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The contact angles of liquids and droplets of Lennard-Jones particles on a solid surface are determined by
molecular dynamics simulations. The simulations show that the angles of contact are established within the
first fluid layer. The droplets are not spherical segment-shaped. For an attractive surface corresponding to a
small contact angle, the observed contact angles disagree with the corresponding angles obtained for
macroscopic systems and using Young’s equation and its extension for droplets with line tension.

I. Introduction

The contact angle,θ, between liquid and a (planar) solid
surface is traditionally given by Young’s equation1 for θ and
the surface tensions,γsv, between solid and vapor (sv),γlv,
between liquid and vapor (lv) andγsl, and between solid and
liquid (sl)

whereθ∞ is the contact angle of a macroscopic big liquid droplet
at the surface. This equation ensures, according to Young, a
force balance in the horizontal direction at a straight line on
the solid surface where the three (infinitely large) planar
surfaces, solid-liquid (sl), liquid-vapor (lv), and solid-vapor
(sv), join. For a liquid in equilibrium with its corresponding
vapor and in contact with a solid surface it must, however, have
thermodynamic forces that balance. Strictly speaking, it is the
relevant thermodynamic function for the system that is at
minimum. For coexisting and not wetting liquid and vapor in
equilibrium and on a planar surface, it is the total free energy
that is minimum with respect to the area of contact between
the solid and the liquid. In the molecular dynamics (MD)
simulations of a droplet and its vapor, there is a constant number
of particles,N, in a given volume,V, and temperature,T. The
temperature is between the triple-point temperature and critical
temperature and the ratio,N/V, is between the coexisting
densities of liquid and vapor. For this MD system, it is the total
Helmholtz free energy,A(N,V,T, A), that is at minimum

for a macroscopic large droplet with a contact area,Aeq ) πrdr
2

and contact angle,θ∞, which expresses that the total Helmholtz
free energy is minimum at equilibrium (eq). The macroscopic
droplet has bulk liquid properties and a circular contact line
with a radius,rdr , so big that one can ignore the curvature effect
along the circular line of contact. Young’s equation is obtained
by considering an infinitesimal change of the area of solid-
liquid contact, dA ) 2πrdr

2 drdr at constantN,V,T andθ∞, that is,
the liquid front is parallel-shifted with drdr . This parallel shift
of the liquid front changes the contact area of the bulk liquid

with the solid by dA, and the corresponding change in liquid-
vapor contact area is cos(θ∞) dA. Young’s equation expresses
that the three different thermodynamic works cancel.

Young’s equation gives a contact angle between macroscopic
bulk phases. But because it is not possible to separate contribu-
tions to the free energy into the three subcontributions in an
unambiguous way, when the range of the intermolecular forces
exceeds, or is of the same order of magnitude as the “thickness”
of the interfaces, the question is whether one can determine a
contact angle with a resolution of a molecular diameter and
whether the free-energy density near the surface scales in a way
so that this contact angle can be identified as Young’s angle of
contact. In Section III, we show that one can determine a contact
angle with nanoscale resolution and that this contact angle for
small values near the wetting transition disagrees with Young’s
prediction.

In the present MD investigation of the contact angles of
Lennard-Jones (LJ) droplets, the range of the intermolecular
forces and energies is given by the weak dispersion energies,
which in general are “short-ranged”. These weak Van der Waals
dispersion energies, which originate from the dynamic correla-
tions of the valence electrons, are common for all atomic and
molecular materials and decrease with the inverse power of six.
But the total dispersion energy between a particle and the solid
with a planar surface decreases much more slowly with the
inverse power of three with respect to the distance to the solid
surface. Thus, even for this L-J system, which must be the best
real candidate to fulfill Young’s equation on nanoscale resolu-
tion, the range of the force from the solid extends over many
particle diameters (σ). In Figure 1, we have shown a typical
density profile for a (wetting) liquid in equilibrium with its
coexisting vapor. The oscillating density in the solid-liquid
interface is a packing phenomenon caused by the strong
repulsive forces. But a more detailed investigation shows (see
Section III) that the impact of the attractive forces from the
solid particles on the structure of the liquid extends over 5 to
10 σ. One can formulate the “problem” about the validity of
Young’s equation at molecular resolution as the following: only
for a length scale essentially bigger than∼5 nm is the range of
the pair interactions so short-ranged that one can ignore this
nanoscale contact problem in the L-J system. For ions and
molecules with dipole moments, the range is much bigger. The* Corresponding author. E-mail: tox@st.ki.ku.dk.

