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PREFACE

These notes represent a partial evolution from a primeval jungle

of hand-duplicated class notes used over the last seven years in a highly

successful one-semester course for seniors and graduate students at the

Massachusetts Institute of Technology. More recently, a second semester

has been added; thus the reader should be forewarned that the rather abrupt

and preclimactic closure of these notes coincides with the end of the first

term (2.751) syllabus.

The present complete course is intended to provide both a practical

and a theoretical background for engineers of all pedigree who find them-

selves dealing with complex systems which operate simultaneously in several

media and over a broad band of frequency.

The systems here of principal concern are real and material; as

such, they may be described in energetic terms. System.behavior is so

viewed from the standpoint of energy continuity and power balance: a gen-

eralized Poynting vector is defined, valid both for continuous and for

reticular systems. The useful and significant subsystems are then class-

ified both with respect to the number of energy ports through which energy

is exchanged with the environment and also in terms of the particular intern-

pl power transformations involved. Thereby the synthesis and design of

systems involves a selection and interconnection of a set of standard multi-

port elements, appropriate to accomplish the required tasks.

It will be noted that both active and passive systems are treated;

thus automatic feedback control, together with power and signal amplifiers,

are assumed as natural means of providing such activation. Moreover, while

energy and power remain central throughout this treatment, signal flow in

real devices is considered consistently as a form of low-power-level cam-

munication bond. Thus such recondite topics as channel-capacity, gain-band-

width and indeterminacy, may be treated in a workmanlike fashion.
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Electrical engineers should be particularly tolerant in criticism A

of this approach to engineering systems; but lest they be tempted to condemn

this material as mere generalized (or perhaps, worse, debased) circuit theor

they should remark the central role played here by the philosophical concept

of relations, (as opposed to functions), by the logical concept of serial 1

(as opposed to measure), and by the engineering concept of essential

order -

multiports (as opposed to 1-prt impedances). Such topics and others beside

while largely absent and perhaps superfluous in linear circuit theory, becam

foundation stones upon which a general framework of practical theory for

engineering systems may be laid with confidence.

Certain of the material presented in these notes will also appear

in a forthcoming book Ergs and Bits: The Flow of Energy and gignals in

Engineering Systems to be published by the McGraw-Hill Book Company.

One should bear in mind that for the M.I.T. students this abbrevi-

ated text is richly supplemented with about eighty hom and examination

problems, covering a broad range of applications, and serving to amplify

and to clarify many points only briefly mentioned here. Regrettably, it

has proved impractical to include the problem material herewithin.

The reader may thank the diligence of Mr. Peter Briggs for much of

the early part of the text; he put many hours into a valiant effort to cap-

ture on paper the flavor of previously undocumented lectures. Other partic-

ular thanks for comments and corrections are due to many former students

and present colleagues, and especially to Mr. David R. Vaughan. Also ap-

preciated.was the continuing advice and counsel of Prof. S. A. Coons,

Prof. J. L. Shearer, and Prof. T. B. Sheridan.

The manuscript is the work.of Mrs. Amy Botelho, with the help of

Mrs. Addison Dahmen and Muss. Bonny Davis. The symbols and figures are

largely the effort of Miss. Alice Griffin of the M. I. T. Illustration

Service. Of course, all faults and blemishes must be laid to the author

who assures the reader that criticism.will be respectfully welcomed.

Henry M; Paynter

Cambridge, Massachusetts

mm@‘W&
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Part I 2.751 CLASS NOTES 1

I. Introductory Remarks

A, Engineering Systems

Characteristics and Classifications

At the outset it may in general be stated.that an engineering

system is conceived, designed, and constructed to perform a specific

task. The content of this course will be concerned with material or

physical systems--machines, structures, instruments--which are to be dis-

tinguished from.the more abstract, nonphysical systems such as economic

or social complexes. However, this latter type is no less real than the

concrete, physical system; indeed, it is conceivable that the nation's

economy might be modeled.by delineating the dynamic interaction among

elements analogous to the inertial, dissipative, and elastic elements of

physical systems.

The following are a few'exemqfles of material engineering sys-

tems of the type we wish to consider:

1. Services and utilities--water supply, electric power

generation, communication;

2. Structures--buildings, houses, bridges;

3. Instruments--clocks, computers;

h. Vehicles--submarines, aircraft, spacecraft, ships,

automobiles*.

There are, of course, transcendental systems whose boundaries encompass

two or more of the above, A large mdssile, for example, is necessarily

a complex structural system as well as a vehicle, and.in addition, it re-

quires electronic computing elements to effect its guidance and control.

By the same token, it is often the case that one of the above types may

be viewed as an integration of well-defined and.physically distinct sub-

systems; in many vehicles the power plant may be thought of as a propul-

sion system, conceived apart from.the system.as a whole.

* The latter two are examples of interracial vehicles.
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2 2.751 cmss norms

Engineering systems are historically improved and.proliferated,

Improvements may occur as a result of lighter, faster, more compact, or

more reliable components being substituted for older ones; or as a re-

sult of a reconception, redesign, or rearrangement of configuration

which utilizes the same or similar components but yields a more per-

fectly integrated.whole. There is, in addition, an all-pervasive trend

towards greater sophistication which demands a higher level of ability

among those who are responsible for the conception and design of new sys-

tems.

B. Engineering and.Pure Science

Engineering generally predates science, Historically, inven-

tion, the art of the utilization of natural phenomena to realize certain

practical objectives, has preceded science which subjects the phenomena

to rational analysis and.seeks a thorough understanding thereof. Indeed,

it has often been the case that an inventor, who has employed incorrect

reasoning and.analysis, has succeeded in contriving a workable system}

The conception and design of the first airplanes was certainly not

founded on a thorough understanding of aerodynamic lift. In fact, lift

was not fully understood until long after the first successful flight.

To the contrary, some early mathematical analyses predicted.that air-

planes could not fly!

This perhaps dramatizes the fact that traditional modes of

analysis often fail to account for those crucial factors which limit the

performance of a system, or even those very agencies which enable the

system.to operate at all. .As mentioned, the first analyses of flight

overlooked the true nature of the fluid circulation which results in a

lift force or sidethrust. More generally, it is the failure to properly

and completely account for the flow of matter, energy, information, en-

tropy, etc. which is the downfall of most classical analyses. Biological

systems are elusive for this very reason. The well-heralded "second

industrial revolution" could conceivably occur once these flow phenomena

are more perfectly understood.
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PREFACE

These notes represent a partial evolution from a primeval jungle

of hand-duplicated class notes used over the last seven years in a highly

successful one-semester course for seniors and graduate students at the

Massachusetts Institute of Technology. More recently, a second semester

has been added; thus the reader should be forewarned that the rather abrupt

and preclimactic closure of these notes coincides with the end of the first

term (2. 751) syllabus .

The present complete course is intended to provide both a practical

and a theoretical background for engineers of all pedigree who find them-

selves dealing with complex systems which operate simultaneously in several

media and over a broad band of frequency.

The systems here of principal concern are real and material; as

such, they may be described in energetic terms. System.behavior is so

viewed from the standpoint of energy continuity and power balance: a gen-

eralized Poynting vector is defined, valid both for continuous and for

reticular systems. The useful and significant subsystems are then class-

ified both with respect to the number of energy ports through which energy

is exchanged with the environment and also in terms of the particular intern-

gl power transformations involved. Thereby the synthesis and design of

systems involves a selection and interconnection of a set of standard multi-

port elements, appropriate to accomplish the required tasks.

It will be noted that both active and passive systems are treated;

thus automatic feedback control, together with power and signal amplifiers,

are assumed as natural means of providing such activation. Moreover, while

energy and power remain central throughout this treatment, signal flow in

real devices is considered consistently as a form of low-power-level com-

munication bond. Thus such recondite topics as channel-capacity, gain-band-

width and indeterminacy, may be treated in a workmanlike fashion.
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Electrical engineers should.be particularly tolerant in criticism

of this approach to engineering systems; but lest they be tempted to condemn

this material as mere generalized (or perhaps, worse, debased) circuit theorfi

they should remark the central role played here by the philosophical concept

of relations, (as opposed to functions), by the logical concept of serial

order (as opposed to measure), and by the engineering concept of essential

multiports (as opposed to 1-prt impedances). Such topics and others besides

while largely absent and perhaps superfluous in linear circuit theory, becamg

foundation stones upon which a general framework of practical theory for

engineering systems may be laid with confidence.

Certain of the material presented in these notes will also appear

in a forthcoming book_Ergs and Bits: The flow of Energy and Signals in

Engineering Systems to be published by the McGraw-Hill Book Company.

One should bear in mind that for the M.I.T. students this abbrevi-

ated text is richly supplemented with about eighty hom and examination

problems, covering a broad range of applications, and serving to amplify

and to clarify many points only briefly mentioned here. Regrettably, it

has proved impractical to include the problem material herewithin.

The reader may thank the diligence of Mr. Peter Briggs for much of

the early part of the text; he put many hours into a valiant effort to cap-

ture on paper the flavor of previously undocumented lectures. Other partic-

ular thanks for comments and corrections are due to many former students

and present colleagues, and especially to Mr. David R. Vaughan. Also ap-

preciated was the continuing advice and counsel of Prof. S. A. Coons,

Prof. J. L. Shearer, and Prof. T. B. Sheridan.

The manuscript is the work of Mrs. Amy Botelho, with the help of

Mrs. Addison Dahmen and Miss. Bonny Davis. The symbols and figures are

largely the effort of Miss. Alice Griffin of the M. I. T. Illustration

Service. Of course, all faults and blemishes must be laid to the author

who assures the reader that criticism will be respectfully welcomed.

Henry M. Paynter

Cambridge, Massachusetts

June, 1961
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of
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Part I 2.751 CLASS NOTES 1

I - Intrsdustory Remarks-

A, Engineering Systems

Characteristics and Classifications

At the outset it may in general be stated.that an engineering

system is conceived, designed, and constructed.to perform a specific

task. The content of this course will be concerned.with material or

physical systems--machines, structures, instruments--which are to be dis-

tinguished from.the more abstract, nonphysical systems such as economic

or social complexes. However, this latter type is no less real than the

concrete, physical systeng indeed, it is conceivable that the nation's

economy might be modeled.by delineating the dynamic interaction among

elements analogous to the inertial, dissipative, and elastic elements of

physical systems.

The following are a few examples of mterial engineering sys-

tems of the type we wish to consider:

1. Services and utilities--water supply, electric power

generation, communication;

2. Structures--buildings, houses, bridges;

3. Instruments--clocks, computers;

E. Vehicles--submarines, aircraft, spacecraft, ships,

automobiles*.

There are, of course, transcendental systems whose boundaries encompass

two or more of the above. .A Large missile, for example, is necessarily

a complex structural system.as well as a vehicle, and in addition, it re-

quires electronic computing elements to effect its guidance and control.

By the same token, it is often the case that one of the above types may

be viewed.as an integration of well-defined.and.physically distinct sub-

systems; in many vehicles the power plant may be thought of as a propul-

sion system, conceived.apart from.the system.as a whole.

* The latter two are examples of interfacial vehicles.
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2 2.751 crass norms

Engineering systems are historically improved.and proliferated.

Improvements may occur as a result of lighter, faster, more compact, or

more reliable components being substituted for older ones; or as a re-

sult of a reconception, redesign, or rearrangement of configuration

which utilizes the same or similar components but yields a more per-

fectly integrated.whole. There is, in addition, an all-pervasive trend

towards greater sophistication which demands a higher level of ability

among those who are responsible for the conception and design of new sys-

tems.

B. Engineering and.Epre Science

Engineering generally predates science. Historically, inven-

tion, the art of the utilization of natural phenomena to realize certain

practical objectives, has preceded science which subjects the phenomena

to rational analysis and seeks a thorough understanding thereof. Indeed,

it has often been the case that an inventor, who has employed incorrect

reasoning and analysis, has succeeded in contriving a workable system}

The conception and design of the first airplanes was certainly not

founded on a thorough understanding of aerodynamic lift. In fact, lift

was not fully understood until long after the first successful flight.

To the contrary, some early mathematical analyses predicted.that air-

planes could not fly!

This perhaps dramatizes the fact that traditional modes of

analysis often fail to account for those crucial factors which limit the

performance of a system, or even those very agencies which enable the

system.to operate at all. .As mentioned, the first analyses of flight

overlooked the true nature of the fluid circulation which results in a

lift force or sidethrust. More generally, it is the failure to properly

and completely account for the flow of matter, energy, information, en-

tropy, etc. which is the downfall of most classical analyses. Biological

systems are elusive for this very reason. The well-heralded "second

industrial revolution" could conceivably occur once these flow phenomena

are more perfectly understood.
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Part I 2.751 CLASS NOTES 3

C. Specific Examples of Engineering Systems

So as to clarify what is meant by the "analysis and design of

engineering systems“ and.to point out the objectives toward.which such

analysis will be directed, two examples will now be considered.

?é2-9%22E

Men have traditionally relied on the celestial clock as the

standard.time keeper; however, within the past few years we have been

able to manufacture clocks which are sufficiently precise to enable a

measurement of the inaccuracies and variabilities of celestial time as

observed from the noisy and unstable platform of the earth's surface.

Thus, the ultimate time keeper will undoubtedly be an engineering systenn

i.e., an instrument whose sole purpose is to indicate a running time co~

ordinate. A

Iet us consider the common pendulum clock, reducing it to its

basic elements and identifying the variables with which the interactions

among the elements may be delineated. It is worthwhile to point out

that by removing the veil of material embodiment given to a particular

type of clock--the pendulum clock--it will become evident that clocks in

general consist of three basic elements: (i) a source of energy; (ii) a

gate or regulator of the flow of energy from this source; (iii) an indi~

cator to "read out" or display the desired running time coordinate. The

concept "clock" is thus reduced to a schematic diagram.showing the flow

of energy through its essential elements. Such a schematic simplifies

the analysis of the system and facilitates the incorporation of improved

elements into the structure as these become available.

Now; the pendulum, by itself} is a nonlinear damped oscillating

systenu in particular, its period.depends upon the amplitude. Thus by

nerely initiating an oscillation and counting subsequent decrementing

swings we cannot hope to achieve the type of time keeper we desire--one

that continually reads out a running time coordinate--due to the fact

that the free pendulum.is a transient device inherently nonlinear and of

"irregular periodicity." Moreover, we are, of course, unable to resolve

the swings as the amplitude approaches zero. However, by providing a
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Energy source:

falling weight
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Part I 2.751 CIAS8 NUIIES 5

source of energy and a gate to regulate the in-flow of this energy, it

is possible to maintain the amplitude of the pendulum nearly uniform;

then with the incorporation of an indicating pointer intermittently

driven by the energy source under control of the oscillating pendulum a

true clock is achieved.

This flow of energy through the system is crucial. Thus, we

identify the variables M;_(t), é;_(t), and M2(t), é2(t)--the torques and

angular velocities at each of the two interfaces within the system. The

product is the instantaneous power or time rate of energy flow.

Therefore

'P1(t) = Malt) ' é1('b) = Malt) ' “’1(t)

P2(t) = me) - é2<t) = Mew - <»2(t)

P1 and P2 are thus the instantaneous rates of energy flow at the two

interfaces. Usually power is conceived as a time-and-space averaged in-

variant, but we shall see that such an interpretation leads to inconsist-

encies in any analysis predicated thereon.

let us scrutinize the E-R interface ; it is apparent that the

torque M1(t) is dependent upon the velocity, w;_(t). Thus we my regard

w;_(t) as an "input" to the energ source and M1(t) as an "output."

The roles are necessarily reversed from the viewpoint of the pendulum-

escapement. Thus, a more precise delineation of the interaction at this

interface might be sketched as follows:

M (11)

ms s

1(t)4'

The ideas introduced in this example will be dealt with further

in the second example--an analysis of a typical vehicular propulsion sys-

tem.

Ys1s21e-132."22&1-21.2912

The purpose of a vehicle is to transfer itself and its cargo

from one point in space to another. The path along which the vehicle

may travel in executing a given mission is usually subject to nany
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6 2.751 cmss won-zs

constraints; these arise, for example, as a result of the necessity to

maximize economy, avoid collision with other vehicles or stationary ob-

jects, etc. The generalized vehicle problem my be viewed as two compo-

nent problems, both of which involve the concept of control or regula-

tion. It is first necessary to control the attitude or orientation of

the vehicle; secondly, it is necessary to regulate the speed and path or

trajectory. The solution to the second problem is embodied in the ve-

hicular propulsion system. We shall now rather cursorily analyze the

propulsion system of a ship merely as a further illustration of the tech-

niques to be employed in this course.

Some basic assumptions mist first be nade. It will be supposed

that we are studying a ship whose hull shape and power plant have been

fixed. Presumbly, these have been chosen so as to achieve optinnlm econ-

omy and perfornnnce in light of the service for which the ship is in-

tended. For example, let the power plant be an oil-fi red steam boiler

with a direct turbo-drive.

A fundamental problem which confronts the propulsion system

analyst is this: how does the ship respond to a conmend to accelerate

from one speed to another? The duration and nature of the transient is,

needless to say, a function of the power plant and its associated con-

trols, the hull shape and surface preparation, and the state of the

fluid in which the ship is floating, Three possible transients are

sketched in Figure 2,

The propulsion system of the vessel may be represented sche-

natically as Figure 3-a. Isolating the elements of the system and de-

lineating the interactions among them by way of energy bonds is indi-

cated in Figure 3—b.

Again, it is well to point out that each of these energ bonds

refers to a local energr state in the system; for example, the bond be-

tween the screw and the reduction gear my be labeled (M,c.>) where M is

the torque in the drive shaft and co its angular velocity. Thus, the

power flowing t__<_>_ the screw is

Pi-_=M-an
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Velocity

/7fl\

A ' \
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I

1 _ _ _ _ _ _ _ a__ Final

Steady-State

Initial 4;

r----*- ._ 4 - — — - - - — — — —-

_g Q Steady¢State 3'

A ‘ *> Time

Figure 2
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2.751 CLASS NOTES

Throttle

Screw Fuel in

Reduction

Gear EEBIZ

Condenser Feedwater Pump

Figure 3-a

T WW

1 1 {s1+<W>-.%-{@i§;1—1e1 {W1 -1

L{.....)....{..|mp}l

Figure 3-b
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pa;-r, I 2.751 CLASS NOTES 9

A bond is shown between the screw and the effective nnss of

the ship (the mass of the ship plus the virtual nass of the water moving

with the ship); this bond is labeled F, V, so that the power flowing

from the screw is

HPO = F - v

Finally, the available energy imparted to the effective ship

mass is ultinmtely dissipated by way of an effective resistance which

accounts for the frictional resistance acting on the hull itself as well

as a virtual resistance resulting from eddy fowtion in the surrounding

fluid.

Consider the energy state on either side of the screw driven

at constant speed co while the ship is moving at a constant velocity V.

