model with the standard parameters in Table
4.3. For the modified T-cell model both the healthy and malignant stem cells
are depicted using the same color. The healthy stem cells are depicted with
stipulated lines and the malignant stem cells are depicted with dotted lines.
The figure shows that for large κ which based on Figure 5.1 seems to be κ ≥ 10
the modified T-cell model is in accordance with the T-cell model. However,
for small enough κ, the figure depicts that the models are not in accordance
since for κ ≤ 0.1 and D1 = 5 the T-cell model approaches a co-existing steady
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state whereas the modified T-cell model approaches a leukemic steady state. To
illustrate this finding further Figure 5.2 depicts the scenario solely for κ = 0.1
and Figure 5.3 for solely for κ = 10.

The corresponding phase portraits are shown in Figure 5.4. For simplicity the
figure only depicts the fixed points and the nullclines. The figure illustrates how
the Y0-nullcline changes as a function of κ, as the of κ decreases the leukemic
steady state increases. Both figures indicate that for κ ≤ 0.1 the co-existing
steady state which the T-cell model approaches for D1 = 5 is changed into a
stable leukemic steady state for the modified T-cell model.
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Figure 5.1: Simulation of reduced T-cell model in (4.12) (full lines) proposed in
[1] and the modified T-cell model (4.18) for different values of the new model
parameter κ. For the modified T-cell model both the healthy and malignant
stem cells are depicted using the same color. The healthy stem cells are depicted
with stipulated lines and the malignant stem cells are depicted with dotted lines.
The simulations show that for small values of κ the simulations of the modified
T-cell model are not in accordance with the T-cell model whereas for larger
values of κ the modfied T-cell is in accordance with the T-cell model.
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Figure 5.2: Simulations comparing the modified T-cell model (stippled lines)
with standard parameters in Table 4.3 with varying values of D̂1 and κ = 0.1 to
the T-cell model (full lines) for the same choice of parameters and the relation
D̂1 = D1κ. For this choice of κ the modified T-cell model is not in accordance
with the T-cell model.
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Figure 5.3: Simulations comparing the modified T-cell model (stippled lines)
with standard parameters in Table 4.3 with varying values of D̂1 and κ = 10 to
the T-cell model (full lines) for the same choice of parameters and the relation
D̂1 = D1κ. For this choice of κ the modified T-cell model is in accordance with
the T-cell model.
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Figure 5.4: Nullcines and fixed points for the modified T-cell model in (4.18)
with κ = 0.1, 0.5, 1, 10. The Y0-nullcline is coloured such that it can be matched
with the corresponding κ value. Moreover, the nullclines that do not change
depending on κ are red if they are Y0 nullclines and blue if they areX0 nullclines.
For D1 = 5 the phase portrait changes from a phase portrait with a stable co-
existing fixed point to a stable leukemic fixed point. The phaseportraits show
that for large values of κ the phase plan portrait is similar to the phase plan
portrait for the T-cell model depicted in Figure 4.4.
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The phase portraits are shown for larger values of D1 in Figure 5.5. Figure 5.5
shows that for some D1 value between D1 = 6 and D1 = 7 the dynamics of
the modified T-cell model shift from approaching a leukemic steady state to a
co-existing steady state for the choice κ = 0.1. The figure also indicates that
in the case that for large values of D1 then κ = 1 and κ = 10 is approximately
the same. However, for a value of κ = 0.01 the dynamics of the modified t-cell
model does not shift from a leukemic steady state to a co-existing steady state
indicating that a much larger increase in D1 is need to change the dynamics of
the modified T-cell model from a leukemic steady state to a co-existing steady
state for small values of κ. Another finding is that for large values of κ the figure
shows that even though the value of D1 is doubled the co-existing steady state
barely moves indicating that it may not be possible or require an unrealistic
value of D1 to change the dynamics from approaching a co-existing steady state
into approaching a hematopoietic steady state. Thus the T-cell response may
only hold the malignant cells down but not eradicate them since this would
require an unrealistic large value for D1 for the standard parameters.
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Figure 5.5: Nullcines and fixed points for the modified T-cell model in (4.18)
with κ = 0.01, 0.1, 1, 10 and values of D1 = 6, 7, 8, 10 where D1 = D̂1

κ . The
Y0-nullcline is coloured such that it can be matched with the corresponding κ
value. Moreover, the nullclines that do not change depending on κ are red if
they are Y0 nullclines and blue if they are X0 nullclines.
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5.2.2 The Effect of Changing the Death Rate of Naive T-
cells