γsv ) γlv cos(θ∞) + γsl (1)
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contact angle is, however, a real and observable quantity, and
near wetting this nanoscale contact angle is different from the
contact angle obtained from Young’s equation.

The first to investigate the validity of Young’s equation was
G. Saville,2 who also presented the arguments against the
validity of the equation. His conclusion was that Young’s
equation is not valid. But the computer capability 30 years ago
was not nearly sufficient to determine the angles and the values
of the surface tensions of bulk phases in equilibrium. Later
simulations3,4 and investigations5-7 have, however, ignored his
objections and have instead collected the deviations from
Young’s equation for droplets in a free-energy contribution,τ,
due to the line tension8

where cos(θ∞) is the contact angle of an infinitely large droplet
and where the circular contact line of a spherical droplet has a
radius,rdr . The objection against this continuum formulation
is the same as the objection against Young’s equation. Further-
more, there are other effects that are ignored in this equation
such as the curvature dependence ofγlv,9 and its finite-size
dependence (reduced capillary wave-spectrum). A priori, one
should expect a positive line tension; but eq 4 just serves as a
correction to Young’s equation, where all effects and shortcom-
ings are collected in the value ofτ. This fact explains that one
often obtains a negative line tension when using eq 4.

The MD systems and the computational details are given in
the next section (II), and the results are presented in Section
III. The discussion and conclusion are given in Section IV.

II. Molecular Dynamics System

A. Determination of the Surface Tensions.The MD
systems for the determination of surface tension of planar
interfaces consist ofN ) 40 000 L-J particles (truncated
and shifted atr ) 2.5 σ) within a volumeV ) l2 × lz and
with periodic boundaries in thex and y directions. In thez
direction, theN particles are confined betweenz ) 0 andz )
lz. The systems are calibrated at the temperatureT ) 0.75.10

At this temperature, the vapor density isFv ) 0.0127 and
the density,Fl, of coexisting bulk liquid isFl ) 0.7606 (Figure
1). The simplest L-J solid with a planar surface, and most
commonly used solid in MD simulations, is the so-called
“9-3” L-J potential, which is obtained by integrating the
potential energy between a L-J particle at thez position
and a semi-infinite continuum below the planez ) 0, of
uniformly distributed L-J particles with the density,Fw. The
potential energy between a particle and this semi-infinite
continuum is

where the lower part of the two semi-infinite planes is placed
at z ) -∆ ) -(2/5)1/6σ and the upper part correspondingly at
z ) lz + ∆, by which the force on a particle is zero atz ) 0
and z ) lz. Furthermore, one can treat the attraction and the
repulsion separately by varying the strength of the attractions,
for example, as

Figure 1. Density profileF(z), in a system of 40 000 Lennard-Jones particles between semi-infinite solids with surfaces atz ) 0 andz ) 90 σ and
a surface potential withFw × f ) 0.6.z is in units ofσ, and density is in units ofσ-3. The mean densities are obtained for a simulation of 1 million
time steps (∼10 ns). The dotted line gives the density,Fl ) 0.7606, in bulk liquid coexisting with the vapor with densityFv ) 0.0127.

cos(θ) ) cos(θ∞) - τ
γlv rdr

(4)

u9-3(z) )
2πFwσ3

3
ε[ 2

15(z + ∆
σ )-9

- (z + ∆
σ )-3] (5)

uatt(z) ) f × u9-3(z) (6)
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for z g 0. In the present investigation, the repulsive walls are
the same for all of the simulations (withFw ) 0.6), which
ensures a constant total volume,V. The contact angles and
surface tensions are determined for three values of the strength
of the attraction,f × Fw ) 1, f × Fw ) 0.6, andf × Fw ) 0.3,
which results in contact anglesθ ≈ 40°, θ ≈ 95°, and θ ≈
130°, respectively.