The screw is a transducer or two-port device withpi = M - o.> flowing in

andPQ .-_- F - V flowing out. Now, only a certain two of the four vari-

ables, F, V, M, co, may be considered as independent or input variables,

while the remaining two are labeled dependent or outputs. Suppose, for

example, that we choose V, oo , as the independent variables. Then

there must exist two relations;

F = ¢1;-(V: (*9)

M == (I>M(V, co)

which are characteristics of the screw and describe completely its be-

havior. A causally directed signal flow graph of the screw might then

be sketched as follows: -

Ship Screw

I"—""-"" """""‘|

2 I

I

I I

I I

| I

I I

I |

I I

I I

~———>-—4>'9"l

3 .

___..._....._....._.J

(Jot) \\

v >5. ~ 2-~ :> 5 , 5 M

F \ X \

is <~I@:>.,
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Such a diagram.both delineates the signal flow from and to the

screw and also states the constraints upon the variables. However, the

same information is embodied in.the following simpler diagram:

H-——— {Screw}

This tells us that the two "flow" variables V, 00, are "inputs" to the

screw while the two "effort" variables, F, Rt are "outputs" from the

screw and.therefore "inputs" to the adjacent elements. The technique of

formulating and manipulating such bond.diagrams will be a primary con-

cern of this course.

D. Systems and Abstractions

Some degree of abstraction is inevitable in the analysis of

any physical system. The second example considered above illustrates

this point nicely; in particuhar, we modeled the effect of the fluid

contiguous to the vessel in terms of a virtual ass and.a virtual resist-

ance. In so doing the important interactions between the ship and.the

fluid were isolated and shown as localized energy bonds in the concep-

tual schematic of the propulsion system.

The artful act of abstracting from.the totality of interac-

tions between the elements of a physical system.and.the elements of its

environment, and.from among the various parts of the system.itself, only

those interactions which are relevant to the specific questions being

asked, and then expressing these mathematically, is certainly a crucial

step in the analysis of system.behavior. Once this has been accomplished

we are no longer talking about the physical system which is the subject

of the analysis but rather about a conceived, abstract substitute system

or model which is embodied in the mathematical relationships connecting

its parts. Thus, an appreciation of the properties of abstract systems

is indeed.a prerequisite to the incisive analysis of physical systems.
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II- The System C<>n¢eP’@= Identity, Stltacfswe, and Rrvreriicesq

A. Description of a System

Although material systems are of primary interest in this

course, the inevitability of abstraction as a step in the analysis of a

material system.was pointed out at the end of Part I. we have also al—

luded.to systems which are purely abstract. Thus, in formulating an

approach to the description of a system, it behooves us to concentrate

on the properties and governing relationships possessed by all systems--

both material and.abstract. Once a sufficiently general systems theory

has been developed, the task of specializing to a particular type will

be correspondingly simpler.

The description of a system.necessarily begins with the

identification of a universe (U)--or "universe of discourse" as it is

often called in logic~-which is a domain or set of sufficient scope to

include all elements within the systenn plus all exterior elements with

which the system may be interacting. The system (s) is then a well-

defined subset of U, the elements of S possessing properties and inter-

relationships which happen to be of particular interest to us. The com-

plementary set, U less S, we shall label the environment E: hence, E is

the set of elements which interact with the elements of S but are not in

S.

The rational process of endowing a system.with structure we

call reticulation. The act of separating S from U, and thus defining

the interface between S and E, is the first step in this process. The

system.is further reticulated.by conceptually tearing it apart into its

essential elements. Since the structural attribute of a system which

interests us most is the functional connectedness of its elements, the
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12 2.751 CIASS NOTES

final step in the reticulation process is the sketching of the important

relations and.bonds of interaction among the elements and.between each

of the elements and.the environment:

Further description of a properly reticulated system involves

a more careful delineation of the functional connectedness of its ele-

nents. For the purposes of our general treatment of material systems,

this may be accomplished.by either of two techniques:

1. .An energy bond.may be conceived as an interaction;

associated with each.bond.are two variables, the first

pertaining to an and.the second.to a flow, their

effort

product yielding the pgwgr or energy flow rate.

2. .Alternatively, an interaction may be conceived.as a

bilateral signal flow between two elements, thus

attributing a direction of causality to the inter-

action.

A.reticulated energy bond diagram.facilitates a general under-

standing of the functional connectedness of a material system.and.there-

fore might well be used.as a tool in synthesis and.preliminary analysis.

However, for the purposes of a more detailed.analysis the noncausal

energy bond reticulation is usually not adequate and.must be transformed

into the bilateral signal flow reticulation. The description of the
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part II 2.751 CLASS NOTES I3

system is then completed.by conceptually substituting for each element a

black box for which the input-output functional dependency is specified.

00 600‘

~ ‘.::::.Q..Q0

QQQOOQ

VECTOR VECTOR

INPUT L Y J OUTPUT

FUNCTIONAL

DEPENDENCY

B. Reticulation

The Iatin form, reti, meaning (fish) net, is the stem.from

which the word reticulation is derived. The verb, to reticulate, means

—-u-inun@--_@-qi-u_-u—- _ _ _ _ I _____

literally to make into or like a network. Hence, for our use, reticula-

tion is a peculiarly vivid.term to impart the idea of a conscious act of

structuring in the form.of a network. How better can a system.be char-

acterized than as a group of elements tenaciously bonded to one another

as are the meshpoints of a net?

We have said.that reticulation begins with the partitioning of

the universe (U) into two subsets, the system (S) and.the environment (E)

It should.be emphasized.that the environment can only be defined relative

to the systemg that is, a conjugate relationship exists between E and S

such that E is defined once U has been identified and.those elements be-

longing to S have been marked off.

The system.comunicates with its environment across the E-S

interface, Unfortunately, traditional modes of analysis have often

placed constraints upon the forms in which such comunication can occur.

For example, classical thermodynamics deals entirely with systems whose

boundaries are permeable only to matter and.energy; thus, all living

processes, which continuously import negative entropy and information,

are perforce excluded from conventional thermodynamical analysis unless

the existence of a class of truly open systems is admitted.

G
e
n
e
ra

te
d
 o

n
 2

0
1

4
-0

2
-1

1
 1

3
:1

4
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
6

4
8

7
4

9
2

1
P
u
b
lic

 D
o
m

a
in

  
/ 

 h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p

d
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The interface between E and S is inevitably a function of the

observer and, in particular, the questions he intends to ask concerning

the behavior of the system. Generally it is net established.by the sur-

face of a material embodiment as might be anticipated in the case of a

simple physical system. For example, consider a straight-backed chair.

A practical analysis of a chair would certainly not be concerned with

the isolated object "chairg" instead, it would consider the interaction

of this object with the seat of a human occupant, with the floor on

which it rests, etc. Thus the demarcation of the system boundary is far

more sophisticated than might superficially appear.

Reticulatioh has been defined as the process by which a system

is endowed with structure. This process is facilitated if we view the

system.as the integration of a number of subsystems. Thus, the elements

of a system.are simply systems of lower order, and.therefore interac-

tions occurring between two elements are of the same class as those

which may occur between two systems. Likewise, it is convenient to view

the environment as being structured to the extent that all S-E interac-

tions may be viewed as occurring between two systems--one an element of

S and the other of E. Hence, all possible interactions occurring within

E». 0.21". beiewssn. E sea E. my; in feat; Pa 1P.°¥1E§_ V-P99 .S.Xsf°.¢¥‘4'.’°9."B¥?7°¢¥¥

interactions.

we have implied that a system is, in truth, a hierarchy of

subsystems. It is interesting to note, in the case of engineering or

man- material systems, that there is a level of decomposition such

____made

that all systems of a lower order are natural systems (See Hall and

Eagen). In some instances this level is rather low, a case in point

being that of a thermonuclear device employing tritium.as the fusable

material. Since the "element" tritium.is itself man-made, the reticula-

tion would have to be carried.all the way to the nuclear particles--in

particular, a proton and.two neutrons. The tritium nucleus is certainly

a system.in every respect; it may be reticulated into three elements

with energy bonds linking these elements.
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.»1§§§\

Although we lack sufficient knowledge to further reticulate a "proton"

or a "neutron," there is no a priori reason for denying that such a re~

ticulation could.be performed. Hence, we can only say that a further

reticulation makes little sense in the context of this course, since at

this base level the fundamental properties of the elementary constituents

nmst be assumed.

iii-oi
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Background Reading

1. General Systems Theory Yearbook, Vol. I. Introduction by

Ludwig von BERTALANITT}

The requirements of a "general systems theory" are

discussed. Also, profound.insights into the nature

of open and closed systems are given (see excerpts

from pages 3~5),

Ga

2. KRON, briel. Tensors for Circuits.

Read.the two Introductions, one by HOEEMAN and.the

other by KRON himself, for some appreciation of

KRON's method of "tearing" (diakoptics).

3. HALL and EAGEN. Definition of a System.

This reference imparts a general understanding of

the ideas dealt with in Part II. Sections 1-10,

11.1, and 13, are particularly valuable.
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III. Variables and Parameters of Energetic Systems

A, Introduction and Historical Background

At about the turn of the century the analysis of the macro-

scopic behavior of systems on an energetic basis had gained considerable

stature. However, the advent of quantum and relativistic mechanics de-

flated the theoretical structure to such a degree that the study of Ener-

getics per se lay dormant until the World War II era, at which time it

received renewed attention. The more recent treatments re-evaluated the

theory as it had previously stood and, for that matter, criticized the

well-entrenched.theories of classical thermodynamics. Quoting from the

foreword of BRONSFED's Principles and Problems in Energetics:

Br;$nsted's Energetics is not to be confused with the

energetics associated with the names of Helnu Mach, and

Ostwald of the decade 1890-I900. The original proposals

failed for many reasons; at least in part in not recog-

nizing the necessity of the coupling of processes and in

some cases an incorrect assignment of the intensity and

capacity factors of the energy which still persist in text-

books published during the past year. Bronsted recognized

these pitfalls and has been most careful to avoid them.

8

The analysis of material systems on an energy basis will prove

most fruitful and illuminating in the context of the present course.

B. Description of Energy Transactions

In the diagram of a reticulated system, the presence of inter-

action bonds is schematically indicated. No attempt is made to qualify

or describe the form of functional connectedness; there is only the bare

statement that such exists.

Energy bonding is a particular type of functional connected-

ness. The presence of an energy bond will be indicated schematically by

a heavy bar between the bonded systems.

S1 S2

Nbre than one energy bond can link two given systems. Thus, in general

we show one bar for each form of bonding which we wish to consider.

[_._\\

sl s2

\J
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The ever-present possibility of a multiplicity of bonding is a fundamen-

tal property of energy which we my call coextensivity or interpenetra-

bility--many forms of energy may occupy the same region of space.

We have established that the analysis of a complex system in

its (complex) environment is reliably based upon a general treatment of

simple system-to-system interactions, In particular, we shall now focus

our attention on a class of material systems called energetic systems

and attempt to describe the energy transactions which can occur across

the boundaries of such systems.

1. Noncausal Description

Energy transactions across the E-S interface my be defined by

a pair of variables which together are a measure of the power or flow

rate of energy.

E

One of the variables is an extensive factor in that its magnitude is

dependent upon the extent of the portion of the system entering into the

transaction. The other variable is an intensive_factor, being a func-

tion only of the field in which the system resides. If the two varia-

bles are properly chosen, their product will yield the instantaneous

power exchanged. The factoring of power into two components is funda-

mental in mechanics (power = force - velocity) and thermodynamics

(power = pressure - rate of volume change). IOTKA relates that attempts

have been made in the analysis of social behavior to employ intensities

and extensities which combine to yield a quantity analogous to power,

although he admits the analogy is a rather loose one.

For our purposes it is convenient to think of the intensive

variable as an effort (e) and the extensive variable as a flow (f) so that
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Power = Effort - Flow

P = E ' f

We then view the system, with which we associate the over-all energy

state Ha , as entering into energy transactions with its environment at

a number of localized regions on its boundary surface.

e..f.

9, \'{: \ 83/, .£

E

~_\j3q

fr

I \

I \

fa I 0 0 0 f\e8

I1 en 8

Thus, in the case of the noncausal energy bond reticulation, the quanti-

ties ei and fi ( i =11, 2, 3, ..., n) are the external variables of the

system.

A reticulated energy bond diagram facilitates an over-all

grasp of the behavior of a system and.an appreciation of the functional

connectedness of its elements. More specifically, it imprts an under-

standing of the transformation and flow of energy within the system and

assists in the isolation of the essential energy interactions with the

environment.

The manifestation of elusive environmental energy interactions

in the behavior of a system has traditionally been the stimulus for inno-

vating discoveries. We are told that NEWTON "discovered" gravity as a

result of an apple falling on his head! HUNT gives an account of the

discovery of motiional i_.g_oedancTe; by KENNELLY and PIERCE in 1912 which

dramatically underscores the importance of environmental interaction in

the study of acoustical phenomena.
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2. Causal Description

If we wish to attribute a direction of causality to the inter-

action between two systems, it is imperative that we provide for bilateral

~_

communication. Employing for the moment the terminology of the previous

section, suppose that a flow of energy occurs between two systems, S1

and S2. Now, if we wish to endow this interaction with causality, we

might be prone to say, for example, that the flow occurs from S1 ‘_t_o_ S2

by virtue of an effort supplied by S1. However, this statement is only

half true since the effort which S1 must supply to achieve a given flow

is inevitably a function of the impedance of S2 to that flow; hence, a

means of "communicating" the nature of this impedance back to S1 must be

provided.

A noncausal energy bond can be converted into a causal bond in

the form of a bilateral signal flow. That is

8

$1

1*

is equivalent to

x

S1--0---S2

Y

where the signals x and y are so chosen that x - y =P . Hence, for

the general system with n energy transactions occurring across its bound-

ing surface,

E

gfl X“ ... H5 x5 ‘J4

We may now imagine a segregation of the n-inputs xi from the n-outputs

yi and a conceptual deformation of the system such that all the inputs

enter at one face while all the outputs leave from the opposite face.
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X2

X3

X5

-1-}-_-+

.)§4—-—->—--r S

-_._-)_--+

x1~y1

._......._._;

--—->—-— Y2

—-—-0-—-Y3

'—-'>-—- Y5

O

O

O

Xn I I y n

It is conv ent to combine the xl to form an input vector

eni

X = [X1, X2, xn], and the yi to form an output vector Y = [;Y1,

yg, xn]. Now, for each input-output pair (xi,yi) there corresponds

a power component P i = xiyi, so that the total power exchanged is

D.

P: XOY = 2 Xiyi

1:

--J

It is interesting to note, in this connection, that power is

an invariant under a coordinate transform9.tion. In particular, let the

matrix of the transformation be T. Then, LE CORBEILIER demonstrates

that eitherx orY will be contravariant, i.e., it will transform like

the coordinates according to the matrix T ; while the other will be cg-

-1

variant i e it will transform according to the transpose of T .

___‘_____-_-2 0 O,

Suppose it isx that is covariant. Then the power is given by the

matrix mult iplicat ion

P =x -Yt

wherey t denotes the transpose of In the new coordinate frame

P=[<1"">,x] TYt=X 1"" TYt= x Y1; P

Finally, the system S is conceptually replaced by a module

which performs the operation onx which is required to yield upY.

X1}-:{ W ]:}:Y
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The functional dependencyY -aw is of a most general

form such that the entire, histogy ofx, is Scanned. to yield a present

value ofY. Therefore, it is applicable to the analysis of all proc-

esses in which the system S might be involved, and in particular to

transition processes from one steady-state condition to another.

For a purely steady-state analysis, a simpler static function

®is applicable, yielding the present value of Ycorresponding to

a present value ofx .

Thus, we see that in the case of a bilateral signal flow reti-

culation the variables of the system are the vectors X and Y , or,

more precisely, their respective components.

Contained in the fmctionw are the intrinsic properties of

the system in the form of a set of parameters. In the most general case

the parameters may vary with time and with the environment of the system.

Thus we my display the scheme:

System Characteristics

I

F” l I “I

Variables Parameters

I I F I

X gy 9 af ...§¢.<>aePr1§=s.l.. -,1ePer.1s.l. . . . Input (exogenous) Effort Diameter, Elastic and inertial

Output (endogenous) Flow length, etc. Properties, etc.

As an example, consider the propeller, shaft in the turbo-drive

propulsion system discussed in Part I.
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First the system is suitably isolated from its environment; it

is then conceptually transfigured into a module possessing the properties

of the shaft.

Power Shaft Power

Output 3 Parameters Input

A practical analysis of a system, such as the propeller shaft

in the above example, is directed either toward a determinat_ion 93 be-

for a given design, or the design which will achieve a given be-

havior 3 7

havior, in both cases the environment being taken as fixed. Thus, it is

sometimes convenient to view the parameters of the system also as "inputs,"

redrawing the module as shown below:

System S

Input ‘I || Output

Variables | | Variables

3;:

I I

Z Parameters

Hence, problems of the first type are involved with finding Yes a

function ofx for a given Z, while those of the second type involve

finding Zas a function of Y for a givenx .
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Background.Reading

(1)

(2)

(3)

(4)

(5)

(6)

BRCNSTED, J. N. Principles and.Broblems in Energetics, Chapters I

and II.

Chapter I imparts some feeling for the relationship between

Energetics and the classical theories of thermodynamics.

Chapter II demonstrates the inadequacy of the classical work

concept and delineates more carefully the requirements of a

generalized work principle.

lOTKA,.A. J. Elements of yhthematical Biology, pp.280-286; 303-305

One is lxmi to the belief that there are characteristics of

social systems which are, at least in an abstract sense,

describable energetically.

DE GROOT, S. R. Thermodynamics of Irreversible Processes, pp.1-9.

The author points out, in connection with the effort-flow

concept, that there are many examples of "cross-effects"--

coupling between two prcesses, such as in the thermo-electric

effect, wherein an effort of one form produces, in addition to

its corresponding flow, a flow of another form. Thus, one's

attention is directed.towards the problem of describing such a

coupling by way of energy bonds. A presentation of ONSAGER's

theory provides some understanding as to how the problem.might

be handled.

HUNT, Frederick V. _Electro<Acoustics, p.96.

See particularly the interesting account of the discovery of

motional impedance by'KENNEIlX and PIERCE.

TRIMMER, J. D. Response of Physical Systems, pp.98-103.

The ideas of conlggate variables and impedances are briefly

introduced. ' V ' 7551555’

ZWIKKER, C. Physical Properties of Solid Materia1sL_pp,72-73,

An appreciation is imparted of the parametric description of

a system in the form of a set of compliances or rigidities,

for the static case, and conductances or resistances in the

stationary case.
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(7) LE °°RBEILLE~R’ P- r1”,“’:'°F?i?F !*~‘%‘%4Y?i$ c9?cEZ%¢°P?¥98:% ,1Y‘,‘-l’°e‘i'<?1Z1§»PP-59'6"

The invariance of power under a coordinate transformation is

demonstrated for a system residing in a potential force field.