Simulations of the modified T-cell model are made for varying values of D̂1 and
κ to investigate the effect of changing the parameter κ. These simulations are
shown in Figure 5.6. The figure shows that as κ increases so does the amount of
the malignant stem cells. For the parameter value D̂1 = 1 the simulations show
that for κ = 0.1 and κ = 0.001 the dynamics of the model approach a co-existing
steady state and for κ = 1 and κ = 10 the dynamics of the model approach a
leukemic steady state. This behavior of the model is further supported by the
corresponding phase plan portrait shown in Figure 5.7. Thus the simulations
indicates that a small value of κ is preferable.
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Figure 5.6: Simulations of the modified T-cell model with standard parameters
in Table 4.3 with varying values of D̂1 and κ. The stipulated lines corresponds
to the amount of healthy stem cell and the dotted lines indicate the amount of
malignant stem cells. The figure shows that the maximal amount of malignant
stem cells increases for increasing values of κ.
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Figure 5.7: Nullcines and fixed points for the modified T-cell model in (4.18)
with κ = 0.01, 0.1, 1, 10 and values of D̂1 = 0.1, 0.5, 1, 5. The Y0-nullcline is
coloured such that it can be matched with the corresponding κ value. Moreover,
the nullclines that do not change depending on κ are red if they are Y0 nullclines
and blue if they are X0 nullclines.The figure shows that small values of κ is
preferable.
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5.3 The Resistant T-cell Model

Simulations are carried out for the resistant T-cell model in (4.31) using the
dimensionless form in (4.12) and the standard parameters in Table 4.3. Simula-
tions of the resistant T-cell model and the T-cell model are depicted in Figure
5.8 with the dimensionless second mutation rate chosen as P = 10−4 corre-
sponding to the second mutation rate ρ = 2 ·10−7. The T-cell model is depicted
with full lines where the blue line corresponds to the amount of healthy stem
cells and the red line corresponds to the amount of malignant stem cells. The
stipulated lines depict the resistant T-cell model where blue is the amount of
healthy stem cells, red are the total amount of malignant stem cells, orange is
the amount of resistant malignant stem cells and green is the amount of the
non-resistant stem cells. The figure shows that in the case where the T-cell
response successfully manage to keep the malignant stem cells at a co-existing
state then as the malignant cells turn resistant, this co-existing state is lost and
a fatal growth begins.
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Figure 5.8: Simulations of the resistant T-cell model and the T-cell model with
the standard parameters and P = 10−4. The full lines corresponds to the T-
cell model. The stipulated lines correspond to the resistant T-cell model where
blue is the amount of healthy stem cells (HSC), red are the totalt amount of
malignant stem cells (MPN), orange is the amount of resistant malignant stem
cells (R) and green is the amount of the non-resistant stem cells (NON-R).



Discussion
The T-cell model presented in [1] is based on the parsimonious principle and all
interactions are chosen to be first or second order. In the model it is assumed
that the death rate of naive T-cells η is significantly larger than the amount
of malignant stem cells, i.e. η � y0. This assumption results in the following
approximation

d̂y0
η + y0

y0 ≈
d̂y0
η
y0 = d̃y0y0.

Thus this assumption is a simplifying assumption resulting in a linearization of
a nonlinear Michaelis Menten term. In [34] an estimate for the death rate of
naive T-cells is found to be η ≈ 0.04 day−1. This indicates that the assumption
may not be appropriate and this is further supported by Figure 4.5 where the
nonlinear Michaelis-Menten term is depicted with the corresponding lineariza-
tion. Thus we formulate a new model where the assumption that η � y0 is not
used and this model is referred to as the modified T-cell model. The modified
T-cell model is presented in (4.13). The model is brought into dimensionless
form in (4.18) to reduce the number of parameters and a quasi steady state
approximation is applied to reduce the number of equations. The dimensionless
modified T-cell model is reduced to two equations and the further analysis of the
death rate of naive T-cell cells will be discussed in terms of the dimensionless
model and the dimensionless death rate of naive T-cell cells denoted by κ. A
small value of κ is referring to κ < 1 since the amount of malignant stem cells
are expected to be in the range 0 ≤ Y0 ≤ 1.5, whereas a large value of κ is
expected to be κ > 1. Note that η ≈ 0.04 corresponds to κ ≈ 2 · 10−6 thus this
value is considered a small value of κ.

For the modified T-cell model it was possible to establish an trapping region for
any admissible choice of parameters and thereby ensure that the solutions of the
model are well behaved. Moreover, it was shown that exactly one hematopoietic
fixed point and one leukemic fixed point existed for the standard parameters by
Descartes rule of sign. The analysis further showed that existence of a co-existing
fixed point depends on several parameters. In the case where all parameters and
the ratio κ and D̂1 were fixed, the analysis showed that these parameters may
change if a co-existing fixed point was guaranteed to exists or not. In particular
it was shown that the existence of an co-existing fixed point could be guaranteed
for the choice κ = 10 and D̂1 = 50 whereas there could not be guaranteed the
existence of an co-existing fixed point for κ = 0.1 and D̂1 = 0.5. These two
cases was of particular interest due to the fact that they may both be compared
to the simulation of the T-cell model with the parameter D1 = 5. For this
set of parameters the Figure 4.4 showed a co-existing fixed point for the T-cell
model in [1]. Thus this analysis showed that the T-cell model is a best case
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scenario compared to the modified T-cell model. The relation in (4.17) between
the modified T-cell model and the T-cell model indicated that the T-cell model
would be in accordance with the modified T-cell model for large values of κ
whereas for small values of κ they might not be in accordance.