The u9-3(z) potential has been used in models for contact
angles,2 wetting and pre-wetting at solid surfaces11,12 and
heterogeneous nucleation.13 The potential parameters introduced
by Ebner and Sam11 for pre-wetting of Ar at a solid CO2 surface
correspond to an attractive strength ofFw × f ) 1.67, so the
present walls can be characterized as rather soft surfaces with
weak attractions and without pre-wetting.

The externalu9-3 potentials contribute to the sl and sv surface
tensions, which are obtained as14,15

In MD systems, the pair potentials are usually truncated (and
shifted) at a certain distance,rc; for L-J particles usually atrc

) 2.5 σ. The contributions to the tensions from longer-ranged
interactions are, however, not negligible. If one wants to
compare the calculated tensions with, for example, the tensions
for a noble gas system, then one needs, however, not only to
include the contributions from the longer-ranged interactions,
for example, as a mean field correction,16 but also to account
for three-body interactions.17 But when the contact angles of
liquids of the truncated L-J particles are compared with the
corresponding angles obtained from Young’s equation one shall,
however, not include the contributions forrc > 2.5σ to the
surface tensions.

The present investigation indicates that, in order to obtain
the value of the surface tensions for systems of 40 000 L-J
particles (withrc ) 2.5 σ) with an accuracy of the order of a
few percent, one shall run the simulation for 1 million to 10
million time steps, corresponding to 10-100 ns. It is still a very
big computer simulation using today’s computers, and all of
these facts are probably the reason that the calculated values of
the surface tension reported in the literature are rather scattered
even for the simple Lennard-Jones system. But these long
simulations are needed to determine surface tensions, in order
to determine whether the total free energy scales in a way so
that Young’s equation is also valid for the angle at the contact
and with molecular-size resolution.

B. Determination of the Contact Angles. The contour
of the liquids and droplets and Young’s angles are determined
in two steps: During the MD simulations, the particles in a
droplet at a given time are obtained in the usual way using
the “Stillinger criterion”.18 According to this criterion, a
particle belongs to a given cluster if it is within a given
(short) distance,rcl, from at least one of the other particles in
the cluster. The value ofrcl is typically set to 1.5. The
identification of the particles in the droplet at a given time also
gives the time evolution of the position,X(t), Y(t), Z(t), of the
center of mass of the liquid droplet, and the number,Ncl(t), of
particles in the droplet gives a sensitive measure for when
the droplet is in equilibrium. It is determined as the time from
which there no longer is a driftNcl(t). Figure 2 shows such a
time evolution of number of particles in a droplet of∼70 000
particles. The position ofall of the N particles in the droplet

and the vapor at timet is recorded in a coordinate system
with center, X(t), Y(t), 0, at the X(t), Y(t) center-of-mass
coordinates of the droplet, and these positions are used to
evaluate the mean density in the droplet and the contact
angle. Figure 3 shows a side view of the positions of all of the
particles. To get an accurate determination of the density in the
droplets, we have, however, averaged over many more time-
sets,N ) 1000 sets of positions obtained from 1million time
steps by recording the relative positions every thousand time
steps.