The distinction between contravariant quantities and covariant

quantities is made.
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IV - The Cent innit}: sf Enersy

A. Introduction and Historical Background

Isaac NEWTON’s view of the physical universe was that of a

system of mass points whose interactions and over-all behavior were de-

scribable in terms of certain basic laws of mechanics, these laws being

interpreted for a specific particle as the total differential equations

of motion. NEWTON and.his followers attempted.to extend.this explanation

of reality to encompass all forms of interaction. However, their mecha-

nistic explanation of light, being, as it were, founded on particle in-

teraction, left much to be desired.

Man's appreciation of the universe was dramatically broadened

with the advent of James Clerk MAXWELL's use of field concepts for light

and electricity. Here was a theoretical structure of sufficient scope

to serve as a skeleton for the analysis of the electromagnetic radiation

phenomena which had eluded physicists of the Newtonian school. .Although

he did not view fields specifically as "energy fields," MAXWELL was cer-

tainly aware of the energetic aspect of fields of all types.

Albert EINSTEIN sums up the effect which MAXWELL had.on

physics in the following quotation:

Before Clerk Naxwell people conceived of physical reality--

in so far as it is supposed to represent events in nature--as

material points, whose changes consist exclusively of motions

which are subject to total differential equations. After

Naxwell they conceived physical reality as represented.by con-

tinuous fields, not mechanically explicable, which are subject

to prtial differential equations. This change in the concep-

tion of reality is the most profound and fruitful one that has

come to physics since Newton; but it has at the same time to

be admitted.that the program.has by no means been completely

carried out yet. The successful systems of physics which have

been evolved since rather represent compromises between these

two schemes, which for that very reason bear a provisional,

logically incomplete character, although they may have achieved

great advances in certain particulars.

John Henry POYNTING extended MAXWELL's formulation to the

consideration of energy transport in an electrical network. The scope

of POYNTING's analysis is best described in his own words:

A space containing electric currents may be regarded.as

a field where energy is transformed at certain points into
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the electric and.mgnetic kinds by means of batteries, dynamos,

thermoelectric actions, and so on, while in other parts of the

field.this energy is again transformed into heat, work done by

electromagnetic forces, or any form of energy yielded by cur-

rents. Formerly a current was regarded as something travelling

along a conductor, attention being chiefly directed to the con-

ductor, and.the energy which appeared at any part of the cir-

cuit, if considered at all, was supposed.to be conveyed thither

through the conductor by the current. But the existence of

induced currents and of electromagnetic actions at a distance

from a primary circuit from.which they draw their energy, has

led us, under the guidance of EARADAY and.MAXWELL, to look

upon the medium surrounding the conductor as playing a very

important part in the development of the phenomena. If we

believe in the continuity of the motion of energy, that is, if

we believe that when it disappears at one point and reappears

at another it must have passed.through the intervening space,

we are forced to conclude that the surrounding medium contains

at least a part of the energy, and that it is capable of trans-

ferring it from point to point.

On the basis of POYNTING's formulation, Charles Proteus

STEINMETZ developed a regimented theory for the practical analysis and

design of circuits and.laid.the foundations for electrical engineering.

Oliver HEAVISIDE continued.the thread of POYNTING’s work to a general-

ized statement of energy continuity, while Sir Oliver LODGE discussed

the identity and conservation of both matter and energy. Thus, the con-

cept of energy-matter conservation in space as well as time became

firmly implanted in the structure of the theory of Energetics.

Maxwell Early

1

Poynting Genesis of the

CPWSPP. $719?!

Maxwell

I 7 7 7" 77 77 1

Steinmetz Heaviside lodge

Practical Continuity Identity

Electrical of of

Engineering Energy Energy

In parallel with the line of development sketched above was

that of the classical theory of thermodynamics, which generated.an energy

concept of a rather divergent nature. .Erom.the fundamental experiments

G
e
n
e
ra

te
d
 o

n
 2

0
1

4
-0

2
-1

1
 1

3
:1

4
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
6

4
8

7
4

9
2

1
P
u
b
lic

 D
o
m

a
in

  
/ 

 h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p

d



28 2.751 CLASS NOTES

of Julius Robert MAYER, James Prescott JCULE, and William Thomson

( Lord KELVIN ) there emerged the principles of energy conservation,

energy transformtion, and the equivalence of heat and work--ideas upon

which ICDGE drew heavily. However, as has been previously stated, the

axiomatic structure of thermodynamics is applicable only to systems

whose boundaries are of limited permeability. Rudolf CLAUSIUS made

sweeping statements concerning the energy and entropy of the entire uni-

verse, but only on the basis of the assumption that the universe could

be considered an isolated system! Regarding the conservation of energy,

HEAVISIDE had this to say:

The principle of the continuity of energy is a special

form of that of its conservation. In the ordinary understand-

ing of the conservation principle it is the integral amount of

energy that is conserved, and nothing is said about its dis-

tribution or its motion. This involves continuity of exist-

ence in time, but not necessarily in space also.

But if we can localise energy definitely in space, then we

are bound to ask how energy gets from place to place. If it

possessed continuity in time only, it might go out of exist-

ence at one place and come into existence simultaneously at

another. This is sufficient for its conservation. This view,

however, does not recommend itself. The alternative is to

assert continuity of existence in space also, and to enunci-

ate the principle thus:—-

When energy goes from.place to place it traverses the

intermediate space .

This is so intelligible and practical a form of the

principle, that we should do our utmost to carry it out.

But one now has the right to inquire, as did.MAXWEll, "If some

thing is transmitted from one particle to another at a distance, what is

its condition after it has left the one particle and before it has

reached the other?" It was indeed necessary to endow the void with cer-

tain material properties in order to conceive of a transfer of energy

through it. For this purpose the ether was contrived--a substance to

permeate all space through which energy might pass. That MAXWELL was

unable to conceive of an energy transfer apart from an intervening me-

dium.is clearly indicated by the following quotation:

In fact, whenever energy is transmitted from one body to

another in time there must be a medium.or substance in which
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the energy exists after it leaves one body and before it

reaches the other, for energy, as Torricelli remarked, "is

a quintessance of so subtle a nature that it cannot be con-

tained in any vessel except the inmost substance of mate-

rial things."

An ether was also essential in the eyes of POYNTING, LODGE, and HEAVI-

SIDE, for these men felt that the transformation of energy was always

accompanied.by a transfer, and vice versa. This was the very essence of

the principles of continuity and identity which they propounded,

As man's understanding of the physical universe was extended

his conception of the ethereal substance was correspondingly altered. A

modern viewpoint is submitted.by EINSTEIN by way of conclusion to his

essay, "Relativity and the Etherx“

we may sum up as follows: .According to the general

theory of relativity space is endowed with physical quali-

ties; in this sense, therefore, an ether exists. In ac-

cordance with the general theory of relativity space with-

out an ether is inconceivable. For in such a space there

would not only be no propagation of light, but no possi-

bility of the existence of scales and clocks, and there-

fore no spatio-temporal distances in the physical sense.

Emt this ether must not be thought of as endowed with.the

properties characteristic of ponderable media, as composed

of particles the motion of which can be followed; nor may

the concept of motion be applied to it.

For our present purposes the universe will be viewed.as a

field--a heterogenous, anisotropic continunng i.e., its properties are

variable over space and polarized with respect to orientation. The

ether is then a conceptual artifice which we shall dispense with; indeed,

we shall take the even stronger position that energy may exist in and of

itself, requiring no material vessel in which to be stored or transported

B. Properties of the Field

If we think of all the universe as constituted from a rela-

tively small number of basic particles (about thirty), then the only

difference between the air, a wall, a floor, a desk, etc., is the den-

sity and distribution of these particles. Then consider a system S

residing in a field F:
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IF

-==QJ(x,g,z,t, ...)

6; (2/,1,...)

We describe the system in terms of variables and parameters which fall

into two categories: (i) Intensive quantities =Qj(x,y, z,t, . . .) which

are characteristics of the field F; (ii) Extensive quantities

5 k('V,t, . . which depend also on the extent ('2/) of the system involved

However, the existence of extensive quantities cannot be reconciled di-

rectly with the field description which we seek; it is thus convenient

to define specific extpenysqitpiesv or field denspitliesp which are the densi-

ties of the extensive quantities 5 k. We define

6 .-_- lim L‘: /Z/= 6 (x,y,z,t,...)

k Q/__O k k

Thus, the Ek are point quantities and are conformable to the field de-

scription. Perhaps the most familiar example of a specific extensity is

the nnss density, p , where with mss, M, in a volume,‘ '2/:

7/->0

C. Generalized Continuity Equation

The statement of the principle of nass conservation as a field

equation is familiar to us,

A div(pv) + (ep/at) = 0

We know that div(p V) measures the convective transfer of mass densities

away from a point in the field while (Sp/Gt) is the time rate of

change in the local density. Setting the right-hand side equal to zero

assumes there are neither sources or sinks of matter in the field,
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tantamount to comon parlance "mass is neither created nor destroyed."

More generally, however, in the light of modern physics and mss-energy

equivalence, we might insert a source term.¢r and.write

div(p_V:) + (3p/ St) = 0'

Now, it is quite appropriate that we similarly demnd the

continuity of any and all of the specific extensities éik. Therefore,

we may state the generalized equation of continuity as follows:

<nv(eV) + (Se/St) = <1

where € T‘ is the convective transport of 6 and V is the appropriate

transpgort velocity. Sometimes, in order to avoid the necessity of meas-

uring V it is convenient to define a €—flux vector, 57;, as

‘Q

n

m

<:

so that we can write:

div(§_') + (36/St) = 0

D. Continuity of Energy and the Generalized Poynting Vector .

MAXWELL dealt specifically with the localized energies of a

field. For example, he attributed to an electrostatic field a distrib-

uted potevntial, energy proportional to the product of the potential ‘P

and the electrical displacement: e. He likewise defined magnetic and

eglectrogkineticg energies in terms of distributed quantities--energy den-

sities, as it were.

The discussion of energy on a localized.basis allows one to be

most specific, and, in general, uncompromising in the analysis of a par-

ticular system. Classical modes of analysis always require, as has been

repeatedly pointed out, a "cloaking" of the system.with a quasi-impene-

trable veil, and generally demand that energy be integrated over the

domain of the system before any acceptable statements concerning its

conservation or transformation may be made. Thus, we might say that the

conception of energy as a localized or distributed quantity permits the

fullest possible exploitation of the available information concerning

the nature of the system, its bounding surface, and its conceivable reti-

culations. Hence, following HEAVISIDE’ s logic directly, we shall state

the e_gl.1at_ion, of energy continuity for a field:
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_ divij =(oe/91:) +Jo d

where i5 is the generalized Poynting Vector, <2 is the local energy den-

sity, and 49d is the rate of energy loss or dissipation. This statement

will be the foundation for our analyses of energetic systems.

E. Continuity of Entropy

It is appropriate at this point to introduce parenthetically

and without development a conjugate continuity equation for entropy.

- div .-S7: (8¢/8t) + 41/

where 3§== entropy flux, $5.: entropy density, and Aim: entropy sink.

This equation is most important in that it permits the analysis of a sys-

tem which is exchanging entropy and information with its environment

rather than, or perhaps in addition to, energy. Biological systems are

notable examples of systems to which it is applicable. we shall discuss

the relation of this equation to energy continuity somewhat later on.
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Backsrovmi, Rea-dine

(1) EINTEIN,.A. Essays in §cience.

"Clerk Maxwell's Influence on the Evolution of the Idea of the

Physical Universe"

"The Problem of Space, Ether, and the Field of Physics"

"Relativity aha the Ether"

This group of essays imparts a very broad appreciation of the

development of the physical concepts relevant to Part IV from

Newtonian mechanics, through MAXWELL's field theory, to the

modern theories of relativity and quantum.mechanics.

(2) POYNTING, J. H. On the Transfer of Energy in the Electromagnetic

Field: Phil°BP;Phi¢sl Transssiions Qi the Royal S@¢i¢?w Qf

for the Year 1881+, Vol. 175, pp. 3u3-361.

Eondon

The manner in which energy is transported from point to point in a

space carrying electrical currents and is transformed at various

points by way of batteries, motors, etc., is analyzed.

(3) HEAVISIDE. O. Electro-agnetic Theory, pp.73-77.

The principle of energy continuity is stated by way of an extension

to POYNTING's conception of energy transport.

(Lt) LODGE, 0. oh the Identity of Energy, The LOHQOQ, Edinburgh, aha

1>L1blin.P11i_lOS9Phi9al M'1§¥%1Zil1¢ and Journal Qi‘. Science, Vol. XIX,

January-June (1885) pp.ll82-LL87.

As another extension to POYNTING’s energy transport concept, the

idea of the identification of energy, as it is transferred from one

point to another, is discussed. '

(5) MAXWELL, J. c. Electricity and Magnetism, Vol. III; Pp.27o-271+; #93

In the first reference MAXWELL develops expressions for the various

energies of a field. In the second he mkes a concluding statement

concerning what he feels to be the nature of the ether.
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<6) S°“MERF'EL°: A-

ss¢..§‘9eii.§#i¢el .1e¢1ee1<=s» PP-152-153

.An equation for entropy_c9ntinuity_is derived from.that for energy

continuity for the special case of a homogeneous, isotropic solid.

(7) PRIGOGINE, 1- .Th¢rs2@vnsmi¢B sf Irreversible Erssesses, pp.32-3%.

A general equation of entropy continuity is developed similar to

the one stated above.
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V- Enerszv Parts shad Power B<>11<l$

A, Introduction

we have come to view the universe as a field in which resides

the system S. we are now in a position to require that energy transac-

tions between S and E and within S be subject to the general equation of

energy continuity

E96 + ,

at 006'

The purpose of Part V is to reticulate the continuity equation

Bf

<1

‘fib

nu

for application to the analysis of energetic systems. This amounts to

assuming: (1) that the S-E interface is permeable to the passage of

energy only over a relatively few areas of restricted extent--energy

pgrts as we shall call them; (2) that the energy storage function of the

system is not distributed continuously throughout its volume, but is

rather lumped in discrete localities or regions; (3) that the dissipa-

tive property of the system.is also confined to discrete regions. Al-

though this is admittedly an idealization, it is a very practical and

necessary one. F)

2 . .

B) Discrete regions of energy

| storage

1”;

Discrete power entry ports

Discrete regions of POWET diSSiP&ti0n

Reticulation of Energy Transactions,

Storages, and Dissipations
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B. Application of the Divergence Theorem

The Divergence Theorem will now be applied.to the continuity

equation as stated above in order that it be converted.to a form amenable

to reticulation. The Theorem states

1} ¢--I

ndfl == J div HI<i?//

'2/'

where CL is the closed surface bounding the volume 2/'and n is the unit

9%.

‘fat

outward normal. This single theorem is perhaps the most profound in all

applied mathematics since from it every other theorem may be derived.

Substituting the generalized.Poynting vector, 75 , for the

generic vector, I? , and.letting 2f’be the volume of S and 61 the area

of its bounding surface _‘ _. __

j‘}) -IRICL == _{div ylid 2/’

(1.

Performing the volumetric integration on all terms in the continuity

equation, and substituting from the above we thus obtain

.C{15._.§_aU. = ?£(-3-;—E+%d)d?/7

2]-2-§<1”Z/'+ Ijbda?/’

7/’ 7/’

The continuity equation now stands ready to be reticulated in the manner

we desire.

C. Reticulation of the Energy Influx

We consider first the convective transfer of energy across the

system boundary; the assumption is made that there are l areas CZ i over

which the S-E interface is permeable to energy flow. It is further as-

sumed that each of the GL1 is of sufficiently limited extent that Ly)

may be considered everywhere parallel to the associated unit normal ha,

and.that nonuniformities in the magnitude of“FE may be absorbed by an

appropriate averaging operation such that

fp. nidCLi-_= Piai
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Thus, the boundary of S is no longer viewed as a shapeless bag, but

rather a multifaceted surface, each facet corresponding to an energ

port.

\

Adi»

IIIIIL

Iain.

IIIIIA

/

.lIIIIII

'-‘ .4IIIlJIl

//Ill///Y/I////.

H _ll/ll////Vf/I/I/'

lllll////[\l_ll/_["

I//Ill/////l\//'

1///////////;\

Now, for each port the product P i (Li is the power leaving

through that port, P i. Hence, the total power flux through the

boundary of the system is

l l

£51 I)j"6Li :;g; B?i

D. Reticulation of Energy Storage

It would appear sensible to assume that energy storage is a

function of a relatively few (m) localized regions in S rather than

being uniformly distributed throughout its volume. Hence, when the inte-

gration

JFEUE

7/. 8 ‘C

is performed over the entire volume of S there will only be a discrete

a2f

number of regions 2/3 ih which

8&5 O

St %

Phus

f@_@W=§ fads,

8t 3:1 8

Zr t

if

J
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Now, a reticulation of the energy storage in S will have mean-

ing only if the volumes 02/J. in which storage is supposed to occur are

fixed in size and disposition. Assuming this to be the case, we may

carry the time differentiation outside the integral and change it from

partial to total giving

[86 I m d f

-5-" C. 0’ = 2: --' 6 (1 But, we now have the right to define

E3. = f ea Wa-

7’:

as the instantaneous energy stored in each little storage region (Z/'3 .

Hence, we finally obtain

3€ m dIE-

f--<i’0'= Z ---9

at 3=1<1t

7/

E. Reticulation of Energy Dissipation

Following the same logic, it is a plausible assumption that

energy dissipation will occur only in a discrete number (n) of restricted

regions 7/k , i.e., the resistive or dissipative property of S is lumped

in the regions '2/‘k rather than being distributed throughout

It is therefore evident that

fpdd?/“ =§ fpddwk

with the definition I

wk Pad lb/1; "' (f<i)1r

we finally obtain

1'1

5/‘Pad? =15} (fat;
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F. The Reticulated Equation of Energy Continuity

Combining the above results we may write the reticulated equa-

tion of energy continuity as follows:

l m d]E n

_ __= __l

E1 P 1 J51 at + 151 (fa)

This equation nakes the irrefutable statement that a net flux

of energy into a system is either stored or dissipated, and on it we may

found the practical analysis of any energetic system. However, the iden-

tification and calculation of the P 1, the Ed, and the (47d)k in

terms of the variables and parameters of an actual system is no trivial

task. A simple example will serve to reveal the first major pitfall

which must be avoided.

dashpot spring

e 7‘ ‘J HZ

€=g-X

v=1-u

11», 111;

_>_ dashpot ___.___.. spring __-- mas

\_ energy

is dissipated

energy is stored
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we intend to analyze a spring-mass-dashpot system in which the

spring and dashpot are nonlinear, and we wish to account for the rela-

tivistic variation in the momentum of the mass. In particular, suppose

we are given the following characteristic relations:

Spring force = es = es(fi )

Damping force = ed = ed(£ )

Momentum.of mass = p = p(z)

Since energy is stored in the mass and the spring, and is dissipated in

the dashpot, we may say with assurance

d

IP.-Pee--11ES+1Em1+ 41>,

dt

d .