The relation between the modified T-cell model and the T-cell model was in-
vestigated in the numerical experiment in subsection 5.2.1. The numerical ex-
periment is depicted in Figure 5.1, Figure 5.2 and Figure 5.3. The figures show
that for κ = 10 and D̂1 = 50 the solution approaches a co-existing steady state
whereas for κ = 0.1 and D̂1 = 0.5 the solution approaches a leukemic steady
state which is consistent with the analytic findings. Namely, that the T-cell
model with D1 = D̂1

κ does provide a best case scenario for the same set of
parameters and that the difference between the T-cell model and the modified
T-cell model increases as κ decreases.

The phase portrait in Figure 5.4 shows that asD1 increases (corresponding to an
increase in D̂1) , the value of the leukemic fixed point decreases. Especially for
κ = 0.1 indicating that an even larger increase in D1 might result in the emerge
of a co-existing fixed point. Thus in Figure 5.5 the numerical experiment is
repeated but for higher values of D1. The figure shows that for a value some
value 6 ≤ D1 ≤ 7 the stable leukemic fixed point turns unstable and a stable co-
existing fixed point emerges. However, for the choice κ = 0.01 the figure shows
that the leukemic fixed point is barely decreased thus for very small values
of κ, a much larger and maybe even an unrealistic increase in D1 is needed
to change the stable leukemic fixed point into an unstable fixed point. Thus
this contributes further to the analysis that showed that the difference in the
two model increases as κ decreases. Interpreted in terms of clinical meaning,
it indicates that if the parameters were estimated for a specific patient then
it is possible that the T-cell model would indicate that a certain amount of
treatment for example with T-cell therapy would be sufficient to avoid a fatal
prognosis whereas the same treatment would not be sufficient for the patient in
the modified T-cell model.

However, this analysis is solely based on comparing the two models and the effect
of changing the parameter κ was investigated in the numerical experiment in
subsection 5.2.2. The simulations in Figure 5.6 showed that a low value of κ is
preferable for the outcome of the model since the figure shows that the maximal
malignant stem cell amount for all time is decreased as κ decreases. κ describes
the dimensionless death rate of naive T-cells thus this may be interpreted as a
patient with a small death rate of naive T-cell have a larger amount of naive
T-cell whereby the effector T-cell response is increased and thereby provide a
better response to the malignant cells.
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The possibility of the malignant cells becoming resistant to therapy is a known
problem within gene- and immune therapy. Thus this was a motivating factor
for formulating a model including resistance. The resistant model is based on
the T-cell model in [1] with the addition of a new line of malignant stem cells
that does not respond to the T-cell specific response. The resistant model is
formulated in (4.31) where the parameter ρ describes the second mutation rate.
Like for the modified T-cell model the model was brought into dimensionless
form. The inclusion of the resistant malignant stem cell line resulted in a system
of three equations instead of two which complicated the analysis. However, by
similar considerations as for the modified T-cell model it was possible to establish
a trapping region for all admissible choices of parameters. At first, a more
complicated model for modeling resistance was formulated but the simulations
did not show any qualitative difference in the simulations. Thus in this process
of formulating the model has been an iterative process as illustrated by the
moeling cycle in Figure 4.1 since at first the complicated model was proposed
due to the belief that a simple model with ρ as a constant would not be able
to capture the dynamics which was expected by the current perception of the
resistance phenomena. However, by inspiration from [36] a simpler model was
formulated and this simpler model was preferred by the parsimonious principle.

In section 5.3 a numerical experiment was performed to investigate the dynamics
of the resistant T-cell model. The simulations are shown in Figure 5.8. The
figure illustrates that at first the non-resistant malignant cells grow in numbers
but after a time of exposure they turn resistant resulting in a growth of the
resistant malignant cells and a decrease in the non-resistant malignant cells.
This can be seen in all four simulations by considering the green stipulated line
describing the amount of non-resistant malignant cells and the orange stipulated
line describing the amount of resistant malignant cells. For the simulations with
D1 = 5 and D1 = 10 a co-existing steady state is reached as for the T-cell model,
but after some time of exposure the non-resistant malignant cells turn resistant
and the growth of the non-resistant malignant stem cells eventually suppress
both the healthy stem cells and the non-resistant line of malignant stem cells.
Thus the simulations shows that resistance may result in that the co-existing
steady state is lost and a fate growth begins. Thus this may be interpreted as
patients receiving T-cell therapy and then the malignant stem cells turn immune
despite continuous treatment. Another interpretation could be that patients
may develop cancer even though they have an apparently normal immune system
due to resistance. Thus the findings in the numerical experiment aligns with
the expected theory of resistance described in the biological theory chapter.

