Short exercises for practicing mathematics used in QM

Some of these were assigned during the year, but are worth doing again.

- 1. Dirac delta functions
 - (a) Problem 2.23
 - (b) Problem 2.24
 - (c) If a set of N particles in one dimension have positions x_1, x_2, \ldots, x_N , write down an expression for the density as a function of position $\rho(x)$ in terms of delta functions.
- 2. Fourier transforms
 - (a) Show that a real function f(x) has a Fourier transform F(k) which satisfies $F(-k) = F(k)^*$
 - (b) Show that if f(x) is also even (as well as being real), then F(k) is real and even.
 - (c) "Prove" Plancherel's theorem, by working from $\int_{-\infty}^{\infty} e^{ikx} dk = \delta(x)$ (this is the reverse of problem 2.26[2.25])
 - (d) Write down the Fourier transform of the density you found in (1c) (call it ρ_k).
 - (e) (if you have extra time and want to get even more familiar with Fourier transforms). The convolution of two functions f(x) and g(x), (f * g)(x), is defined by $(f * g)(x) = \int_{-\infty}^{\infty} f(y)g(x y)dy$. Show that the Fourier transform of the convolution is the product of the Fourier transforms of the individual functions (apart from a factor of $\sqrt{2\pi}$).
- 3. Hermitian operators
 - (a) Problem 3.4[3.12, modified]
 - (b) Problem 3.5[New]
 - (c) Problem 3.7(a)[New]
 - (d) Problem 3.13(a)[3.41, modified]
 - (e) Prove the Jacobi identity [A, [B, C]] + [B, [C, A]] + [C, [A, B]] = 0
- 4. Harmonic oscillator raising and lowering operators
 - (a) Starting from the definitions of a_+ and a_- , and the commutation relation for x and p evaluate the commutator $[a_-, a_+]$.
 - (b) Evaluate the expectation values of $a_{+}^{2}a_{-}^{2}$ and $a_{-}a_{+}^{2}a_{-}$ in the *n*th harmonic oscillator eigenstate.
- 5. Operators for three-dimensional quantum mechanics, angular momentum and spin
 - (a) Problem 4.1(a)[4.1(a)] (Not much to do really, but make sure you know why the answer is true)
 - (b) Derive the angular momentum commutation relations $[L_x, L_y] = i\bar{h}L_z$ etc using $\vec{L} = \vec{r} \times \vec{p}$
 - (c) Derive the commutation relations between L^2 and the components of \vec{L} , and between L^2 and L_{\pm} .
 - (d) Problem 4.19(a), (b), (c)[4.20 (a),(b),(c)]
 - (e) Problem 4.26[4.27]
- 6. Fermion and boson wavefunctions

(a) Problem 5.22[5.19 modified] (We didn't do Section 5.4, but this problem does not depend on that material)

- 7. Matrices as operators
 - (a) Problem 3.38(a)[3.39(a)]