The N sets of relative positions are used to determine the
local density,F(r), by dividing the volume,V, into parallel sheets
with a spacing,∆z. The rotational symmetry in the local sheets
is used to obtain the mean density,FR,â, in cylindrical volume
elements centered atX(t), Y(t), zâ, as the mean number of
particles in the subvolume∆τR,â ) π × (rR+1,â

2 - rR,â
2 ) × ∆z of

the Rth cylindrical ring and theâth sheet. By this evaluation,
we do not a priori assume a spherical shape of the droplets.
(The density profiles for liquids are obtained in a similar way.)

An example of the density variation across the surface of a
droplet is shown in Figure 4. The figure shows the density
profile in the first sheet in the droplet shown in Figure 3.

γ )
1

A
∑

i

N

∑
j>i

N 〈xij
2 + yij

2

2
- zij

2

rij
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du9-3(zi)

dzi

〉 (7)

Figure 2. Number of particles in a large droplet during 3 million time
steps. The instantaneous population is determined every 1000 time steps.
The last 1 million steps (∼10 ns) are used to determine Young’s contact
angle.

Figure 3. Side view of the droplet of∼70 000 particles and for a
reduced solid attraction given byf × Fw ) 0.3.
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To determine the location of the surface of the droplets and
the contact angle, we use the empirical tanh function19

whereFâ(dr) is the density inside the droplet in sheet no.â,
and Fâ(g) is the gas density outside. The thickness of the
interface is given bydâ. The location of the surface atzâ is
given byrâ and is used to obtain the contact angle. The fitting
parametersFâ(dr), Fâ(g), dâ, and râ gave excellent fits as can
be seen in Figure 4.

The contact angle can be obtained as the limit value of the
ratio between the spacing,∆z, of the sheets and the difference
in the locations of Gibbs dividing surfaces,r2 - r1, in the two
first sheets in a droplet

A “resolution” value of∆z , 1σ, however, makes no sense.
The oscillating densities near the wall are not a phenomenon
connected with the contact angle but are instead a packing
phenomenon present in all solid-liquid interfaces15 including
droplets. A priori, one shall expect a monotonic variation of
the slope of the tangent to the surface of the droplet with respect
to the distance to the surface. The demand for monotonic
behavior ofθ with respect to the spacing of the sheet provides
a criterion for how small a value of∆zone can use. We obtained
monotonic behavior for the location of the dividing surface and
thereby a monotonic behavior of the slope of the tangent to the
surface of the droplet for a spacing larger than∆zmin ≈ 0.7σ. A
criterion for the accuracy of the values for the contact angle is
obtained by calculating the location of the dividing surface for
a spacing∆z ) ∆zmin + 0.2σ. We obtained differences in the
values ofe2°.

The contact angle for a liquid front without line tension is
determined as the angle at the edge of the meniscus of a bulk
liquid in contact with a wall, in a similar way as for the droplets.
The MD system was extended toN ) 160 000 L-J particles
within a box with solid walls also at (x,y) planes atx ) 0 and
x ) lx ) 60σ. The length of the contact line in they direction
was 60σ. Figure 5 shows a side view of the big system.

III. Results

The surface tensions of systems ofN ) 40 000 L-J particles
for T ) 0.75 and for the three different strengths of surface
attraction: f × Fw ) 1, f × Fw ) 0.6, andf × Fw ) 0.3,
respectively, were obtained in two to three steps. First, we
determined the densities of coexisting liquid and vapor by a
MD system with a planar layer of liquid and periodical
boundaries in all directions (i.e., no solid planes). The coexisting
liquid and vapor densities as well as the value of the surface
tension,γlg, agreed with the corresponding values obtained for
the system shown in Figure 1. This means that the solid-liquid-
gas system (Figure 1) is large enough to ensure uncorrelated
solid-liquid and liquid-vapor interfaces. This was also con-
firmed by simulating a liquid in between two semi-infinite solids
and adjusting the bulk liquid density (by scaling in thez

Figure 4. Density,F(r), in the first sheet in the droplet shown in Figure
3, as a function of the distance,r, from the center of the droplet. The
fitted tanh function is shown using a full line.