The numerical experiment in Figure 5.8 for the resistant T-cell model showed
behavior similar to the more mathematical based resistant model proposed in
[1]. The models may be compared based on their complexity and their biolog-
ical interpretation. In their dimensionless form they both have 3 differential
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equations and variables. In the mathematical resistant model the third variable
is a non-biological variable U describing the exposure after some time thus the
new equation is U ′ = Y0. The variable U is then introduced into the equation
for Y0 by a Hill function, i.e.

H(U) =
1

Uα + 1
,

where the biological interpretation of the parameter α is somewhat more com-
plicated than the interpretation of the parameter introduced by the resistant
T-cell model in this project. Thus the resistant model presented in this project
may be preferred due to the parsimonious principle and the fact that the model
is solely based on a biological perception of the resistance theory.

As mentioned all of the models have been brought into dimensionless form. The
advantages of this approach are clearly seen by the reduction in number of pa-
rameters and the reduced number of equations. Moreover, the new parameters
in these models are ratios indicating that the important parameters for the dy-
namics of the model may be the ratio and not the single parameter. An example
of this is the parameter denoted by R describing the self-renewal ratio between
the two self-renewal rates rather than the self-renewal rate of the malignant cells.
Thus the analysis of the dimensionless form reveals some important dynamics of
the system. However, in the T-cell model the number of parameters is 8 which
may still be considered as a rather large amount of parameters. Thus further
insight may be granted by analyzing the parameters by applying sensitivity
analysis. This analysis might help determine which parameters are sensitive
and which might not be as sensitive. Thus the less sensitive parameters may
be considered less prone to change the outcome of the model and interpreted
in terms of clinical validation these parameters may not need to be estimated
for the individual patient. This might be a great advantage due to the possible
challenges regarding collecting useful data for the model. The data collected by
the doctors are mostly based on patients that currently receive treatment. Thus
the parameters may already be affected by the treatment and thus suitable data
may be hard to come by. Moreover, some of the parameters may be hard to
estimate whereby a validation of the model is further complicated.



Conclusion
The T-cell model proposed in [1] for modeling the development of MPN shows
that inflammation may trigger and drive blood cancer and that by boosting
the body’s own defence against foreign invaders the prognosis for a patient
may be improved. In the model they have chosen an approximation based
on the assumption that the death rate of naive T-cells is much larger than
the amount of malignant cells. However, the estimate of this death rate is
proposed to be approximately 0.004 in [34] indicating that it might not be
a suitable assumption. The modified T-cell model where this assumption is
avoided showed behavior similar to the T-cell model. However, the values of
parameters for which a co-existing steady state was obtained with the T-cell
model was turned into a leukemic steady state for the modified T-cell model.
Analysis of the modified T-cell showed that the solutions of the model are well
behaved and thus the modified T-cell model possesses desirable qualities for
modeling biological systems.

Secondly, an attempt of formulating a model describing that the malignant cells
may turn resistant to the T-cell response was successful. Analysis of the resistant
T-cell model showed that the solutions of the model are well behaved which
indicates that the model might be suitable to model the resistance phenomena
for MPN. The simulations of the resistant T-cell model may be interpreted as
when resistance occurs a successful T-cell therapy where the patient might live
with a low amount of malignant cells might turn into a fatal scenario despite
continued T-cell therapy. The model may also describe the scenario where a
healthy person develop MPN despite having a normal immune response. Thus
the mathematical models may be used to obtain a new insight for doctors and
researchers within the area of cancerous diseases and may be used as guideline
for which type of treatment might be preferable. Thus the potential for further
research with mathematical models may have even greater influence in the future
as awareness of mathematical modeling increases.
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Appendix

A.1 Leukemic Coefficients for the T-cell Model
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A.2 Sign Change for Leukemic Coefficients
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Figure A.1: The figure shows the line for which the coefficients α2 and α3 change
sign in the polynomial describning the leukemic steady state in (4.25). For both
coefficients it holds that they are positive for sufficiently large values of κ and
D̂1. It can be seen that the coefficient α3 changes sign before α2 for all choices
of D̂1.
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A.3 Co-Existence Coefficients for the Modified
T-cell Model

β1 = −
(
D0 + D̂1

)2

(CxCy − 1)2 (A.2a)

β2 = 2 ((−κCy2 + (J − 1)Cy +By)D0 (A.2b)
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Matlab Code
B.1 Driver: Full T-cell Model and Reduced T-

cell Model

Listing B.1: DriverTcell.m
1 %% Modeling MPN: Simulations of full vs. reduced model
2 % Initialize constants and variables
3 Initialize
4 Z = [X0;X1;Y0;Y1;S;A]; % Full model
5 Zr = [X0;Y0]; % Reduced model
6 tspan = [0 80*365/tbar]; % Dimensionless time
7

8 % Dimensionless Parameters from article
9 D0 = [0.5,1.00,1.52,1.8];

10 D1 = [0.1,0.5,1,5];
11 p = [rx,ry,ax,ay,Ax,Ay,dx0,dy0,dx1,dy1,cxx,cxy,cyx,cyy,es,ea,rs,I,rm];
12

13 figure
14 for i = 1:length(D1)
15 % Updating parameter choice
16 p2 = [R,J,D0(2),D1(i),Cx,Cy,Bx,By];
17 p3 = [p,p2];
18