=';g[‘/€S(117 +fidp]+€d€

In this case 1¢7d is self-evident; however, one might be prone to write

instead of NES and ]E1m what we might label the complementary energies,

IE2": f17deS;.1E;=_[pd_z

It is noteworthy that IE S -.= IE ‘Z and IE m == IE I"); only for a linear

spring and constant mass. Thus, it is imperative that extreme caution

be exercised in evaluating the "energies" of a system so that the inclu-

sion of "incorrect" energy terms may be avoided. Needless to say, the

continuity equation is valid only if the energy terms are properly evalu-

ated.

A similar difficulty can arise in connection with the power

flows 1P1. Power is carried across the system boundary by transmission

links--shafts, ducts, electrical conductors, waveguides, etc. we have

previously stated that the power state of a transmission link may be in-

dicated.by the product of an intensive variable (effort--e) and an exten-

sive variable (flow--f), which tacitly assumes that two such variables

may be identified for a given transmission link. For the description of

the power flow through a shaft, for example, we would be prone to pick

the torque as the effort and the angular velocity as the flow. But what

is the torque of a shaft? Indeed, a shaft possesses neither a single,
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characteristic qmmuity "the torque," nor a single angular velocity

comon to all its parts! Granted that we could integrate the moment of

the shear stress ('r) over the cross-section of the shaft and get a

torque M.= _/.t'rdA(r), and.we could also calculate a mean angular

A

f,_~ <r>r.<r>

velocity 5'== -~.==-<*»-2..., but who is to guarantee that the

JrdA(r)

A

prgdngt M . 5] will yield.the true power transmitted? Our only recourse

is to calculate (or measure) one of the variables, say the torque, and

then to assume an angular velocity Z)’ <7) such that M - FE does in

fact give the power. A course of action similar to this must be taken

in the case of any real (i.e., nonideal) transmission link.

we shall suppose that it will always be possible to find a

pair of effort and flow mariables such that, for a given system,

IF’,-=ei-fi ; i.-=1, 2,3, ---,1

The energy coupling between a system and its environment is

often rather elusive. In particular, a single transmission link may

appear to be the medium of exchange for several, or perhaps even an in-

finite number of energies. For example, any small region of space is

energetically coupled to every other region by way of a spectrum of

electromagnetic radiations. It behooves us, therefore, to allot one

energy port to each transaction; hereafter, we shall speak of an energe-

tic interaction between two systems as a power Thus, the power

bond.

bonding between a system and its environment, or between two systems S1

and S2 is reticulated as sketched below into l separate bonds.

Or, more simply, ,:::::::\
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where one bond is allotted to each energetic interaction.

Once the power bonding between S1 and S2 has been fully reticu-

lated, and each bond has been described in terms of an effort )( flow

product, we are in a position to define the vectors:

@ = [en e2: e3: ---1 el]

I = [11, £2, re, ..., fl]

Thus, the total power transacted is given by the matrix product

IF”: at - ff = Tel“ [11, £2, £3, ..., fl]

92

93

e

_l._

EM +-

(D

|-M

Pb

I-L

.--.

.1

G. Power Bonds

The schematic representation of a reticulated energetic system

which we have adopted shows the elements as linked by heavy bars, each

bar denoting a power bond. Thus, for a two-port system which is reticu-

lated into three multiported elements,

the simple bond diagram would appear as follows

We note immediately the similarity between such a diagram and

a chemical bond diagram. Indeed, the similarity is by no means superficial
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the mechanism by which a chemical bond is created between two atoms is

closely analogous to the formation of a power bond linking two systems,

the atomig valency in the former case corresponding to the epergetic

in the latter Thus, we have the chemists to thank for some

portality .

of the.essential ideas incorporated into our schematic representation.

In particuhar, KEKUIE and FRANKLAND were early proponents of the bond

diagram .

9ee2a1~£§z-2€-132re£-§22é~2

Causality implies the existence of two variables, one inde-

pendent and the other dependent--such as in a mathematical relationship

y"= f(x) wherein a y-value inevitably follows once a x-value is speci-

fied.

From }__*__{To

Independent Dependent

f(X) = Y

Suppose, for example, that

y = ax + b = f(x)

we can also write, in this case, the inverse relation

X = (Y/a) - (b/a) = f'1(y)

Thus, there is no indication of causality inherent in the sign of

equality; rather, by convention an equation is generally written so that

the dependent variable is on the left, thus implying a right to left

causality. No ambiguity results, however, if we were to indicate the

functional dependency of y on x by writing

x1>>y

Then, applying the inverse

X»---X

Such a representation emphasizes the signal sense and de-emphasizes the

t H H

Ha ure of the functional dependence and the form of the signals x and

Y.

We are reminded of the care with which the chemist endows his

equations with causality, this being due to the fact that the direction
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in which a reaction proceeds is so intimately dependent upon the ambient

conditions. Thus, for example, the direction of causality in the equa-

tion

2H2 '1' O2.___>2H2O + Il€a.t

is partly determined by the ambient temperature. The reverse (right to

left) reaction predominates at extremely high temperatures, whereas the

forward reaction predominates at lower temperatures.

For our purposes it is imperative that a direction of causality

be imparted to an energetic exchange since no quantitative analysis of

any form is possible until this is done. 0nce a power bond has been de-

scribed in terms of an effort-flow couple then it may be endowed with

causality. In the case of a system communicating energetically with its

environment either the effort or the flow may be viewed as determined by

the environment, i.e., as independept, so that the other variable is

looked upon as Cmgendent. Consider, for example, an ideal fluid system

in the steady-state:

82

Suppose that for this system the pressure is determined by the environ-

ment and is held constant (but not necessarily uniform) over the entire

boundary of the system. Assuming the fluid to be incompressible, it

would be natural to set

ei = pressure in lb./ftg

fi = flow rate in ft3/sec

in order to describe the four power bonds between S and E. Since the

pressure is environmentally determined
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#5

el El constant

e2 E2 constant

e3 E3 constant

e4 E4 constant

The continuity equation states, for this example

ZIP>i = Zeifi = Zhiri = 0

since there cannot be internal energy dissipation or storage. In addi

tion, each of the Ifbi is constant so that each of the fi is also con-

stant. Thus, the efforts and flows associated with the internal bonds

must be constant.

we have stated that an energetic interaction is endowed with

causality if it is conceived.as a bilateral signal flow. Thus, a power

bond

e e

E2?) , or simply, ———

f f

becomes

e e

—>- —-C-—

--<- or —-0»

f f

The assignment of causality to a bond is equivalent to adding

a single bit of information to the noncausal bond. Hence, it is theo-

retically possible to accomplish this addition with a single stroke,

thus:

L f J

A useful mnemonic is the association of the flow variable, f, with a

direction parallel to or along the bond, and the effort variable, e,

with the transverse stroke

1' E e

4 _j,_) is equivalent to ——{

L f ) f

' e T e

<| _,_' > is equivalent to §-——

I f

% Flow
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Thus, in the four-port fluid system we would indicate the fact that the

pressure is given on the boundary as follows:

92

E

Assigning causality arbitrarily to the internal bonds, we may represent

the system completely in the following succinct form:

.1

.% \../.___

I

§‘ilL‘iL.3HI.'i€1‘3’3.1.]-.3‘2‘L’EZ'."_'-.1§3‘."fi“3‘E1.I‘3£

Thus far we have only spoken in general terms about the depic-

tion of power bonds, presumably in preparation for a detailed quantita-

tive analysis, and have not concerned ourselves specifically with what

happens when two systems are coupled together. Naturally the power

transferred.across a bond is a function of the characteristics of the

two participating systems. It is generally possible to conceive of one

of the systems as the "supplier" and.the other as the "recipient" of

power. Consider two coupled systems, S1 and S2, operating in the steady-

state:

Now, it is plausible to assume that S1 has a falling e-f characteristic

such that e decreases as f increases. It is also to be expected that S2

has a rising characteristic such that e and f increase together. If

this happens to be the case the steady-state equilibrium point will cor-

respond to the intersection of the two characteristics.
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€

A

I////'equilibrium.point of operation

/’

/’

“\\\“'rising demand.characteristic

'(-"’/ falling supply characteristic

Z

_,_> f

If the e-f characteristics of S1 and S2 are such that there is no defi-

nite intersection, then there exists no point of equilibrium operation.

On the other hand, there may be systems which possess characteristics as

sketched below:

e

A

supply

demnd

,/

unstable equilibrium

__ _ _ _ aw 4’ f

It is apparent that the intersection, though definite, generally corre-

sponds to an unstable equilibrium point.

It is all very well to be able to determine the equilibrium

power transfer, but we often wish to do much more than this. In particu-

lar, how can one maximize the power transferred in the steady-state op-

eration of two coupled systems S1 and S2?

Since ‘ED = e - f, the curves of constant power are equilateral

hyperbolas on the e-f plane,

e

_____________________‘-‘D

F j~

, 7 7 > f
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Thus, plotting these curves on the same grid as the supply and demand

characteristics of S1 and S2

8 \

// Initial demnd characteristic

1/’, Final demand characteristic

> f

it is apparent that the equilibrium point (1) is not optimal while (2)

is. we may say in general that a design problem.of a rather complex na-

ture must be solved in order to match the characteristics of two coupled

systems so as to achieve an optimum.power transfer. The modification in

S2 which resulted in the movement of the equilibrium.point from (1) to

(2) is an example of "load.matching." Presumably S1 might have been

altered instead.to achieve a different optimal operating condition--an

example of "source matching."
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VI. Multiported Systems and Elements

A. Introduction

At this point it is clear that, once reticulated, any material

system.may be conceived as a multiported device with multiported ele-

ments. Thus, we shall consider briefly certain properties of multiports

in general, and discuss in greater detail a particular universally en-

countered multiport, namely, the ideal energy junction.

If the number and variety of multiport components of an

engineering system is sufficiently large, more than one

operable structure, circuit, or system could be assembled

from the same parts. Abstractly, this is equivalent to the

statement that for any given parts list (or molecular formu-

la) more than one possible bond diagram.(or structural for-

mular) may exist. Systems which possess the same list of

components but have differing bond structures may be con-

sidered as structural isomers, and the situation may be

referred to as structural isomerisnu borrowing a usage

from chemistry. The number of possible structural isomers

increases very rapidly as the number and variety of compo-

nents increases. In this connection the equivalent situa-

tion in organic chemistry is instructive. For example,

Butane [C4H1o] has two isomers, Octane [C8Hq8] has eighteen,

while calculations indicate that the homologous polymer

C4QHgg has 62,h91,178,8o5,831 theoretically bossible

isomers! As to variety, more than one million diverse or-

ganic compounds have already been identified involving just

the four atoms, C, H, O, and N, and this figure is growing

exponentially with time. In the engineering systems field

some aspects of structural isomerism have already been treated

extensively in connection with circuit theory as we shall

learn presently.

We have emphasized the necessity of abstracting from.the many

attributes of a system those properties that are essential to the delin-

eation of the functional connectedness of its elements. Indeed, a truly

incisive analysis is one which is detached from a specific material em-

bodiment and which focuses upon the functions of the elements and the

manner in which they are bonded together. The properties with which the

elements of a reticulated system are endowed are transcendent properties,

i.e., the artificial boundaries between hydraulics, electronics, and

thermodynamics are largely overlooked. For example, a transducer is a

two-port--an energy converter--and a concern as to whether the conversion

is electromechanical, hydromechanical, or thermoelectrical is often sec-

Ondary.
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B. Multiports

Although the denumerably infinite universe of all possible

combinations of one-, two-, and three-port elements is not sufficiently

broad to enclose all conceivable energetic systems, its extent is so

great as to include most systems of practical interest. Thus, we shall

confine our attention primarily to one-, two-, and three-port elements

and combinations thereof.

I - 92-s.:i>.9r.I;s

A one-port ay be thought of as a generalized impedance, some

specific examples being resistance elements, capacitance elements, and

inertance elements, together with all one-ported networks composed of

such elements. The one-port is schematically represented in an energe-

tic bond diagram simply as

A __.

Thus, if we consider the universe of all one-port combinations, we note

that it has but a single additional member, namely

A —-B

2. Two-ports

A two-port may be conceived as a generalized transport process,

i.e., a process by which energy is transformed, transmitted, or trans-

duced. Thus, a communication system may be looked upon as a string of

two-ports. The viewing of an ordinary triode amplifier as a two-port is

generally accepted and is subject only to the assumption of a constant

power supply, i.e., the power supply is located.within the conceptual

boundaries of the two-ported element. Hugh SKILLING in his text, Elec-

trical Engineering Circuits, discusses the two-port, or two-port net as

he calls it, from the standpoint of the electrical engineer. He sche-

matically depicts various internal reticulations of the two-port and con-

cerns himself primarily with the description of the transfer character-

istics of such an element. Contemporary books on transistor theory and

application, such as the text, Transistor Circuit Engineering, demonstrate

that linear two-ports may be mathematically represented by way of a 22x2

transformation matrix.
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The universe of all possible combinations of two-ports has but

one member since the elements in the chain

*1 C c D - E -J Farr

may be coalesced to yield a single, equivalent two port

__.G.__.

If we admit combinations of one- and.two-ports, two new members

are added, namely

A.-—'G--

A -—-G --B

It is immediately evident, however, that the universe of one-

and two-ports combinations is far too simple and restrictive.

1 ------With the admission of the three-port the universe expands from

the five members identified thus far to one which is denumerably infi-

nite. The richness of this universe obtains from the possibility of

branch structure which is attributable, of course, solely to the pres-

ence of the three-port. Thus, the three-port is a singular and most

essential element.

We may think of the three-port as a generalized modulator,

including (triportal) ideal energy junctions, power and signal modula-

tors, power and signal amplifiers, and power exchangers as specific ex-

amples. Classical mechanics recognizes but a single three-port, namely

the triportal energy Junction; in this realm.all systems are conceived

as interconnected sets of one-ports (generalized impedances) and ideal

energy junctions.

C. Ideal Energy Junctions

For a generic multiported element, A, the equation of energy

continuity states:
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$5

Pa

fa

jfi

W

Q./1\

$6

n ali

-211=»=---+4>

i=1 1 at d

Now, let us restrict A to be ideal, by which we shall mean that 1¢7d is

identically zero, and if it further lacks the capacity for energy stor-

age, then IE vanishes as well, leaving simply the condition:

n

.2: ]P@i = O

i=1

A large class of energetic elements approximately satisfy this fundamen-

tal condition and the continued discussion of such elemnts is by no

means trivial. Several of the most useful ideal elements are:

a. Energy Junctions

b. Ideal Transformers and Gyrators

c. Ideal Transducers

f. Differentials

g. Ideal Structural Mbdulators

In particular, we shall presently concern ourselves with the class of

ideal energy junctions,

From.this point onward a duality of characteristic relation-

ships must be emphasized, for there exist two conjugate energy Junctions-

the effort junction and.the flow junction, we may best depict this

duality by carrying the development of both types in parallel, thus:
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Effort Junction . Junction

,7 pp, v ppig Flow _________

Both Junctions are characterized.by the condition that one of

the two conjugate variables is common to all bonds, i.e., for a junction

with n bonds:

fiz-‘f (i.—_-1, 2, 3, ..., I1) .ei=e (i=1, 2, 3, ...,n)

Then it immediately follows that '

e =0 ' r =0

ii ' §;

1.111 1 ' i=1 1

hereafter we shall represent the two junctions respectively as

\ / I \

I

'/|\

--. ‘I -_.._

/...\ I /..

O

I 0 I I I I O I I I I I O O O O O O I Q O O I O O I I I I I O O

The conjugate relationships

J ' ' ' ' ' ' "'_

fiat (i=1,2,3,.,,h) ei=e (i=1,2,3,...,h) l

KIMB

(D

|-h

ll

O

[Ma

Ha

}-la

ll

O

( Loop Law) (Node Law)

___ _ _ | _ _ _ __ _ _

play a dominant role in the idealized analysis of energetic systems.

Carlo FERRARI depicts this role for a variety of media, perhaps the most

familiar of which are the electrical network and the mechanical linkage.

The conjugate junctions law are simple generalizations of KIRCHHOEF’s

Loop and Node Laws in the electrical case, and, borrowing FERRARI’s ter-

minology, the Laws of Velocity and Equilibrium in the mechanical case.

The paper by J. C. SHOENFELD and.the text by M. F. GARDNER and J. L.

BARNES develop various aspects of the electromechanical analogy. In
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particular, SOHOENFELD noted.that the flow junction (Node Iaw) in an

electrical network and the effort junction (Equilibrium.Iaw) in a me-

chanical system were isomorphic; thus, the importance of the duality in

the concept of the general energy junction is underlined.

The student, KIRCHHOFF, based upon a query in Neumann’s

physics seminar at Koenigsburg, made the first comprehensive

study of the general electrical network problem by showing

the relation between coarse reticulations (macroreticulations)

and.the field theorems (microreticulations). This was carried

out in terms of Stoke's Theorem (Loop or Effort Conservation)

and Gauss's Theorem (Node or Flow Consermation); the results

were published first as an appendix to a paper in 18h5 and

then in more complete detail in 18h7.

As a warning against offhand use of the terms "Kirchhoff's

First Law" and "Kirchhoff's Second Law," it is interesting to

note that the Laws appeared as follows in the two papers:

18h5 18u7

I) I1+I2+...+I/,1, =0 I. wk1Ik1+ <1!k.2Ik2+...

2) I1 'wl+I2’ U-32.. ~ =Ek]_+Ek2+...

+ Ivtuv == sum of the ENE’ II. I11 + I12 + ... = O

Thus the node and loop rules are transposed in the two papers.

Implied in the assertion ei = e (i = 1, 2, 3, ..., n) and

fi = f (i = 1, 2, 3, ..., n) is the assumed uniformity of the ener-

getic medium by which the energy junction.A is comunicating with its

environment. In other words, the bonds are either all electrical con-

ductors or all mechanical links or all fluid-carrying ducts, etc.

Energy Junctions are associative and dissociative with respect

to the triportal primitives; therefore, any multiported junction may be

conceived as the combination of several three-ports. Thus for example:

I I ' I

1-1-1-1-1-1-1 1 1-0-1-2.1-Me}

Historically, the notion of the energetic junction, in all its

generality, has not been exploited effectively. In the analysis of elec-

trical networks the concept has been developed more extensively than in
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other areas--notably by way of Kirchhoff's Laws. As a result, investi-

gators in heat transfer, hydraulics, and so forth, have often resorted

to the contrivance of electrical analogs. The sophistication of electri-

cal schemata undoubtedly contributed to the attractiveness of this ap-

proach. However, we see now that such artifices are unwarranted in the

light of the general formuhation here presented. Just the same, it is

illumdnating to depict energy Junctions as series and.parallel electri-

cal networks as sketched.below:

ilfi _?_‘l.lrb

fa T ;T fc - fa_ :1 iii

e31: ...(1LH.lr ec ' ea1: .. (O ... ‘:rec

let us next interpret the following interconnection of energy junctions

and one-ports

A B

I I

__.Q __.1 __

in terms of the equivalent electrical network. Recalling that.A and B

are generalized impedances, we have for the above p

'= e=

cg e go
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It is noteworthy that the circuit dual--the network resulting from a

O-—>1

transposition.'{ }'-- is imediately recognizable.