F(r) ) 1
2
(Fâ(dr) + Fâ(g)) - 1

2
(Fâ(dr) -

Fâ(g)) tanh(2(r - râ)

dâ
) (8)

θ ) lim
∆zf0

tan-1( ∆z
r2 - r1

) (9)

Figure 5. View in they direction of a set of positions of 160 000 L-J
particles in a box with solid walls also at (x,y) planes atx ) 0 andx
) lx () 60σ) and with f × Fw ) 0.3 at all (three) solid planes. The
contact angle,θ∞, is obtained in a similar way asθ for the droplets.

Figure 6. Droplet profiles for droplets on the weak attractive surface
(Table 2). The surfaces (right part of) are located at (r,z), wherer is
the distance from the center of mass of the droplet. The dotted straight
line shows the contact angle,θ∞(Young)) 143, obtained from Young’s
equation.

Lennard-Jones Liquids and Droplets J. Phys. Chem. C, Vol. 111, No. 24, 20078521



direction) to the value for the liquid density of coexisting liquid
and vapor. The obtained value for the solid-liquid surface
tension,γsl, also agreed with the corresponding value obtained
from the solid-liquid-gas system (Figure 1). For significantly
smaller systems this is, however, not the case, and the results
demonstrate on one hand that the system is big enough to ensure
that the interfaces in Figure 1 are not correlated and, on the
other hand, that only a liquid-vapor interface a decade of
molecular diameters away from the solid is uncorrelated with
the solid-liquid interface. This indicates that the effect of the
attractive forces from solid particles on the structure of the
liquid-vapor interface, and thereby the surface tension, is over
many molecular diameters. The values determined from 107 time
steps are given in Table 1 together with the values of Young’s
contact angles,θ∞(Young), obtained from the surface tensions
and using Young’s equation. The three strengths of attraction
predict contact angles from near wetting to an angle of 143°
for the surface with the weak attraction.

According to Young’s equation, the curvature of the Helm-
holtz free energy at the minimum is proportional toγlv sin θ
with the consequence that the shape of the droplets fluctuates
for small contact angles near wetting and for large contact angles
near de-wetting (θ ≈ 180°) of the droplet. The simulations
demonstrated this fact. For the strong attraction with a small
contact angle, the shape of the droplets was difficult to determine
even after equilibration of many million time steps. To estimate
the accuracy of the results (Tables 1-4), we have therefore
equilibrated these droplets starting with different droplet shapes
and obtained contact angles with an accuracy of∼1°.

The profiles were determined for the liquids and different
droplets and for the three different strengths of surface attraction.
The results are collected in Tables 1-4. The three different
contact angles,θ∞, for the meniscus of a liquid at a wall are in
Table 1 compared with the corresponding contact angles,θ∞-
(Young), determined from the surface tensions and using
Young’s equation. For the medium and weak attraction,f × Fw

) 0.6 and× Fw ) 0.3, there is a fair agreement between the
angles obtained from Young’s equation and the angles deter-
mined from the profiles of the liquids at the wall; but for the
strong surface attraction, Young’s equation predicts an angle
near wetting, whereas both the droplets and the liquid within
the walls have contact angles that are significantly larger.

The droplets are often assumed to be spherical segments; this
is, however, not correct as can be seen in Figures 3 and 6. Figure
6 shows the profiles of the four droplets at the weak attractive
surface withf × Fw ) 0.3. The figure illustrates that for this
attraction there is a monotonic variation in the surface of the
droplets down to the point of contact and that the contact angle
is indeed established within the first two fluid layers of particles
in the droplets.

As discussed in the Introduction, the deviation from Young’s
equation is often treated using eq 4 with a correction for line
tension and quite often with the result that one obtains a negative
“line tension”, τ. We also obtain (Tables 2-4) a weak but
significant increase in the contact angle with droplet size
corresponding to a negative line tension. As pointed out in the
Introduction, this size effect could be caused by several factors.