19 % Full model
20 [t,sol] = ode15s(@dl,tspan,Z,[],p3);
21 time = t/365*tbar;
22

23 % Reduced model
24 [tr,solr] = ode45(@dlr,tspan,Zr,[],p2);
25 timer = tr/365*tbar;
26

27 % Plot of the solution
28 subplot(2,2,i)
29 plot_cancer(time,sol(:,1)*x0bar,sol(:,3)*y0bar,1)
30 hold on
31 plot_cancer(timer,solr(:,1)*x0bar,solr(:,2)*y0bar,3,'−−')
32 title(sprintf('$D_1 = %0.1f$',D1(i)),'interprete','latex')
33 set(gca,'fontsize',20)
34 if i == 1
35 h1 = plot(NaN,NaN,'b−−','linewidth',3);
36 h2 = plot(NaN,NaN,'r−−','linewidth',3);
37 HL = legend([h1,h2],'HSC','MSC');
38 set(HL,'interprete','latex','location','northwest','fontsize',18)
39

40 end
41 set(gcf,'units','points','position',[300,300,800,500])
42 end
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B.2 The Dimensionless Full T-cell Model

Listing B.2: dl.m
1 function dfdt = dl(t,IC,p)
2 % function: dfdt = dlr(t,IC,p)
3 %
4 % The full dimensionless T−cell model
5 % Katrine Ottesen Bangsgaard, May 2018
6 %
7 % Inputs:
8 % t : Time
9 % IC : Initial conditions: [X0 Y0]

10 % p : Parameters p = [rx, ry, ax, ay, Ax, Ay, dx0, dy0, dx1, dy1,
11 % cxx, cxy, cyx, cyy, es, ea, rs, I, rm, R, J,
12 % D0, D1, Cx, Cy, Bx, By];
13 %
14 % Output:
15 % dfdt : [X0dot; X1dot; Y0dot; Y1dot; Sdot; Adot]
16

17 % Unwrapping parameters
18 rx = p(1);
19 ry = p(2);
20 ax = p(3);
21 ay = p(4);
22 Ax = p(5);
23 Ay = p(6);
24 dx0= p(7);
25 dy0= p(8);
26 dx1= p(9);
27 dy1= p(10);
28 cxx= p(11);
29 cxy= p(12);
30 cyx= p(13);
31 cyy= p(14);
32 es = p(15);
33 ea = p(16);
34 rs = p(17);
35 I = p(18);
36 rm = p(19);
37

38 % Dimensionless parameters
39 R = p(20);
40 J = p(21);
41 D0= p(22);
42 D1= p(23);
43 Cx= p(24);
44 Cy= p(25);
45 Bx= p(26);
46 By= p(27);
47

48 sbar = (dx0+ax)/rx;
49 eps1 = rx/dx1*sbar;
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50 eps2 = rx/es*sbar;
51 eps3 = es/(ea*sbar);
52 eps4 = eps2*eps3;
53

54 % Initial conditions
55 X0 = IC(1);
56 X1 = IC(2);
57 Y0 = IC(3);
58 Y1 = IC(4);
59 S = IC(5);
60 A = IC(6);
61

62 % Model
63 X0dot = (S./(1 + X0+Cy*Y0) −1) * X0 ;
64 X1dot = (X0−X1)/eps1;
65 Y0dot = (R*S./(1 + Cx*X0+Y0) −D0 − D1*Y0) * Y0 ;
66 Y1dot = dy1/dx1*(Y0−Y1)/eps1;
67 Sdot = (A−S+2*J)/eps2;
68 Adot = (2*Bx*X0+2*By*Y0−A*S)/eps4;
69

70 % Output
71 dfdt = [X0dot; X1dot; Y0dot; Y1dot; Sdot; Adot];
72

73 end

B.3 The Dimensionless Reduced T-cell Model

Listing B.3: dlr.m
1 function dfdt = dlr(t,IC,p)
2 % function: dfdt = dlr(t,z0,parameter)
3 %
4 % The dimensionless T−cell model
5 % Katrine Ottesen Bangsgaard, May 2018
6 %
7 % Inputs:
8 % t : Time
9 % IC : Initial conditions: [X0 Y0]

10 % p : Parameters p = [R, J, D0, D1, Cx, Cy, Bx, By]
11 %
12 % Output:
13 % dfdt : [X0dot; Y0dot];
14

15 % Unwrapping parameters
16 R = p(1);
17 J = p(2);
18 D0= p(3);
19 D1= p(4);
20 Cx= p(5);
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21 Cy= p(6);
22 Bx= p(7);
23 By= p(8);
24

25 % Initial conditions
26 X0 = IC(1);
27 Y0 = IC(2);
28

29 % Model
30 X0dot = ( (J+sqrt(J^2+2*Bx*X0+2*By*Y0))./(1+X0+Cy*Y0) −1) ...
31 * X0;
32 Y0dot = (R*(J+sqrt(J^2+2*Bx*X0+2*By*Y0))./(1+Cx*X0+Y0) −D0 ...
33 −D1*Y0) * Y0;
34