1 --O

c h Q e

__ c~ -~~ 9

This, in fact, is an important attribute of a schematic representation

I

—-—-fi>

I

O——tfl

l

in the form of the energetic bond diagrams

G
e
n
e
ra

te
d
 o

n
 2

0
1

4
-0

2
-1

1
 1

3
:1

4
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
6

4
8

7
4

9
2

1
P
u
b
lic

 D
o
m

a
in

  
/ 

 h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p

d



Part VI 2.751 CLASS NOTES 57

Background Reading

1

2

3

A

5

SKILLING, H. H. Electrical Engineering Circuits, Chapter 18.

This reference gives some insight from the electrical engineering

viewpoint into the nature and function of the two-port; attention

is focused upon the problems of functionally or operationally de-

scribing such elements knowing their internal structure.

SHEA, R. F. (editor). Transistor Circuit Theory, pp. 1-3, 21-22,

Appendix.

The two-port is discussed relative to the description and analysis

of transistors. One-ports and multiports are also mentioned. The

matrix representation of linear elements is presented.

FERRARI, C. Relazione Generale sui "Modeli.Analogie."

This paper presents the conjugate junction laws for a number of

important engineering media, thus lending breadth to the notion

of the ideal energy junction.

SCHSENFELD, J. c. Analogy at Hyfdraulgie, Mechanical, Acoustic, aha

Electrical Systenm. '1 *‘11' O‘ '11T* '“

Recognition is given to the importance of the duality in the energy

junction concept in delineating the electromechanical isomorphism.

GARDNER, M. F., and J. L. BARNES. Transients in Linear Systems,

Chapter II. I I I 7*“

Particular emphasis is given to the schematic representation of

electrical and mechanical systems so as to exploit the analogies

existing between them.
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VII. Classes and Relations

A. Relations and Structure

Bertrand RUSSELL states: "To exhibit the structure of an

object is to mention its parts and the ways in which they are inter-

related." In the anahysis of systems we are confronted with the task

of establishing an order, a conceptual structure, in an initially form-

less universe. First, the S-E dichotomy is depicted in U, and then

both S and E are further reticulated to the degree appropriate to the

objectives of the analysis. The essential step in the process, however,

is the recognition of the significant interrelationships among the re-

ticulated elements. A system is not described by a parts list alone,

but rather by the combination of a parts list and a delineation of the

interconnections and interactions among the parts.

In dealing with relationships among the elements of a system,

we must account for the existence of functional dependencies of the most

general character. Thus far we have made mention of the generalized

functional, K-HI , which scans the input vector X (t - T) for O < T< (X)

and yields up a value for the output vector‘fir(t).

Q‘ 0 Q‘ °

0‘ ‘ ‘:.0.0.0.

A particular form, and one for which we shall find frequent use in the

sequel, is the vector-to-scalar transformation

Y(t) = ‘I-’[X(t)]

For example, consider the correlation functional which yields the energy

stored in an ideal element, namehyz

II ll

sf <D\\\:?k\\‘

g w8T@

%-"

ll

"F

it

\—T-4

Yh)=EHfi= @—r)aT

h—r)'f&~r)aT

"wherein we might identify .}§
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Because of the fundamental role of relations in our analytical

constructs we shall now turn to their general characterization in the con-

text of the theory of classes, this being the most fundamental mathemat-

ical system available and therefore the most appropriate medium in which to

couch a generalized description of relations.

B. The Concept of a Class

Out of a chaotic universe of sensory impressions and mental

images, our reasoning mind struggles for order and understanding. The

fundamental ordering principle upon which all this effort is based is

that of likeness, resemblance or similarity. All thought springs from

beginnings in comparative studies in which similar objects and phenomena

are brought together into classes.

Thus the concept of a (or alternatively, a set, collection,

class ___

ensemble or aggregate) becomes the simplest component of mathematics and

logical thought itself. The first step in establishing a class is that of

determining the property of membership.

l4§1B‘32£§*.1—£2

A class is determined (or established) the moment one arrives at

a property (or rule, test or condition) which any object (or entity) with-

in the universe under consideration must possess (or satisfy) in order to

be a member of (or belong to) the class. Thus the concept of the class it-

self and the required rules for membership are inextricably interwoven. We

shall inquire further into the nature of these conditions and properties

below.

It is first worthwhile to introduce mathematical symbolism to make

these concepts more precise. we shall accordingly denote various classes

by Roman capitals:

CLASSES: A, B, C, etc.

The individual objects which comprise any of these classes we

shall speak of as elements (or members or components) and denote by lower

Case Roman letters:
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ELEMENTS: a, b, c, x, y, z, etc.

Properties possessed by the elements, including those properties

upon which membership is based, will be denoted by small Greek letters:

PROPERTIES: <1, ,8, y, 3,,et¢_

Between these elements and classes we have possible membership

relations. The fact that a given element, a, is a member of a class, A, ,

we can conveniently express in the form

a (E A

by employing the membership symbol

MEI~'D3ERSHIP: G : read "-- is a member of --"

Schematic diagrams frequently are used to aid in the compre-

hension of relationships between classes and elements. One approach is to

depict the elements as geometric points and the classes as of points

sets -

Clearly, however, many other portrayals are possible. All such representa-

tions have justification to the degree that they lead to a self=evident

or intuitive understanding of interrelationships.

It is frequently necessary to deny or negate the existence of a

relationship between two objects; in a common symbolism the "operation" of

denial is accomplished through the use of a vertical slash: " ". Thus,

to deny the membership relation we write, for example

b at A

indicating that the element b does not satisfy the requirements for mem-

bership in the class A, that is, b is not a member of A.

No confusion should result if the relations of membership and non

membership are stated in reverse fashion, thus:

A E9 a

A$b

Indeed, in the sequel, great significance will be attached to the so-

called converse relationships of which those just above are examples.
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Referring to the sketch we see that the following statements

hold true:

~'->~.~b,e€A but a,b,c¢s

d,e€B but <1,e¢A

a, b, c, d, e €§ C

In an allegory we may liken the establishment of a class to the

action of a small boy at the beach becoming interested in gathering white

pebbles. We observe him gathering pebbles one by one, looking at them

to see if they are white and either putting them into his pocket or throw-

ing them back onto the beach. The defining property involved here is that

of whiteness. All the pebbles in his pocket then are members of an evolv-

ing class of white pebbles and those thrown back belong to many other classes

but in particular to the class of non-white pebbles. Any given pebble in his

pocket can be considered as an element of the given class of white pebbles.

We may distinguish here at least two classes: the class A of white

pebbles and the complementary class B of non-white pebbles. Any given peb-

ble in the pocket we may distinguish by the lower case letter x and write

the fact of membership in the form

x 6' A.

§9§§a§nT§n§

Since most classification and gathering processes are not at any

given time exhaustive, we must consider the existence of subclasses and the

Situation of containment within a class.
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For example, in the allegory, the pebbles in the boy's pocket

form a subclass Q of the class of white pebbles _A. By this we mean that

_C_ is part of but not all of _A_. We may symbolize this fact by the state-

ment

CQA

employing the symbol

PART SYMBOL: C , read as "--is a (proper) part of --".

We refer to the class C as a proper subclass or pa_§_t of the class

Often, however, we do not wish, (or are not able), to establish the fact tha

C is only a part of A, but wish merely to e>@ress the fact that C is con-

tained in or included in A. We may still refer to C as a subclass of A but

we may also wish to cover the possibility that C and A may be coincident or

coextensive; that is, that C might include in some cases, each and every

element of A. Thus a subclass is either a pa_1_'t_ or the whole. In this more

general case we would write symbolically

C§A

contained

CONTAINMENT: Q read as "--is or in--"

inc ded

lu

It is interesting to note that the relations Q and Q ,

which can hold between two classes, are respectively analogous to the re-

lations 4 and 5 which may exist between two real variables. Indeed, this

analogy can be a useful mnemonic device for those who are unfamiliar with

the contaimnent relations.

The operation of denial or negation may be applied to each of the

containment relations, employing as before the vertical slash. Thus, for

example,

1) § A

As in the case of membership, it may frequently be convenient to

write the containment relations in converse form. For instance, in the

statement

ADC
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the symbol, I) , reads "--partly consists of--".

identity of Elements

1,. ~ - ~ _ — — - - - - - — — — _ - n unu-

) Two elements, a and b, of a given class are said to be equal

pr identical,

a = b

if they can be regarded as interchangeable'with respect to the class and

the associated class property. Thus, identity of elements only implies a

certain relative indifference or indistinguishability within the context

bf a given class.

Elements which are not identical are said to be distinct and are

indicated symbolically

a 4= b

E<}§13i°.£EZ-9€-§%5§§§§

'In the pebble allegory, presume that through some quirk of

geology, in a rather short time the boy had gathered together all the white

pebbles on the beach. Then, if we continue to recognize the class C as

zhe pebbles in his pocket and the class A as white pebbles, we

nght wish to express the fact that the class C had exhausted the class A;

;hat is, each and every member of A was included in C. We can simply ex-

>ress the fact by the statement that the class C is identical to the class A,

mt we can also put very simple conditions on the two classes for this to be

:rue.

Any two classes, X and Y, are said to be abstractly identical

>r equivalent, written:

><

IH

I-4

if, and only if, X SQY and Y Q; X. The equivalence symbol is read as follows:

equivalent

QUIVALENCE: EE , read as "-- is or to --".

identical

Thus the identity between the class of pebbles in the boy's pocket

nfi the class of white pebbles on the beach is established merely by de-

ermining simultaneously whether all the white pebbles are in the boy's pocket

Hd whether all the pebbles in the boy's pocket are white pebbles.
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Classes which have no elements in common are said to be

disjunct or disjoint. We should particularly note that this is not the

same as the fact that they are not equivalent, symbolized

$3!

which merely means that X and Y do not consist of the identical set of

elements.

C. The Concept of a Relation

The purpose of the above discussion was to establish the context

in which we shall seek an understanding of relationships or relations in

their most general form. In doing this we inevitably encountered several

specific relationships, namely those of membership, containment, and identity

or equivalence. Each of these is an example of a relation between two objects

or terms-- a so-called diadic relation, or simply a '

The totality of

p g ,,_, diad.

objects linked by a given relation we call its range and it is thus apparent

that a numbering of these objects affords a convenient approach to the class-

ification of relations. That is, we may usefully distinguish between monads,

diads, triads, tetrads, etc.

We shall here employ illuminated Roman capitals to denote relations,

thus:

RELATIONS: IR, T, W, X, etc.

If two relations,]FKand E; are precisely the same, we may indicate

their equivalence by way of the familiar notation

5

|||

so

The diad, "X bears the relation Rto y" could be written symbolic-

ally either

X R y or R(X,y)

However, the nature of the terms or objects x and y is quite irrevelant:

hence, the existential graph:

HQL..

with a specification of the realm of its applicability imparts the same in-

formation as the first form.
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The converse of the diadic relation R , when it has meaning,

is written in our symbolism

a form which is most suggestive of the significance of the converse. A

particular form of the converse, namely the "inverse" of a mapping or trans-

formation is often written Hq_l. It will shortly become evident that certain

theorems which apply to transformations and their inverses also hold for re-

lations when the inverse, ]gt'J, is replaced by the more general converse,]q[.

A restricted set of relations, namely those that express some form

hr identity, are eyggetrie in the terms such that IR ;-. H. In writing

Such relations it is often convenient to employ a suggestive symbolism which

exploits those letters that are inherently symmetric: ‘IF , NIH, (D,etc.

With this introduction to abstract relations, it is now propitious

to focus our attention on certain specific types of relations of imediate

present value. The objective of our study will be the establishment of a

secure basis from which we may approach the relationships to be encountered

in the generalized analysis of systems with increased understanding and in-

sight.

We may organize this treatment on the method Of QategQriZatiQn

briefly introduced above, namely that founded on an enumeration of the ob-

jects linked by a given relation.

Monads

The statement: "there exists the object x" is an example of a

monadic relation or monad--its range is the single entity x. In customary

mathematical symbolism it is written

Hr

The monad is so simple, and its statement and structure so

succinct, that one is hard put to elaborate upon it. However, a considera-

tion of the grammatical structure of the literal statement monad is perhaps

illuminating. Let us, therefore, examine in greater detail the exemplary

w

§wnadic statement, "there exists the object x." The converse form, "the

bbject x exists," suggests the symbolism

><]E

G
e
n
e
ra

te
d
 o

n
 2

0
1

4
-0

2
-1

1
 1

3
:1

4
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
6

4
8

7
4

9
2

1
P
u
b
lic

 D
o
m

a
in

  
/ 

 h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p

d



66 2.751 CLASS NOTES

\

wherein the existence relation is denoted by an illuminated capital in

conformance with our notation. We note that the "subject" and "kernel"

of the statement "x exists" have their counterparts in the symbolic state-

ment. That is,

Literal Statement, Symbolic Spatement

Subject the object x x

Kernel exists -HE

The denial of existence is accomplished with the application of the

I$: or jg

when applied to x, this new monad would be read:

vertical slash, thus:

"The object x does not exist."

The generic monad is written simply‘-IFK , together with a specifi

cationof its field of applicability. That is, when we say

x R or R(x)

we imply that-IPR hey be meaningfully applied throughout the class X whose

elements x have the certain comon property characteristic of the class.

P2295

As a result of the utter simplicity of the monad its significance

as a relation tends to elude the intuitive grasp which one has for higher

order relations. The diad, then, is the simplest relation that has a im-

mediate intuitive significance. The range of the diad consists of two ob-

jects, a and b for example. Symbolicalky, the diadic relationship may be

expressed

a Hail:

An alternative form may at times be appropriate; it is written

R (a, b)

The first form has many mnemonic advantages and has by far the widest use,

but we frequently employ both forms. It is noteworthy, in the second form,

that in general the commutation of the terms inside the parenthesis is not

IR (a, t) $ IR(t, a)

valid. That is,
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We may represent a diad by an existential graph if to the re-

lationship symbol R we append two tails thus

._ HQ _

which indicate its diadic nature. The relation -1FK- is denied or nega-

ted by application of the vertical slash, -H?-.

Three fundamental properties which are either present or absent

in any diadic relation are the following:

l) Reflexivity: a Ra

Any relation satisfying this condition is said to be reflexive;

if a IE‘ a, the relation is irreflexive.

2) ~: Ifa IR b thenb]Ra

Any relation satisfying this condition is said to be symmetric;

if a IR b but b 11'-kt 8. then the relation is asygetric. A

third important possibility is that of antisymetry: a IFK b

andb IR,aifandon1yifa§b.

3) Transitivity: If a IF‘ b and b JFK c then a.IFKc

Any relation satisfying this condition is said to be transitive;

otherwise it is said to be intransitive.

It is possible to regard any diadic relation as directed or polar-

ized. That is in an existential graph:

a ea: b

Corresponding, then, to any such polarized relation, R , there will often

be a unique and well-defined converse, H , such that if a IR b then

b HI a. It is important to note, however, that not everyIF&possesses a

meaningful converse. Referring to the definition of symmetry, it becomes

obvious that relations which are symmetric not only do possess converses,

but in addition satisfy the condition that

IR EH

In the light of the above discussion let us consider two all-

important classes of diads--the abstract equivalence and orderig relations.

These will play a dominant role in the development of the generalized func-

tions and transformations which are required to describe the behavior of

real systems.
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equivalence.relation if, and only if, :H is: (i) reflexive; (ii) ym

metric; and (iii) transitive.

Identity of Elements (=) and the Equivalence of Classes (ii) -- but there

are many other examples of equivalence relations in all branches of mathe-

matics and logic--in particular, Congruence ( Eé) and Similarity ( oi) in

Eguivalenee Relations. A diad, - II -, is said to be an

So far we have encountered the two equivalence relations--

ordinary Euclidean geometry.

The fundamental property of any equivalence relation is that it

divides the range over which it applies into a k-fold set of mutually ex-

k

clusive equivalence classes (H§: ). Thus,

The number, k, may be either finite or infinite, and in the latter case,

a II b, if, and only if (a, b)=]K

k

either denumerable (i.e., countable) or nondenumerable.

giving rise to a dichotomy or dichotomic categorization (e.g., up, down,

positive, negative; etc.). Thus, such classification systems will in

general give rise to polychotomies or manifold categories as indicated in

In the simplest possible case the range will be merely bisected

the following table:

Class: Transducers

Subclasses: Electro- Fluid- Electro-

Mechanical Mechanical Thermal

Transducers Transducers Transducers

Elements: Motors Turbines Heaters

Generators Pumps Thermopiles

Microphones Pistons Thermocouples

\ I . J

Y. ...n_

In all

Example of Equivalence Classes

Mtually Exclusive Equivalence Classes

cases, any element in a subclass is abstractly equivalent
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or identical, but only with respect_,:t_o* the defining property or condition

)

pf the subclass. For example, it is obvious that the prime number 7 is

not "equal" to the prime ll in the sense of ordinary arithmetic, but only

"equivalent" in the sense that they are both prime numbers.

Ordering Relations. If we are given any asymmetric ordering

relation, — CD -, applicable over a range (a, b) in a class 1K, we can

construct a corresponding antisymmetric ordering relation - D - by de-

fining ID to be the same as either 3) or H where - I -- is an equiv-

alence relation.

5 We may say then that :1) is a strong or §___erial oprdejrifng relatioin,

it being: (i) irreflexive; (ii) asyL_m_. etric, and (iii) transitive. On

the other hand, ID is a or partial ordering relation since it is:

Weak I (i) reflexive, (ii) antpij-psynnneptrqilc, and (iii) transitive.

The following table gives examples of these ordering relations

which are already familiar to us:

Range CD H D

Real > = Z

Numbers

C las ses D -E 3

It is important that we distinguish between the various ways

diads may be combined. The three diad combinations which we shall briefly

consider are: (i) cpgosition, (ii) alternation, and (iii) conjunction.

Composition. Suppose x IR», y and y]R 22. Then xR 3 z where

Ia, = la, <> la 2

the symbol IR] O IR. 2 denoting the composition of the two relations

R1 and]Rx2. By way of an example, suppose R15 M and R2 E IF

where MI and F are respectively the relations of motherhood and fatherhood

Then, if R 3 = x R 32 , then x is the piatiernal grandmotheir

of z.

in connection with the composition of two relations it is note-

Worthy that if

IF’ <> O = IR
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then

which is seen to be a generalization of the more familiar statement for trans-

formations :

1

-1 - -1

(D 1P’ = (IP Q)

Furthermore, we note that in the case of any transitive relation T that

T <> T 5 T

Alternation. The alternation of two relations R1 andR2 ,

written

IR 3= IR, ma 2

is the result of applying either R13 H2 . Thus, if again R EM =

motherhood and R2 §]F' = fatherhood, then ]H, 3 = M U IF" is the re-

lation of parenthood.