IV. Discussion

The present simulations demonstrate that it is possible to
determine the contact angle with particle-size resolution at the
(perfect planar) solid surface and that this nanoscale contact
angle is a limit value of a monotonic varying density profile
(Figure 6). Although theu9-3(z) potential has been used
successfully in many investigations of wetting and pre-wetting,
it is, however, a simplification of the real force-field at a planar
solid surface, and the nanoscale-contact angle might be affected
by the particle structure of the solid surface. A heterogeneous
solid substrate is known, from both experiments and calcula-
tions20 to affect the contact of the liquid droplet, and the effect
is described by Wenzel’s law21 or Cassie’s law.22

Young’s equation, as well as its extension (eq 4) is used
extensively for determination of solid-liquid free energies and
for droplet and interface analysis. The equation is correct in
the thermodynamic limit of macroscopic droplets with bulk
liquid property and for models with nearest-neighbor interac-
tions,23 where the range of (solid) attraction does not exceed
the thickness of the interfaces. For real systems and smaller
droplets with the surface forces acting over longer ranges, the
free energy-density in the contact zone can not, in a well-defined
way, be separated into three subcontributions for unperturbed
interfaces. Nevertheless, Young’s equation could still be valid.
We obtain agreement within the accuracy of the computations
for two of the three values of the strength of attractions,f × Fw

) 0.3 andf × Fw ) 0.6, respectively; but forf × Fw ) 1 the

TABLE 1: Surface Tensions, Young’s Contact Angles,θ∞(Young) and the Contact Angles,θ∞, at Liquid Meniscus and for
Different Strengths of Attraction f × Gw of the Solida

f × Fw γsl γlv γsv θ∞(Young) θ∞

0.3 0.375( 0.006 0.489( 0.003 -0.014( 0.001 143° ( 3° 137° ( 1°
0.6 0.028( 0.006 " -0.014( 0.001 95° ( 3° 99° ( 1°
1.0 -0.548( 0.006 " -0.062( 0.001 6° ( 3° 39° ( 1°

a The values of the surface tensions are given in units ofεσ-2 and are for a truncated L-J system withrc ) 2.5σ

TABLE 2: Droplet Sizes and Contact Angles for f × Gw )
0.3 (Weak Attraction)

〈N〉 r1/σ θ/deg

1070 6.27 117
8988 16.45 123

27 488 26.12 124
70 894 34.92 129

160 000 ∞ 137
∞(Young) ∞ 143

TABLE 3: Droplet Sizes and Contact Angles for f × Gw )
0.6 (Medium Attraction)

〈N〉 r1/σ θ/deg

1750 9.46 83
9022 20.17 88

27 036 30.63 91
70 262 38.08 97

160 000 ∞ 99
∞(Young) ∞ 95

TABLE 4: Droplet Sizes and Contact Angles for f × Gw )
1.0 (Strong Attraction)

〈N〉 r1/σ θ/deg

1125 12.16 37
9386 30.15 36

21 899 45.96 37
64 369 45.02 44

160 000 ∞ 39
∞(Young) ∞ 6
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observed angles,θ andθ∞, deviate from Young’s contact angle,
θ∞(Young) (Table 4). Young’s equation predicts an angle of
6°, that is, an angle near wetting, whereas the obtained angles
from droplets and a liquid at a planar wall are in the range of
35-45°.

The Lennard-Jones dispersion force-field is common for all
matter, and although this pairwise additive force is weak, the
net-contribution from a semi-infinite solid declines asz-3 with
respect to the distance,z from the solid surface and results in a
nonuniform zone of many particle diameters. This net force
affects the shape of droplets and their contact angles. In systems
with stronger and more long-ranged attractive forces, the
resulting nonuniform contact zone is even larger. This fact
implies that self-assembly phenomena on attractive surfaces with
small contact angles on nanoscale levels might not be described
appropriately by Young’s equation and its extension for
curvature and line tension.
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