35 % Output
36 dfdt = [X0dot; Y0dot];
37

38 end

B.4 Driver: Modified T-cell Model

Listing B.4: DriverModifiedTcell.m
1 pink = [0.9 0.7 0.9];
2 blue = [0 0.8 0.8];
3 green = [0 1 0.1];
4 purple = [0.7 0.6 1 ];
5 orange = [1 0.7 0.4];
6 col = [pink; blue; green; orange; purple];
7

8 % Load standard parameters initializing
9 Initialize

10

11 Zr = [X0;Y0]; % IC
12 tspan = [0 80*365/tbar]; % Dimensionless time
13

14 % Dimensionless Parameters from article
15 D1 = [0.1 0.5 1 5];
16 kappa = [0.01 0.1 1 10];
17

18

19 %% Experiment 1: Fix the ratio between D1hat and kappa
20 figure
21 for j = 1:4
22 % T−cell Model
23 p = [R,J,D0(2),D1(j),Cx,Cy,Bx,By];
24 [tr,solr] = ode15s(@dlr,tspan,Zr,[],p);
25 timer = tr/365*tbar;
26
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27 subplot(2,2,j)
28 plot(timer,solr(:,1)*x0bar,'linewidth',3,'color','blue');
29

30 ylim([0 30000])
31 xlim([0 timer(end)])
32 hold on
33 plot(timer,solr(:,2)*y0bar,'linewidth',3,'color','red');
34 title(sprintf('$D_1 = %0.1f$',D1(j)),'interprete','latex')
35 set(gca,'fontsize',20)
36 grid on
37

38

39 for i = 1:length(kappa)
40 % Modified T−cell Model
41 p = [R,J,D0(2),D1(j)*kappa(i),Cx,Cy,Bx,By,kappa(i)];
42 [tt,solt] = ode15s(@dlr_tcell,tspan,Zr,[],p);
43 timet = tt/365*tbar;
44

45 % Plot of solution
46 subplot(2,2,j)
47 plot(timet,solt(:,2)*y0bar,':','linewidth',3,'color',col(i+1,:));
48 hold on
49 plot(timet,solt(:,1)*x0bar,'−−','linewidth',3,'color',col(i+1,:))
50

51 if j > 2
52 xlabel('time [year]','interprete','latex')
53 end
54 if j == 1 && i == 4
55 h(1) = plot(NaN,NaN,'linewidth',3,'color',col(2,:));
56 h(2) = plot(NaN,NaN,'linewidth',3,'color',col(3,:));
57 h(3) = plot(NaN,NaN,'linewidth',3,'color',col(4,:));
58 h(4) = plot(NaN,NaN,'linewidth',3,'color',col(5,:));
59 l = legend([h(1) h(2) h(3) h(4)], ['$\kappa = $ ', ...
60 num2str(kappa(1))], ['$\kappa = $ ', num2str(kappa(2))],...
61 ['$\kappa = $ ', num2str(kappa(3))], ['$\kappa = $ ',...
62 num2str(kappa(4))]);
63 set(l,'location','southeast','interprete','latex','fontsize',18)
64 end
65 end
66 set(gcf,'units','points','position',[300,300,800,500])
67 end
68 %% Experiment 2: Change kappa
69 kappa = [0.01 0.1 1 10];
70 D1 = [0.1 0.5 1 5];
71 figure
72 for j = 1:length(D1)
73 subplot(2,2,j)
74 for i = 1:length(kappa)
75 % The Modified T−cell Model
76 p = [R,J,D0(2),D1(j),Cx,Cy,Bx,By,kappa(i)];
77 [tt,solt] = ode45(@dlr_tcell,tspan,Zr,[],p);
78 timet = tt/365*tbar;
79

80 plot(timet,solt(:,1)*x0bar,'−−','linewidth',3,'color',col(i+1,:));
81 hold on
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82 plot(timet,solt(:,2)*y0bar,':','linewidth',3,'color',col(i+1,:))
83

84 if j > 2
85 xlabel('time [year]','interprete','latex')
86 end
87

88 if j == 1 && i == 1
89 h(1) = plot(NaN,NaN,'linewidth',3,'color',col(2,:));
90 h(2) = plot(NaN,NaN,'linewidth',3,'color',col(3,:));
91 h(3) = plot(NaN,NaN,'linewidth',3,'color',col(4,:));
92 h(4) = plot(NaN,NaN,'linewidth',3,'color',col(5,:));
93 l = legend([h(1) h(2) h(3) h(4)],['$\kappa = $ ', ...
94 num2str(kappa(1))],['$\kappa = $ ', num2str(kappa(2))], ...
95 ['$\kappa = $ ', num2str(kappa(3))], ['$\kappa = $ ',...
96 num2str(kappa(4))]);
97 set(l,'interprete','latex','location','southeast')
98 end
99