Congunction. The conjunction of two relations R1 and R 2

written

R3 = 1a,n1a,

is the result of applying Hmdm Th IR = M U IF is in

both . us, ,

2 3

mammalian biology, impossible since there is no x and y such that x IVJIUIFE/,

i.e. , x is both the mother and the father of y. This fact may be expressed by

asserting that M fh F is true.

$1‘?!-.295

Any relationR whose range consists of three terms is a triadic

relation or a triad, indicated in symbolic form

R (a, b, c)

or existentially: -- IR -

A specific triadic relationship is, "b is between a and c." More-

over, any operation or rule of combination by which two terms "produce" a

third term is a triad. A triadic relationship exists between a mother, a

father, and a child, for example. In algebra and arithmetic, instead of

saying two given numbers _a and _b determine a third mzmber, _c_, such as their
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sum

c = a + b

or their product

c = ab

we may say that the three terms satisfy a triadic relation]FR.among a, b,

and c.

The structural or topological properties of triadic relationships

are not so simple as those of diadic relations. However, several possi-

bilities varying from complete symmetry to various types of asymmetry may

be distinguished.

An example of complete symmetry occurs in the relationship be-

tween the three sides or the three vertices of an equilateral triangle.

Here clearly

JR.<a, 1». C) = IR.<b. C. a> = IR<¢. a. 1»)

= ]R(c: bx 3) = II-IQ-(b: 3-: C)

= :[R'(a2 C2 b)

We may also speak of this as permutative symmetry since all permutations

are allowable and are equivalent. Such symmetry also occurs for example in

the algebraic equation

a + b + c = O

However, some triads are symmetric only over a part of their range,

such as the examples of sum.and product mentioned above which are clearly

symmetric in a and_Q; that is

Sum: c = a + b = b + a

Product: C : a ' b : b ' a

The "between" relation also possesses this limited symmetry since TE is be-

tween 5 and_a"." It is appropriate that we designate such limited symmetry

Qpmutative symmetry by analogy to the comutative properties of the sum and

product operators.

The relations of sum.and product, as well as many other familiar

triads, have an implicit polarization or directionality. That is, combining

a and b yields, respectively, the sum, c = a + b, or the product, c = a . b;
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the uniting of male and female results in the procreation of offspring so

that the father-mother-child triad is also polarized. It is convenient to

symbolize such directionality; for example,

IR (a, n, c)

or R((a, b) ""’_ c)

or cR(a, b)

to indicate that c was the result of the combination of a and b.

Corresponding to certain types of asymmetric triads we can

establish the existence of alternative relations. Consider, for example,

the triadic relationship between father, mother, and child in which we

distinguish at least the three polarized forms

IR-1(f. m; C)

R2 (m, c; f)

R3 (f, c; m)

Assuming normal wedlock these might be read as:

R1 : E is the child of _m and the child of f;

R2 : _f_ is the father of _c_ and the husband of m;

R3 : m is the mother of _c_ and the wife of _i:.

We note that while R1 is syrmnetric in m and f, clearly R2 and R3

are asymmetric, but certainly in a broad sense the triadic relationship is

established by each of the alternative forms so that they are, to this degreei

equivalent.

A similar example to the above is the algebraic relation x/y = z2
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fsizeés

With the monad, diad, and the triad we can build up a rich

universe of polyadic relations--this because of the three-tailed

property of the triad. That is, the relations

Ill

-sea

ll

may be linked so as to construct a polyad of any order. However, the

universe of polyadic relations so obtained is by no means exhaustive, al-

though it is sufficiently broad for most of our purposes.

The abstract treatment of relations in mathematical literature

has, for the most part, excluded the triad, concentrating instead ofidiads.

It is self-evident, however, that the triad is essential if we are to con-

sider even the simplest polyadic structures, since the compounding of diadic

relations can never produce anything but diads. It is therefore possible to

view the monad, diad, and the triad as the basic "building blocks" out of

which all more complex relations can be constructed.

The general polyadic or "n-adic" relation may be symbolized

HNt(a , ... )

l a2’ ’ an

or, graphically

a2

*1-———1R>-——— at

B.

I1

We may thus depict the reticulation of a tetrad into two triad primitives:

If IIN. is an algebraic relation then it may always be reticulated into a

I

_?_

system involving only the four triadic primitives:

’@?"<?’

*@2*‘@P*
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However, for the generalized relations which are necessary to describe the

behavior of real systems such a simple reticulation is not possible. In-

deed, we shall see that there is a set of logical triadic primitives

which is sufficiently general to serve as the building blocks for the con-

struction of all such relations.

The relationships which bind together the characteristic variables

of a physical system are clearly polyadic. We may think of them as falling

into one or more of the following categories:

l) Correspondences

2) Functions

3) Transformations

h) Operators

We have been using the generic term functional to include functions, trans-

formations and operators.

To properly describe the behavior of a system we must be ready to

admit to the "functional domain" multivalued and discontinuous functions,

unlike the traditional strategy of mathematicians, and indeed, many engineers

For example,

. -l

x = sin y

is a permissible relation. Certainly "a function" is a relation so that

y = F(x) is equivalent to the statement y':E? xg the converse, x = F'l(y),

if it is meaningful, is then written x 'flT y.

A correspondence is merely the statement that there is an xl which

corresponds to a yl, symbolized perhaps by the following notation:

X1‘_"'“" 3'1

"2""‘_’>'2

xn ‘__~__' yn

Multivaluedness may exist wherein the following correspondence could result;

for example: y

X1/1
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The generalized functional Y=‘J1-7(§{)ie one with which

we are now familiar, and affords a sophisticated example of a polyadic

relation. V
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Background Reading

(1) RUSSELL. Be1'bran<1- ,I<.n<>w.le.dse--its Scone .an<1.Limit'e. Che-P1181" III

This reference discusses aspects of structure as they pertain to the

meaning of words, and the connexity of sentences and complex but

meaningful sounds. It affords a valuable insight into the importance

of relationships from a non-engineering viewpoint.

(2) PEIRCE, 0. s. (Collected gapere

See particularly

Vol. 3 The Logic of Relatives: 3.A56 - 3.A9l

Vol. A Trichotomic Mathematics: A.309 - A.3lO

Vol. 5 The Valency of Concepts: 5.A69

Without question, Peirce, the founder of pragmatism, was first to

realize the singular character of the triadic relation. His use of

bond diagrams for logical thought is prophetic and revealing. His

philosophic concepts of Firstness (quality), Secondness (effect), and

Thirdness (meaning) are grounded in the properties of monads, diads,

triads, respectively. A word of caution -- Peirce's style runs the

(deliberate?) gamut from extreme lucidity to perverse obscurity! But

for those who like to climb mountains "just because they are there"

Charles Sanders Peirce is a man to know.

(3) TARSKI, A. Introduction to_Logic, Chapter V.

Tarski covers diadic relations in this text in a way which is easy to

follow. He introduces the idea of a polyad, but without development.

(Li) CHURCH, A. intproganpcjcion to Mathematical Logic, pp. 15-23.

The author discusses aspects of functions which are pertinent as

background reading for the consideration of generalized relations.

(5) SUPPES, P. Introduction to Logic, Chapter 10.

The mathematical properties of (diadic) relations are discussed in

an understandable fashion. Particular note should be given to the

definition of anti-symmetry.

(6) BELL, E. T. Development of Mathematics, pp. 553-59A.

This reference sketches the history of the development of mathe-

matical logic from Leibniz (1666) until Godel (1931).
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VIII- ¢,<>sPin1%1&m lssis ens H2Ps¥:v@l.Yh¢.@Is%.F\1s¢F1.°e8

A. Introduction

A class of extremely flexible, n-dimensional piecewise-

linear functions may be generated through the use of an extension of

the logical operations of union and intersection. These hyperpoly-

hedral functions, as we shall call them, will be employed in the

description and modelling of the behavior of physical systems. Such

functions were first described.by George Arthur PHILBRICK.

The union and intersection operations on classes have their

basis in, and my bederived from, the diadic ordering relation, 2. .

Thus, the process of comparison and subsequent establishment of order

is fundamental to the development of the hyperpolyhedral functions.

B. Classes

Taking as fundamental the relations of membership and inclusion,

E and 2. respectively, and their denial, denoted by the vertical slash, ,

the operations of logical union and intersection nay be developed. If,

for a given class X, the element x 4' X, then we define the complement-

* *

ary class X such that x € X .

Union--Outer Selection

We desire a "least outer bounding class" X which, for the

aggregate {Xk '1; = l, 2, 3, ..., n}, satisfies the conditions that:

X ; (ii) for every class Y.‘-?.{Xk},}§.§Y. We then define

the operator UI such that

TGD

._~w><

>_§= unxk) *X1UX2 u---uxn

The class X, by definition, contains all the Xk, and, what is

more, it is absolutely the smallest, most restricted class which does

SO. Thus, we refer to it as the glevasit outer bound (l.o.b.) by analogy

to real number theory. For two classes, X1 and X2,

(>4
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l U is often read cup

" " . The union operator for this

wherein the symbo

' es as shaded areas; then,

case may be ill

the union is en

below:

»’o~

¢".’¢°,

'.‘¢*.»%

o$0\9¢0

Q

32:‘;

'¢‘¢*’¢

Q‘ $\0

523"

\

Q‘

If a third disjunct class X3 is added,

The union opera

O

‘wt

0‘ e‘ 0

"Q "v"

ustrated by depicting the class

closed by the dotted envelope:

the union is as sketched

I

tat ive' that is:

tion is associative and commu ,

U(x UX) (X UX )UX

Associative property: X, 2 3 E , 2 3

= X X

_ ,UX2U 3

Commutative property: X,UX2 E X2U X1

If the aggregate {Xklk = 1, 2, 3, ..., n} is extended without

t of the universal class S

limit it becomes convenient to speak in erms

such that, for any X whatsoever,

\/

(>4

£3
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79

(ii) for any class Y§;{Xk}

that

J

»<:

V\

>4)

>4

m

T‘ se

j__><:

m

2

WEE

definition contained by all the Xk,

Intersection--Inner Selection

we now seek a "greatest inner bounding class" i, which, for the

aggregate | k = l, 2, 3, .. ., n} satisfies the conditions: (i) X.§Xk;

we then define the operator Iilsuch

X1fiX2 n nxn

and what

The class § is, by _ ,

is more, it is the largest, most extensive class which is so contained.

the reatest inner bound (g. i. b.) by analogy to

Thus, we refer to it as gp ,;_pp pp

. 1. b.) of real number theory. For two classes

the greatest lower bound

X1 and X2,

(s

~ 5i=x",nX2

wherein the symbol U

this simple case is il

The interse

3%»

is often read "cap". The interse

¢€

awn

/‘ Q ‘Q

¢Qa$“

@fiV¢%

%@V%%

0 ¢“¢4

Q Q.‘

‘Q ‘g7

¢‘e¢%

¢¢$

ction operation is associative an

ction operation for

lustrated by the sketch below:

d commutative; that

is:

Associative property: Xlr](X2rlX3) ;5 (xlfl x2)fW X3

E Xlnx2 HX3

xfix -xfix

Commutative property: - 1 2 1: 2 1
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In expressions which involve both union and intersection these operations

are mutually distributive. For example,

UH fl1(xl,X2,), X3 1 -e X3 U [Xlfl X21

a= [X3U X1] fl [X3U X2]

-=1 [XlU X3] Fl [X2U X3]

Obviously, if the aggregate k = 1, 2, 3, ..., n} includes

/'\

one or more disjunctive classes then the class X is empty, i.e., there

are no elements x€§. The concept of the empty or

class is an es-

null

sential one; we denote this class by the symbol 0. Evidently then,

><2>

o5

Indeed, the following succession of inclusion relations holds fort

the classes we have defined thus far:

|r\

>4)

In

l><

C

0 k_

(>4

|f\

‘Cl?

Thus, if the aggregate I k = l, 2, 3, . .., n} includes all possible

classes in the universe, S , then, and only then, will

Es

>4

L

n

0

§<-)'Z,,,-

>$‘>§<»

m

gs

>4

T.’

m

Complenientation

The concept of the complementary class is fundamental to the es-

tablishment of order. If, for a given class X the element x ¢ X, then we

define the complementary class X* such that x € X*. As was done in the

case of the union and intersection of classes, the complementation of a

class X may be looked upon as an operation, the operator being denoted

-x-

( )
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C. Order

We have seen that the act of comparison among an aggregate of

classes I k -_= l, 2, 3, ..., n} , and the subsequent ordering by way

of the diadic relation El , is basic to the establishment of the inner and

outer bounding classes X and X. Indeed, ordering is perhaps the most im-

portant operation in the universe; certainly it is fundamental to the es-

tablishment of any scale of measurement.

I:*3?5?—.E9§£§213.%E_9£‘}E£

The concept of order is often confounded.with the idea of a

scale of values or of numbers. It is important to demonstrate that order-

ing is independent of a number scale, and we shall do this by considering

lexicographic order--the result of a weak.ordering followed by additional

weak ordering within the equivalence classes so produced, and continued

until simple order is achieved. The prototype series, from which the name

"lexicographic" is taken, may be thought of as an ordinary set of listing;

in a dictionary, telephone directory, or other lexicon.

In establishing such a series we first recognize that the universe

$, which is to be ordered, comprises the totality of letter groupings

ibrmed from.the twenty-six letters and.the blank space. A sample would be

the following:

A

ABSOLUTE

ABSOLUTE ZERO

HYDROGEN

HYDOGEN ATOM

HYDROGENATE

HYSTERESIS

ZERO
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Here, in establishing the series, the lexicographer first

groups all entries into mutually exclusive classes based upon the

initial letters (5, , , ,, g, _ , ,, Within each such weak ordered class

there are in general several elements. Each of these elements is in-

different (or identical) with respect to any given equivalence class,

say These may then be sorted into the proper subclasses 1_\__, Ii}, . . .,

lg, . . ., A_Z_. This sorting and arranging operation can be repeated until

every element has been placed into a unique class such as the class

ABSOLUTE, This ultinate class, consisting of but one element, constitutes

a term in a series and will generally have a unique predecessor and suc-

cessor, except in the case of the bounding classes N and ZZZ . . .

§9El‘?:£“3‘PE.9.€‘}5£'

It is propitious at this point to consider an ordering wherein

we suppose the universe sto envelope a single continuum of classes {X(k)

Selecting any tw'o classes from $ we perform a test of comparison and es»-

tablish which is greater in the abstract sense of the relation _€_. ; to the

smller of the two we assign k =.- 1, for instance, and to the larger k = 2

This process is repeated again and again over a large sample of the ag-

gregate {X(k)} . The result (after possible renumbering) is an ordering

such as

x(1).§.x (2)..C_x <3)_§.... ._€>< <1.)

If the process is extended ad infinitum, we can imagine that the

continuum is completely ordered:

@__§ ;£x(1<)_C_x_§_$

v

We wish now to define and to interpret the complementation of

the ordered continuum. It is evident that the classes X (k) have been

strung out along the ordered coordinate k in the fashion

T X (k)

Now if we were to convert or reverse the rank ordering; that is to rank

ll I1 II I1

from the greatest to least , we would have

-4
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§§;2 35 32 X (k) 52 X 53 ¢>

we ay now establish a biunique, 1-l correspondence between the classes

in the original order and those in the reverse order as follows:

)

Original Order: o_€>< _§ X41) _€ X (2)-~ X (kg) --~X <n)£3§§_$

1-l Correspondence: I I I I I I I I

Converse Order: X<n) 2.X<n'1 X(kO) "'X<1>

In general as a result of the homomorphism or biunicity the BROUWER

theorem leads us to expect a fixed point, say ko, which may or may not

actually "exist" within the range of values. Moreover we can now

mate

define the class complementary to k as the in the correspondence a-

bove; then:

*

X (k) 5 X(n+l-k)

Such converse order complementation may be conceived as a

"reflection" or "rotation? of the continuum about the fixed point ko.

In physical measuring processes it is usually convenient (but not necess-

ary) to take kn as O -- the physical zero or datum

It should be emphasized that neither a metric nor the concept of

number is required to establish the ordered continuum; rather, order is

founded on the simple act of comprison. Indeed, the establishment of

order through comparison is a pre~requisite to the construction of a metric

scale.

§22e2-ee9-&2Ye:-§2%22§£92_é2-E&e-99a§£22Ea

Once order has been established in g; then the operation of

outer selection on the aggregate {X (1<)} will yield the class X which

corresponds, in the ordered.scale, to the class X (kmax). That is:

UX (k) x (hm)

M

(>4

W

In the same manner

fllx (k) x (kmin)

Ill

=>< )

m
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Thus, in a sense, the operators LB and.I1imay'be conceived as upper and

lower selectors, respectively, in the ordered continuum. It is exactly

in this sense that we wish to consider these operators in the discussion

of continuum logic which follows.

D, Continuum Logic

The discussion up to this point has been completely general and

unrestricted. It is now necessary to specialize to the case wherein the

measure of the classes X(k) is some physical variable or value--perhaps,

something as abstract and qualitative as a utility (as in the theory of

games and decision-making), or something as concrete and quantitative as

a weight, length, or voltage. we still need not suppose a scale--of weight

for example--to order the X(k) since the ordering could in this case be ac-

complished through the use of a balance. The establishment of a scale is a

result,not a pre-requisite,of the ordering process.

With this specialization, the ordering relation fl particularizes

to :5 and the operators [lIand..fn, which now are, in reality, upper and

lower selectors, are to be interpreted as operators--special cases of

generalized functional QR]. According to its definition the operation. Ly

on an input bundle

X e {X 0.)}

yields a single output value:

Y =_.- U (X) E X E the greatest of the X (k) 5 X(kmX)

Similarly, in the case of the operator.fl.,

Y 2 H1 (X) 2 /X .2 the least of the X (k) =.- X (kmin)

There are many devices which can perform the operations L] and.i]1,

i.e., we can actually realize these operations in terms of computing

elements as schematically depicted below:

XY

XY
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It is often the case that TK-is an ensemble of time-varying functions;

that is,

X5 X(t) 5 {Xk (t) |1<=1, 2,3, ..,h}

Then, of course U { X (t)} will be the greatest of the Xk at time t,

while .fD.{]Kf(t)} "will be the least. These theh yield the dotted eh-

velopes :

Perhaps the most common method for realizing upper and lower

selection is the electrical scheme employing diodes. An upper selector

is shown below:

em >1

=.<1=> ~ >1

- t—-- ewe an

e.n(t) ~ {>f wv»-1

- E
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In electronics such a circuit has long been called an "auctioneer"

circuit; in the same tenor the D1 -circuit is called a "shopper".

Of course, upper and lower selection may also be realized

mechanically and hydraulically:

"* W
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For the case where n = 2, i.e., where X = {K1,

formtive to draw contours of the surfaces U] ( X) and H1

>47.”

)

it is in-

X2

A

/ X1= X2

. /Ii,

U-1 Us U+1 U+2

. /' ~

2 )1 .>x X2 / X1 = X2

/’ ,

j 1 / In + 2

/

A ' / --H +1

/

...-7,! - HQ

/

// ITl'1

/

Thus, we see that there is no basic distinction between the operations

U (xl, 1:2) and H1 (xl, x2), and, for example, the more familiar

algebraic functions suchas® (X,x).-=x +x or® (X,X)=X.X.

l l 2 l 2 2 l 2 l 2

E. Two-Value or Binary Logic

As a particularization of continuum logic, wherein the Xk can

or binag logic

assume any values whatever, we now consider two-value

wherein the Xk my be equal either to zero or to one. These two values

are often taken as signifying, respectively, falsity (F) or truth (T).

The convention is thus established that

O<1 or F<T

O*§1 or F*§T

Note that the fixed point under complementary order reversal is non-

existent (despite the fact we might call it "1/2")!

When there are two independent variables, i.e., when n -.= 2 in the

segregate {_>5,|1t = 1, 2, 3, ..., n} , the operations of union, inter-

section, and complementation my be conveniently portrayed in functional
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matrix form as shown below:

above is by way of the

X2

fl1(X1

X

I

1)§2) C)

O

O

)(1

(X])* o 1

X y o 1 o

2 1 1 o

A second useful representation completely equivalent to the

truth.t&ble, wherein the symbols T and F are

substituted for 1 and O.

X1 ~ X2w<><1.X2>fl1<X1x2> <Xn* <X2>

F‘ F F F T T

P‘ T T P T F

T F T F F T

T T T T F F

G
e
n
e
ra

te
d
 o

n
 2

0
1

4
-0

2
-1

1
 1

3
:1

4
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
6

4
8

7
4

9
2

1
P
u
b
lic

 D
o
m

a
in

  
/ 

 h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p

d



Part VIII 2.751 CIASS NOTES 89

The following interpretations of the union, intersection, and

complementation operations may now be made in classical binary logic'

Qperation Symbolic notation lpgical interpretation

Union -LU "( ) ( 1

Intersection I11 "( ) and ( )

Complementation ( )* "n t ( )

There are a total of sixteen distinct binary operations HQ

considering polarization; a convenient coding system may be employed as

will be illustrated for the three operations introduced thus far In

the matrix form the elements are labelled generically (1 B )4, 8 s

indicated below:

L X

0

1 lg :>—

The entries for a given 0perati0n]L: are written in the fixed order (1 B >/ 8

and the number for which these are the binary digits is then taken as

the code number of the operation.

Operation

H OI,"

H andll

"not X1"

"not X2"

The sixteen binary operations are by no means independent Indeed,

Binary Decimal

0111 7

0001 1

1010 1O

1100 l2

CW1? _
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they a__._I_|__l_._ may be established from the operations (1), (7), and (10). In

fact, even this set of basic operations is not miniml for we my, for

example, construct (1) from (7) and (10). The truth of this my be de-

monstrated by way of the signal flow graph shown below:

vxlx, uo) W (|o> <7) ~(lO) ~

To ~ o I if 1 I 1 ~ " 1 ' o S

1 o o 1 1 o

o 1 1 o 1 o

1 1 = o o o 1

Indeed from the triplet (1, 7, 10) both the pair (7, 10) and the pair

(1, 10) suffice as logical primitives, but the remining pair (1, 7) does

not.

The question now comes to mind: "Is there a single binary‘ opera-

tion on the basis of which all sixteen operations may be established?" The

two Sheffer Stroke operations "nor" (8) and "nand" (111) are each such com-

plete logical primitives. A suggestive symbolism will be used for these

operations, namely:

(8) 511811; nor 1-: not-or -=1 "dagger"

(11+) E 5 nand E not-and =;- "stroke"

f'\/'\

—--*-

\)§)

It is easy to demonstrate that these are indeed logical primitives;

we shall simply verify that from (8) the operations (10) and (7)--which to-

gether are a set of logical primitives--may be constructed and we leave the
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reminder of the proof to the interested reader. The following signal

flow graphs delineate the construction:

n F___“u7

Xe ‘ti:-_:‘_ <_'9>_.}

F. Multivalued Logic (Post Logics)

We my conceive of a spectrum of multi-valued or n-valued logics

with binary and continuum logic occupying the extreme P°B1t10n5- If We

think of the ends of the real line [0,1] as corresponding, respectively,

to absolute falsity andeabsolute, -truth, then we might interpret all

intermediate positions as corresponding to partial t_r__u£1_i, as it were.

It is easy to construct the zratrix form for the logical operations

in such n-valued logics; an illustration is given below in the case of the

operation U :

X1

runny o_1,2,5~--~ nl

ooi 25) n

V i V 1 I i I 2 3 n

(222222 3 Ina

X2 as 3 I 3 3‘ T

~ ~ W ~l ~1 ~

L _ _ .

The I1-valued U and fl opeia1:ol's then give rise to Post algebras.
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G, Eyperpolyhedral Functions

At the outset it was stated that a class of functions was sought

which could be used to describe the behavior of physical systems in general

By proper choice of parameters such functions must be capable of conform-

ance to not only continuous, well-behaved functional characteristics, but

also to characteristics which are inherently nonlinear or discontinuous.

Indeed, functions which play'havoc with conventional mathematics must be

rendered into articulate and.tractable form in order to describe the be-

havior of many comonplace elements. Take, for example, the simple diode;=

plotting the voltage-current characteristic of a real diode generally yiehfi

Ti

//////-"""”",” ,,.i ._i_

It is hardly necessary to point out the discontinuity in the slope of the

characteristic at the origin. Thus, we seek a construct in the context of

a curve similar to the one sketched.below:

e

A

which all behavioral characteristics may be described. Such a construct M

founded upon the operations of upper and lower selection, U and Hi, i.e.

the operators:

shall be utilized as the fundamental building blocks in the synthesis of

complex, multi-dimensional functions.

Consider, for example, the operation sketched.below:
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This yields a function Y = Y(X) which my be sketched as follows:

‘Y

If now we take as a unit cell or polygonal primitive

X

—1\/I

and then write

Y: i 6:1 U1(0,x-Mk)

k

k=1

the result is a polygonal function which might appear as sketched.below:

fY

/\/\/\/v\,_/

E E I ’X
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we can imagi

ne that this is inde

ed a funicular polygon

dimensional curve c

; i.e., a two

onsisting entirely of 1

Next, we consider

both U and H1 1

)(1

X2

'>{2

I

Y

An immediately evident generali

X1

-iv

ine segments.

a more general operation which embodies

:: O 1

zation yields the polyhedral primit

i 7 ""-

_BAR

. X2

._Ba2

X2‘ ‘(Ema

: I Y Y= UI[o,fl(X1-M1,X 5-M2)

—>M1.r- / Y

: N/' / fig!-23

/I if 1

/"’""v=-'<>'"rvi";""' X1'M~

_,X1
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From which we construct the polyhegdrailg function:

Y’-= g i -M5)

.j=1i-=1

A representation of this surface would reveal that it is composed en-

tirely of triangular facets; the following sketch illustrates this:

|lll||-. 4"!

|'l||.L,"m" 1 \

v 5..

Wu|||||mn||||||||||||

Generalizing further, we arrive at the n-dimensional hyperpolyheidralp

function

: — 1 - J

Y Uw>»@<X» Me Me

: Hn{Xr Ir=1,2,3, -~-n}

.'II

s

k

X3_M3 i Xn_ME (X)
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It is now a relatively simple conceptual step to hyperpolyhedral

computing systems which utilize, as elements, hyperpolyhedral functions

Hn (X). we thus realize the fantastically variegated universe of functions

at our disposal for modelling system.behavior. it is to be emphasized,

mP?¢°V??;.th?t ?PFh f“PF?i°n5 Pa? be ?mP9d¥?¢ in P??¢t1?al.°9PPu$i?5 Psrdvarer

Consider, for example, the polyhedral multiplier

Pd

ll

I-"

n Pvld

O

1+

n b¢]§

u1[<>,n1<x-1,Y>] UI[o,Il(X,Y-3)]

which is a first approximation to the product Z = XY.

When X and Y are positive, this does, in fact, give exact results for

integers.

Into the realm of hyperpolyhedral computing systems we certainly

nmst admit implicit functions wherein the output depends upon itself as

well as the inputs. That is,

Y = <I>(X,Y)

Schematically, the implicit feature appears as single or multiple feed-

back loops within the structure of the function which insert the output Y

at various stages in the forward computation process. A simple example is

the following:
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The open loop response characteristic is simply

Alf

K“_~

>X

K

--.1-Q

With the addition of the feedback loop the response becomes:

ii

K

+

Such a function might, for instance, be used to model the behavior of

+

a control valve as sketched below:

000000000

ggggggggquuua

_;2;;S;;==‘==:====i====;

P1 _-_: O illlillllllllllll IIIII‘ P2

i

_000¢§gg@ggq$u&&fl >0§00%00¢§

%1I

PC
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B?*.¢l‘.8?‘9P-P51 Rss.d.1as--¢PI1#1PP“a .L°5.1F,

1. Alonzo Church, Introduction to Nhthematical Logic.

In the context of true-false or binary logic the important "con-

nectives" or operators are introduced.

2. Paul Rosenbloom, The Elements of Mathematical Logic, pp. 51-65.

A discussion of multi-valued logic is given. The reader is cautioned

to note that Rosenbloom.interchanges the usage of IJrand..fn .

3. Hans Reichenbach, ,The Theory of Probability, pp. 387-389.

The author discusses some of the implications of a multi-valued 10819;

the reader should note that n-valued logic occupies a position on a contimmg

at one end of which is binary logic and at the other end of which is conthmm

logic.

B5¢35?9PP§ 3??§495'"H7P§§B2}7hed??1 F"nct?9P?

1. George A. Philbrick, Continuous Electronic Representation of Nonlinear

Functions of n Variables. (Palimpsest)

':i:__ ;.;."t-am_, ____.

The author introduces the concept of piecewise linear functions built1m

from.IJ[, Ill, and " + " for use in analog computing when it is desired.to

fit an analog model to a body of empirical data.

2. 'Thomas E. Stern, Piecewise-linear Network Analysis and Synthesis.

A formalism for dealing with piece-wise linear networks is developed

from the fundamentals, although a rather unfamiliar nomenclature is used.

Included are examples of polyhedral and pyramidal functions, as well as nwre

sophisticated.surfaces.

3. S. A. Ginsburg, Logical Method for Synthesising Function Generators.

The development and viewpoint in this paper are basically similar to

that in the Philbrick paper mentioned above. Here, however, somewhat more

attention is given to the background of the logical constructs which give

rise to the synthesis of piecewise linear functions.
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5. G. A. Korn and T. M. Korn, Electronic Analog Computers. Chapter 6.

In the context of a general discussion of analog computer techniques

are included.brief descriptions of polyhedral multipliers and diode function

generators.

5. H. J. Zimmerman and S. J. Mson, Electronic_Circuit Theory.

Use is made of networks of ideal diodes in the synthesis of models

sf warious essential circuit elements.
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IX The Steady-State of Energetic Systems

A. Introduction

The analysis of the steady-state plays a dominant role in pro-

viding us witheuioverall understanding of the behavior of energetic sys-

tems. Although the steady-state case, per se, is rather sterile and un-

interesting (but by no means trivial!) an insight into the steady-state

behavior of a system forms the basis upon which the analysis of its stabil-

ity and transient behavior my be founded. Consider, for instance, the fad

that the stability of a system may be evaluated by observing the result of

small excursions about a steady operating point. Moreover, a transient

condition in a stable system.is the means by which its operating state al-

ters from one steady condition to another.

We shall wish to distinguish between two types of steady-states:

(i) the static case, wherein the power flux is identically zero and all

that is required is a statement of the distribution of internally stored

energy; (ii) the stationary case, wherein the power flux is constant, at

least in the mean.

In rendering the description of the steady-state in terms of matmi

matical relationships we are faced.with the problem of modelling all sorts

of nonlinear, as well as linear, behavior.

B. The Static Case

E

Consider a four-ported system S. We define S to be static if it

is in equilibrium with its environment E such that all the f's, both in-
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ternal and external, are identically zero. If this is indeed.the case,

then certainly the power flow IF) is everywhere zero, and the state of

the system is entirely described through a specification of the distribu-

tion of internally stored energyTHE. In any real structure, which is in-

herently deformable, this is tantamount to a specification of the deform-

ation of the systemg i e., the displacement of every particle thereof.

Cases in point are electro- and.hydro-static fields.

A static system, then, is one which has passed through some sort

of transient condition during which power flowa.from the environment and

among the various parts of the system,were occurring. That is, we must

conceive of the attainment of static equilibrium as a process requiring

a finite interval of time. As the equilibrium state is approached, the

power flows all decrease, and of course, Vanish utterly when that state is

reached. However, in any such process of practical interest there has been

a net influx of power, leaving the system with internally stored energy

which is distributed in a manner characteristic of the conditions on its

boundary. The fact that such an energy distribution is ultimately re-

ducible to a distribution of deformation leads us to consider displacement

quantities

t

@

In particular, at each of the ports we are concerned.with the pair of

conjugate variables (ei, qi), similarly, a pair (e, q) may be identified

at each internal bond.

C. The Stationary Case

Referring to the sketch at the beginning of the previous section,

if S is operating in a stationary state, then it is in dynamic equilibrium

with E. In the case of strict stationarity the time derivatives of the f's

both internal and external, vanish identically. A weaker condition is that

Of quasi-stationarity wherein the time averages of the f’s are zero, i.e.,

each of the flows is fluctuating about some steady mean value.
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Strict Stationarity: f (t) 5 o or f (t) = F = constant

for all bonds

,3 ]fP = constant

for all bonds

Quasi-Stationarity: f (t) = o or f (t) = = constant

for all bonds, e.g.

r (t) i_F1 + F2 sin wt

.', IF) = constant

for all bonds.

'12!

D. Determination of the Steady-State

By "determination of the steady-state" is meant an analysis

which leads to a computation of the equilibrium magnitudes of the signif-

icant dependent variables of a system corresponding to a given set of in-

dependent variables, d.e., the impressed conditions at the boundaries.

Such an analysis is by no means trivial in the case of a complex system.

It has been stated repeatedly that in order to perform any sort

of incisive quantitative analysis the non-causal energy bond.r8t1¢ul&tiQn

must be transformed into a causal bond reticulation. Thus, in the

case of the four-port, D,

‘*1

H:

ID

wi

f1 e e3

-F’

the assignment of causality might result in the diagram

I/"""“’\\:'-/,r"“~.\

¢——,> e .—-1,

‘IV!

\_/

~ ’1§ §m

\§I-pr §—I

(D

Now, if there be any determinant stationary condition we must

be able to write
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1

f1 :®f(e1’ £2’ E3’ ft)

2

eg=@e (e1, £2, e3, tn)

3

£3 =¢p£ (e1, £2, e3, rh)

eh =@e (e1, f2, e3, fh)

If we are searching for a static condition then, of course, we replace all

the f's by displacement quantities (q); hence, there must exist a set

q=1(e,q e,q)

1 q 1 2’ 3 h

2< >

e ‘*1’ ‘12’ ‘*3’ “-1.

'9*F'£§**O*'6*

€(e]: (12: 93: (11,)

9), = e (91: Q2; 93: (1)4)

In the above it is to be understood that the functions <t>are of

the most general type. Hbwever, an important special case is that of

linear functions, although in the real world true linearity is never

found. Still, linear or linearized analysis facilitates the computation-

al process and permits approximte answers to be obtained quickly. These

are only in error to the degree that the system cannot be made to conform

to a linear characteristic within its operating range. The fact remains,

however, that one can quickly cite examples of elements which are essentially

nonlinear in character (i.e., linearization is not possible); indeed, such

nonlinearity is exploited.by the designer and.therefore cannot be overlooked

by the analyst. 1

Suppose that(i>f is indeed linear; then, for small changes in

the independent quantities,

= + -1-

AJC1 9’(1Ae1+ %2A3c2 ?’(3Ae3 ?'U+ Aft

This, evidently, has reduced the problem to the ultimate in simplicity,

Yet the jam,---the influence_goefT1cients -- are not always easy to evaluate.

E- System Reticulation for Steady-State Behavior

The most general case of a static functional transformation, i.e.,

One which yields up an output value ‘Nr(t) corresponding to an input value

X (t), is the operator @

XY
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In the present context we wish to consider practical measures which will

facilitate the determination of the steady-state behavior, and to this

end it is necessary that we reticulate the function. dp . Consider, for

example, the two port

.

Corresponding to each bond.there is a pair of conjugate variables, say

e and f. Thus associated.with this system are a total of fourteen

quantities, only two of which are environmentally determined, i.e., are

independent or input quantities. Hence there are twelve dependent or out-

put quantities, each of which must be evaluated in order to specify the

steady-state behavior. That is,

X Z {X1-»X2}

Y : {Y11Y2' 1 Y12}

. The only practicable decomposition of the function Q is one

which will yield up each of theyk individually. That is, we shall have

to reticuhaue db into twelve primitive operators of the form

X }¥ Y1 1=.-1,2,3,...,12

In the most general case, wherein implicit operators are employed, we

would thus arrive at the reticuhation:
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///////////%////%‘// Y1

1

/

1%

Z

////1 ////W/0 Ye

1& Y 7

1 N 1

Ye

F. Nonlinearity

It is propitious at this point to dwell upon the problem of non-

linearity, and how, in general terms, nonlinear behavioral characteristics

are rendered into tractable form for the purposes of quantitative analysis.

We must deal with two types of nonlinearity: (i) curvilinearity,

which may be linearized for small excursions about a steady operating point;

(ii) essential nonlinearity which cannot be linearized. Examples are
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sketched.below:

,Y

Y

A

)

, , ) ‘

curvilinear Essentially Nonlinear

Characteristic Char&¢t8riSti¢

Obviously it is impossible to linearize the essentially nonlinear

characteristic in the vicinity of the point O without overlooking a most

significant aspect thereof--namely, the discontinuity in slope at O.

Curvilinear characteristics may be approximated.to any degree

of precision by functions constructed from the basic connectives or opera-

tions

___>@l_._ _.__>@_,._-

___,_€_‘>_,____ ._.._l<?.____

The commutivity of the two inputs in the case of "sum" and "multiply" is

most important. However, "minus" and "divide" are asymmetric, and there-

for non-comutative. These four operations are the basis for all

algebraic functions.