100 ylim([0 30000])
101 xlim([0 timet(end)])
102 hold on
103 title(sprintf('$$\\hat{D}_1 = %g$$',D1(j)),'Interprete','Latex')
104 set(gca,'fontsize',20)
105 grid on
106 end
107 set(gcf,'units','points','position',[300,300,800,500])
108 end
109

110 %% study effect of kappa
111

112 x =linspace(0,10,1000);
113

114 k = [0.01, 0.1, 1, 10];
115 figure
116 %plot(x,x,'linewidth',2)
117

118 for i = 1:length(k)
119 h(i) = plot(x,1./(k(i)+x).*x,'−−','linewidth',2,'color',col(i+1,:));
120 hold on
121 plot(x,1./k(i)*x,'color',col(i+1,:),'linewidth',2);
122 set(gca,'fontsize',18)
123

124 end
125 hold off
126 %ylabel('$\frac{1}{\kappa+Y_0}Y_0$','interprete','latex','fontsize',24)
127 xlabel('$y_0$','interprete','latex','fontsize',24)
128 hl = legend(h,'$\eta = 0.01$','$\eta = 0.1$',...
129 '$\eta = 1$','$\eta = 10$');
130 set(hl,'interprete','latex','location','northwest','fontsize',20)
131 xlim([0 2])
132 ylim([0 2])
133 %%
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B.5 The Dimensionless Modified T-cell Model

Listing B.5: dlrtcell.m
1 function dfdt = dlrtcell(t,IC,parameter)
2 % function: dfdt = dlr_tcell(t,z0,parameter)
3 %
4 % The dimensionless modified T−cell model
5 % Katrine Ottesen Bangsgaard, May 2018
6 %
7 % Inputs:
8 % t : time
9 % IC : Initial conditions: [X0 Y0]

10 % p : Parameters p = [R, J, D0, D1, Cx, Cy, Bx, By,K];
11 %
12 % Output:
13 % dfdt : [X0dot; Y0dot];
14

15 % Unwrapping parameters
16 R = parameter(1);
17 J = parameter(2);
18 D0= parameter(3);
19 D1= parameter(4);
20 Cx= parameter(5);
21 Cy= parameter(6);
22 Bx= parameter(7);
23 By= parameter(8);
24 K = parameter(9);
25

26 % Initial conditions
27 X0 = IC(1);
28 Y0 = IC(2);
29

30 % Model
31 X0dot = ( (J+sqrt(J^2+2*Bx*X0+2*By*Y0))./(1+X0+Cy*Y0) −1) * X0;
32 Y0dot = (R*(J+sqrt(J^2+2*Bx*X0+2*By*Y0))./(1+Cx*X0+Y0) ...
33 −D0−D1*(1./(K+Y0))*Y0) .* Y0;
34 % Output
35 dfdt = [X0dot; Y0dot];
36

37 end

B.6 Driver: Resistant T-cell Model

Listing B.6: DriverResistantTcell.m
1 % Driver for the Resistant T−cell Model
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2

3 % Load standard parameters initializing
4 pink = [0.9 0.7 0.9];
5 blue = [0 0.8 0.8];
6 green = [0 1 0.1];
7 purple = [0.7 0.6 1 ];
8 orange = [1 0.7 0.4];
9 col = [pink; blue; green; orange; purple];

10

11 Initialize
12

13 Z0 = 0; % Resistant cells
14 Zr = [X0;Y0;Z0]; % IC for resistant model
15 Z = [X0;Y0]; % IC for T−cell model
16 tspan = [0 80*365/tbar]; % Dimensionless time
17

18 % Dimensionless Parameters from article
19 D1 = [1,1.5,5,10];
20 P = 1e−4;
21

22 figure
23 for i = 1:length(D1)
24 % Updating parameter choice
25 parameter = [R,J,D0,D1(i),Cx,Cy,Bx,By,P];
26

27 % Reduced model without resistance
28 [t,sol] = ode45(@dlr,tspan,Z,[],parameter);
29 time = t/365*tbar;
30 % Resistance 1
31 [tr,solr] = ode45(@dlr_res,tspan,Zr,[],parameter);
32 timer = tr/365*tbar;
33

34 % Plot of the solution
35 subplot(2,2,i)
36 h1 =plot(timer,x0bar*solr(:,1),'b−−','linewidth',3);
37 hold on
38 h4 = plot(timer,y0bar*(solr(:,2)+solr(:,3)),'r−−','linewidth',3);
39 h2 = plot(timer,y0bar*solr(:,2),'g−.','linewidth',3);
40 h3 = plot(timer,y0bar*solr(:,3),'−.','linewidth',3,'color',col(4,:));
41 plot(time,x0bar*sol(:,1),'b','linewidth',1)
42 plot(time,y0bar*sol(:,2),'r','linewidth',1)
43 title(sprintf('$D_1 = %0.1f$',D1(i)),'interprete','latex')
44 set(gca,'fontsize',20)
45 grid on
46 ylim([0 max(max(y0bar*(solr(:,2)+solr(:,3)),max(x0bar*(solr(:,1)))))])
47 if i > 2
48 xlabel('time [year]','interprete','latex')
49 end
50 set(gcf,'units','points','position',[300,300,800,500])
51 if i ==1
52 HL = legend([h1,h4,h3,h2],'HSC','MPN','R','NON R');
53 set(HL,'interprete','latex','location','northwest','fontsize',18)
54 end
55 end
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B.7 The Dimensionless Resistant T-cell Model

Listing B.7: dlrres.m
1 function dfdt = dlr_res(t,IC,p)
2 % function: dfdt = dlr_res(t,z0,parameter)
3 %
4 % The dimensionless resistant T−cell model
5 % Katrine Ottesen Bangsgaard, May 2018
6 %
7 % Inputs:
8 % t : time
9 % IC : Initial conditions: [X0 Y0 Z0]

10 % p : Parameters p = [R, J, D0, D1, Cx, Cy, Bx, By,P];
11 %
12 % Output:
13 % dfdt : [X0dot; Y0dot; Z0dot];
14

15 % Unwrapping parameters
16 R = p(1);
17 J = p(2);
18 D0= p(3);
19 D1= p(4);
20 Cx= p(5);
21 Cy= p(6);
22 Bx= p(7);
23 By= p(8);
24 P = p(9);
25

26 % Initial conditions
27 X0 = IC(1);
28 Y0 = IC(2);
29 Z0 = IC(3);
30

31 % Model
32 X0dot = ( (J+sqrt(J^2+2*Bx*X0+2*By*(Y0+Z0)))./(1+X0+Cy*(Y0+Z0)) −1)...
33 * X0;
34 Y0dot = (R*(J+sqrt(J^2+2*Bx*X0+2*By*(Y0+Z0)))./(1+Cx*X0+(Y0+Z0)) ...
35 −D0−D1*Y0) * Y0−P * Y0;
36 Z0dot = (R*(J+sqrt(J^2+2*Bx*X0+2*By*(Y0+Z0)))./(1+Cx*X0+(Y0+Z0))...
37 −D0) * Z0 + P * Y0;
38

39 % Output
40 dfdt = [X0dot; Y0dot;Z0dot];
41

42 end

B.8 Initialize
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Listing B.8: Initialize.m
1 % Initialize the system with
2

3 % Parameters
4 rx = 8.7*1e−4; % unit: day^−1
5 ry = 1.3*1e−3; % unit: day^−1
6 ax = 1.1*1e−5; % unit: day^−1
7 ay = 1.1*1e−5; % unit: day^−1
8 Ax = 4.7*1e+13; % unit: −
9 Ay = 4.7*1e+13; % unit: −

10 dx0= 2*1e−3; % unit: day^−1
11 dy0= 2*1e−3; % unit: day^−1
12 dx1= 129; % unit: day^−1
13 dy1= 129; % unit: day^−1
14 cxx= 5.6*1e−5; % unit: −
15 cxy= 5.4*1e−5; % unit: −
16 cyx= 5.2*1e−5; % unit: −
17 cyy= 5.0*1e−5; % unit: −
18 es = 2; % unit: day^−1
19 ea = 2*1e+9; % unit: day^−1
20 rs = 3*1e−4; % unit: day^−1
21 I = 7; % unit: day^−1
22 rm = 0; % unit:
23

24 % Dimensionless constants
25 sbar = (dx0+ax)/rx;
26 abar = es/rs*sbar;
27 x0bar= 1/cxx;
28 x1bar= ax*Ax/(cxx*dx1);
29 y0bar= 1/cyy;
30 y1bar= ay*Ay/(cyy*dy1);
31 tbar = 1/(dx0+ax);
32

33 % Dimensionless Parameters from article
34 R = 1.49;
35 J = 0.76;
36 D0 = 1.00;
37 D1 = 0.10;
38 Cx = 0.93;
39 Cy = 1.08;
40 Bx = 0.06;
41 By = 0.07;
42

43 % Initial conditions from steady state
44 alphax = (ax+dx0)/rx;
45 betax = ax*Ax+dx0;
46 cetaH2 = betax*rs/(ea*es*cxx);
47 cetaH1 = I/es+cetaH2/alphax;
48

49 sHp = (cetaH1+sqrt(cetaH1^2−4*cetaH2))/2;
50 aHp = (es*sHp−I)/rs;
51 x0Hp = (sHp−alphax)/(alphax*cxx);
52 x1Hp = ax*Ax/dx1*x0Hp;
53 y0Hp = 0;
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54 y1Hp = 0;
55

56 % Steady state
57 s = sHp;
58 a = aHp;
59 x0 = x0Hp;
60 x1 = x1Hp;
61 y0 = 1;
62 y1 = y1Hp;
63

64 % Dimensionless initial conditions
65 X0 = x0/x0bar;
66 X1 = x1/x1bar;
67 Y0 = y0/y0bar;
68 Y1 = y1/y1bar;
69 S = s/sbar;
70 A = a/abar;
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