A class of "logical functions" -- the hyperpolyhedral functionfl"

have been introduced which suffice to construct any linear, curvilinear,

or essentially nonlinear characteristic to an arbitrary degree of precisiun

Z, 0/ X

/ /
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These are founded upon the operations

Due to the piecedwise linear property of the hyperpolyhedral functions

a curvilinear characteristic is automatically linearized, while the dis-

continuity ;mfan essentially nonlinear characteristic may be exactly

preserved.
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X. Functional Transformations and Computing Functionals

A. Introduction

We have said.that a multi-ported system which is undergoing

some sort of generalized energetic process may be conceived as an element

that accepts an input vector §§,= {Xi I i = l, 2, 3, ..., ni} upon which

it operates according to the functional 117 to yield an output vector

Y {Y1 I 1 = 1, 2, 3, ..., 11} ; the f'LJ11C!’C.iOnalqI is such that the

entire past state of YXI is scanned to yield a single present value of

TE? . Now, in order to compute the system state at any particular in-

stant it is essential that not only the external outputs ‘Yi(t) but also the

states of each of the internal bonds be computed. We thus desire a retic-

ulation of REJ which permits each of these internal states, as well as the

external output variables to be displayed individually.

B. Computing Functionals

To permit any sort of computing or quantitative description,

whether by machine or by hand, the element

must be reticulated into a set of primitive scalar output functionals

XY

We are thus concerned about the specific way'EE7 must be reticulated for

computing purposes to allow the state of the system to be completely

described. To emphasize that this concern stems from the desire to com-

pute we shall introduce a special symbolism for the primitive computing

functional:
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The small circle indicates the output side of the functional. Deleting

the box, we have simply

_l

Thus, in order to model a two-ported elemnt two computing functionals

mnght be interconnected as follows:

1I‘<>———-

X1 1\

)<22 ,,/ 1T2 ° ‘ §{1

/Te °—J_'Ye

As is the case in this illustration, it is generally necessary to employ

feedback loops in the synthesis of complex computing functionals. As before,

the presence of such loops results in implicit computing functionals. Now

the functional

X1\

X/

represents all possible (i.e., conceivable) deterministic transformations

of inputs {lXi | i = 1, 2, 3, ..., I1} into an output Y. It determines a

present value for Y from the present and all past values of the Xi. Under

no circumstances whatever can we demand, nor is there any use for a functional

which requires a future value of an input to compute a present Y. Indeed,

this my be regarded as the rule or law for the construction of computing

functionals.
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Consider as two examples of commonly accepted functional

operators the ordinary time differentiator and time integrator, symbol-

ized

Derivative:

Integral: -------Jr o-----___

Now, it is theoretically impossible to compute the "exact"

derivative of a variable without a knowledge of its immediate future. That

is, by definition,

i<t>=lD[x<t)1=g rx<t>1

dt

= lim X_(?°_t At) .". X (F '.A_’°l

At—>o ' ‘ " can t ' '

Thus, according to our conception of an "allowable" computing functional

differentiation is not physically realizable.

On the other hand, the operation of running integration is readily

constructible for

Y<t)=f [X<t)1=[/’dt1*X(t>

requires only a knowledge of the past history of X to compute the present

value of Y. Thus, we conclude that, as a rule of thumb, differentiations

should.be avoided in computing -- indeed there is no way to accurately

differentiate -- while a very accurate integrating operation my be physic-

ally realized in analog or digital form.

A second important conjugate pair of functional elements are the

time advance and time delay:

Advance:

relay:

G
e
n
e
ra

te
d
 o

n
 2

0
1

4
-0

2
-1

1
 1

3
:1

4
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
6

4
8

7
4

9
2

1
P
u
b
lic

 D
o
m

a
in

  
/ 

 h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p

d



Qgrt X 2.751 CLASS NOTES 111

we immediately note that IE3 is not an allowable computing functional since

Ytn=Ew1xan=xa+n

On the other hand, Ah is realizable since

Y(t)=A*[X(t)]=X(t-tr)

Thus, we see, by way of the above examples, that while the rela-

tion

-1

IFIF = I (][~1d=nt1w)

holds in theory there are many cases where the converse1or inverse of a

functional is not realizable, and.hence the symbol.H‘ has no physical

significance. Mbreover, although computing functionals are the basic

building blocks in any computing program, analog or digital, many function-

als my be realized only in one of the two media. For example, precise

integration is possible only on the analog machine while precise time delay

is a digital operation. However, both the physical model realizable on the

analog computer, or the "logical engine" resulting from a digital program

may be depicted as shown below:

kbynézzpzal /n%0zuwza0z0vnuz0v//Zuzv/iii“

X /

///1////J /1////W/77//0 .

1 z

I 1 '4 1 _ Y

\%////////,|‘E////////%///// "

I n

‘\

[I \l I I I\I

Y
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That is, in general a computing representation or model of a given system

may be depicted as a network of computing functionals, containing multiple

feedback loops and yielding as outputs all the variables of the system

necessary to fix its state.

.Ba¢§<s;v<>v41_<1 Regains - 10°11?-Plliills. ssxsfesli

( 1) HA-RTREE, 11- R- Qalslllefiins Instr?-m=,11.‘<>§. ens ys9a1n¢1s.-

This classic work treats the principles underlying both analog and

digital machines and describes some of the instruments of historical

significance.

(2) IVALL, T. E. Elegtronic Computers.

A collection of readable British essays on analog and digital

electronic devices originally appearing in "Wireless Worldf, ‘

<3) SWTT, N- R- A~na1°is¢;%1!1.1li.;si#¢-l 9¢¢HP11f@¢r.Ts9hn@lQs>'-

A contemporary work detailing the structure.and applications of

modern high speed machines. ’

<1») von NEIMANN, J- E1ie_<19mPut¢r.and the smin.

A most provocative posthumous essay by the late great mathemtician,

leaving unanswered.the query as to how nature yields such accurate

and.reliable signals from noisy and erratic components.
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XI. Diagrams and the Coding of System Structure

A. Signs

We are here concerned.with a problem of communication -- specific-

ally, the transndttal of the description of a reticulated system from

one human mind.to another. We seek a form of description which is complete

yet sufficiently succinct, and of such a nature as to permit a verbal trans-

ndttal, over the telephone for example. Thus, an encoding of the schematic

description is indicated.

To provide a background for this discussion we consider briefly

the general theory of signs or semiotics. Charles Sanders PEIRCE states:

"A Sign, or Representamen, is a First which stands in such a genuine triadic

relation to a Second, called its Object, as to be capable of determining a

Third, called its Interpretant, to assume the same triadic relation to its

Object in which it stands itself to the same Object."

All sorts of human communication is accomplished by way of a sign-

activity. That is, an individual.A employs a sign S to communicate an

idea of an object O to a second individual B in whose mind an interpre-

tation I (also a sign) is evolved as a result of perceiving S. The

situation is not uncommon in engineering analysis wherein the individuals

A and B are the same person, and S is a sketch or diagram drawn as an aid

in problemesolving -- a form of self-comunication.

Peirce is to be credited with the trichotomy of signs into the

classes: (i) Icons; (ii) Indices; (iii) Symbols. Quoting directly from

Peirce:

"A sign is either an icon, an index, or a symbol. An icon

is a sign which would possess the character which renders it

significant, even though its object had no existence; such as a

lead-pencil streak as representing a geometrical line. An index

is a sign which would, at once, lose the character which makes it

a sign if its object were removed, but would not lose that char-

acter if there were no interpretant. Such, for instance, is a

piece of mould.with a bullet hole in it as a sign of a shot; for

without the shot there would have been no hole; but there is a

hole there, whether anybody has the sense to attribute it to a

shot or not. A symbol is a sign which would lose the character

which renders it a sign if there were no interpretant. Such is

any utterance of speech which signifies what it does only by

virtue of its being understood to have that signification."
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Thus, an is a characterizing sign which exhibits in and by

icon

itself the properties which an object must possess to be denoted by it.

Examples of icons are photographs, models, star charts, and chemical

diagrams.

An is a directing sign which refers to its object by a

index

dynamical or spatial connection and otherwise bears no resemblance to the

object. Sub- and superscripts, index marks, clocks and meters, and any-

thing which focuses attention or startles may be considered an index.

A symbol is a characterizing sign which always involves a rule

or convention to establish the connection with the implied object. The

utility relies utterly upon the mind of the interpreter to conjure up its

meaning and significance. For example, names of people, things, stars,

and elements, as well as code marks and mathematical notations, are all

symbols.

A sign -- a schematic diagram, for example -- which refers to a

physical system.as its object, embodies all three classes of sign-action.

The bare skeleton of the diagram is iconal, exhibiting directly certain

properties of the system. This skeleton, however, is endowed.with various

labels, arrows, etc. which involve indicial and symbolic sign-action.

For example, in a block diagram.a component might be labeled""Tr:fQ

which directs the reader's attention, or perhaps memory, to the previously

made definition of this functional -- as distinguished from the definitions

of ‘§?'2,'\¥’3, etc. -- and thus involves both indicial and symbolic sign

activity.

B. Communication of a Computing Structure

Schemata of various sorts -- block diagrams, signal flow graphs,

etc. -- are invaluable aids to the description of systems and to the

communication of their structure. we are specifically concerned with the

problem of describing and communicating the nature of a computing structure,

i.e., a network of computing functionalsjflfii. We desire a method which is

sufficiently flexible to describe the most general types of nonlinear

networks and which will lend itself to encoding for the purpose of verbal
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1 x2 ye A 5 2 A

transmdttal.

Two essential dichotomies may be discerned in the realm of

schematic representations of system structure. The first is now

familiar to us: the causal (bilateral signal flow) vs. the non-causal

(energy bond) representations. The second dichotomy subdivides the

large and variegated class of "branch-node" schemata into, on the one

vhand, those representations which identify the functional operators with

the nodes and.the signal variables with the branches (block diagrams);

and, on the other hand, those representations which identify the variables

with the nodes and the operators with the branches (Mason-Tustin signal

flow graph ).

B___._..c_._ f-B___a_e 6

y4 Y6 f4 s

(Causal Bilateral Signal Flow Non-Causal Energy Bond

Diagram. Diagram

F33

Functional Block Diagram Signal Flow Graph

Operators: Nodes Variables; Nodes

Variables: Branches OPerat°rS: Branches
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The non-causal representation, a generalized circuit diagram,

uncluttered.and simple, enables the experienced analyst to visualize

quickly the behavior of a system, while the causal description is es-

sential for a detailed quantitative understanding of its performance.

The block diagram.is especially suited.to determining the transfer char-

acteristic of a structure of interconnected.elements, provided the bound-

aries of the elements have been correctly chosen. In the case of a com-

puting structure, which is our present concern, these boundaries are gen-

erally self evident. The block diagram.has the distinct advantage of be-

ing applicable to the case of nonlinear as well as linear systems. The

signal flow graph, on the other hand, may be used precisely only to de-

scribe linear networks since a summary action is implied.at each of the

nodes; that is, for example

X=:FX-I-IFIX

1 o1 o 21 2

For all these cases, however, we seek a representation which is

capable of being encoded, and for this purpose the following branch-node

structure suggests itself:

ID
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this structure my be easily encoded by way of the following tabu-

iationt

Y II‘ X

l T1 1,2,3

2 11", 2,3,1

3 IF‘, 3,1,2

{Corresponding to each node there is a single output y, that results from

operation of the associated functional F upon the input signals,

which in this case are simply the outputs of all three nodes. Thus, for

Séemmple, the first row of the table might be read, "the signal y, re-

tsflts from the operation of T1 upon y] , y2, and y3" . In actuality, of

Lfcourse, the entries in the F --column would indicate the nature of the

ifunctionals, say by way of a numerical coding: 1 for an upper selector,

for a lower selector, 3 for an integrator, etc. It is thus possible

éto communicate succinctly a complex structure in the form of a table or

jsequence of numbers only. The task of transforming this number sequence

iiinto a readable diagram and vice versa is almost trivial.

What we have done here is to treat a specific application of the

v>

ibroader theory of which in turn stems from the mathematical

discipline of topology. This general study deals with the

{ways in which the structural connexity of a space my be described and

communicated; we recognize this as precisely the problem with which we

been concerned, wherein "the space" happens to include a computing

§§system and the connectedness of interest to us embraces the functional re-

élatiomhips between the several computing components. In combinatorial

giiopology connexity is communicated by way of ‘incidence mtfriiciea, a

*5

gcondensed form of which are the coded tables here suggested for use in

4?

gcommmicating system structure.

Combinatorial Topology - Incidence Matrix

A. W. TUCKER states: "Topology deals with the rudimentary

ggeometrical properties which depend on continuity rather than on size

land shape." The domin of discourse is a sfice in which the topologist

attempts to establish theorems related to connexity and structure.

G
e
n
e
ra

te
d
 o

n
 2

0
1

4
-0

2
-1

1
 1

3
:1

4
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
6

4
8

7
4

9
2

1
P
u
b
lic

 D
o
m

a
in

  
/ 

 h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p

d



118 2.751 CLASS NOTES

I

Henri POINCARE is generally cited as the originator of this branch of

mathematics, which he named analysis situs.

Connexity is depicted by way of linear graphs or, alternative-

ly, by incidence matrices, A linear graph is constituted from nodes and

branches. A digraph (directed graph) is a linear graph in which the

branches have been endowed.with a directional sense. An example of an

ordinary linear graph is given below:

1+

8

In this graph there are nine branches and six nodes. The associated

incidence matrix may be easily written:

1

2

3

A

5

6

1 b c

:51

:10

1 O

O 1

00

00

f g 1 h p i J

V Owwrfi O O 2 O82"

O O O O

1 1 O O

O O 1 O

1 O 1 1

O 1 O 1

In this matrix an entry of "1" indicates

an entry of "O" indicates no impingement

labelled incidence numbers.

simplexes or

a branch-node impingement,"whfR

The elements are therefore

A topological space is a complex constituted from.a number of

cells; these are labelled, according to convention, as
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follows:

Hence, the incidenc

structure, is calle

defined the numbers

an

8.

O

aw

‘*2

The rank of the inc

O-cells : nodes

1-cells : branches

2-cells : loops

e

d

matrix discussed above, which depicted a node-branch

the "O1" incidence matrix, or simply 1:01. Poincare’

= number of k-cells in a complex

= number of O-cells

= number of 1-cells

Q-0

1-»

number of 2-cells

idence matrix H:k’k+1 is denoted rk. Since no signific-

ance has been attributed to Ilk k+1 for ks-1 it is necessary to restrict

J

this definition to hold only for k = O,1,2,... . Hence, we say that

we also define the k order

rk = rank of I[k_1’k (for k = O,1,2,...) ; r_1 E O

th

Betti number

bh=*’1<'rh'rh-1

so that, in particular, the zeroeth and first Betti numbers are given by

b = a - r 3 b = a - r - r

which requires that

define

Q Q 0 1 1 1 O

some significance be attached to bo. Accordingly, we

b E number of separate connected parts in a complex.

O

with this it is now convenient to define the rank R of the linear graph as

which yields an alt

=5, -‘b

O O 0

DU

III

H

ernative definition of the first Betti nunmer for linear

graphs, since r1 E O, namely

b = a - a + b = a - R

1 1 o 0 1
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It is also propitious to observe that soe authors refer to the first

Betti number as the nullity, N.

The Euler characteristic is defined in terms of either the bk or the ak

as follows:

as

111

wt‘/1

C!"

K <-11*‘ -£5128, <-11*‘

The Euler characteristic for a connected linear graph of V nodes

and B branches is simply

K = b - b = a - a

o 1 0 1

or K = 1 - N = V - B

Since R = V - 1 we thus obtain the fundamental invariant relation for all

linear graphs

B = R + N

which is identical to the previous result b1 = a1 - R.

By way of illustration of the significance of some of the above character-

istic numbers three theorems are stated.

Theorem . If we start with the O-cells of a linear graph and

1

add the 1-cells one by one, the number of 1-cells added joining nodes not

previously connected is ro and the number of 1-cells added joining vertices

already connected is b1.

In connection with this theorem it is well to point out that a

complex which contains no loops -- i.e., no closed paths within the structure

but which would contain a loop with the addition of a single branch, is called

a tree. A forest is a complex consisting of a number of disconnected trees.

Theorem 2. The first Betti number of a forest is zero.

Theorem 3. If the first Betti number of a graph is b1, we can

remove b1 1-cells from it, but no fewer, which will reduce it to a forest.

These theorems are stated without proof for the purpose of illus-

tration only. From them we observe the importance of the rank R and nullity

N in the topological characterization of a space.
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ecleeiomi Reeaiiee - S1 B

(1)

(2)

(3)

(A)

(5)

(6)

Sn

PEIRCE, C. S. Phiglogsophicalf (edited by J . Buchler ), Logic

as Semiotic: Theory of Signs.

Peirce presents his form of the theory of signs--the logic of semiotic,

Much of the point of view adopted in this course originates with Peirce,

although this subject has been taken up and colored by more recent

thinkers in this field (and occasiomlly presented in more readable

fashion).

GAI1-IE, W- B- Beircqe. and P1'.aS_1IB.-.t,1$£1!

Gallie presents a compact sumnary of Peirce's semiosis and theory of

signs.

YOUNG, J. W. Lectures, on _Fundamen,tal, Concepts of Algebra and Geometry,

S2216--12139, (Growth of Algebraic) *Symb' W'oli'sm,1 by“ A '

U. G. Mitchell)

The history of the use of symbols in algebra and arithmetic is traced.

MORRIS, C. W. Theory ,o,f,,Si,g_ns

Morris presents (without adequate citation) 1IIlJ.Ch of Peirce's thought

on this subject.

<=H11RRY. ¢- 911 .¢°!'4¥'I*11.R1.°§’°.i.°.P4 ¢bBP- 3, P1» 219426-

This is a modern text in which signs are discussed as a part of the

broader subject of communication. Much of Peirce's thought is a@.in

represented.

TRUXAL. -1- 6- A111=.<>;s¢.1s=. Fee.®e9k. 9s>_I¢,1's>.1. .S>aP¢m. ?>1flFh@Bia> °heP- 2-

A discussion is given of the disadvantages of block diagrams and

the lhson signal flow graph is presented as a useful tool in systems

analysis.
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.Bssl<e".@.v-ml Bass-iss. ~ TPl?.<.2}.°§;Y

(1)

(2)

(3)

(it)

SYNGE, J - 1- Ts-==. F1e§as@sPsl.111s1>aea sf. E,l¢9’si1¢s.1 lleivorlisi Qw-1*"-‘fly

of.Applied.Math., July 1951, p. 113.

In his development of the theorems and concepts leading up to the

"fundamental theorem" the author employs a very readable intuitive

approach. Much of this development is purely a discussion of

topology and digraphs which is direct support of the material on

this subject presented herein.

TUCKER, A. W. The Tgppioggieai Concept §>f_Space_. (A lecture given

at the salioied Elnetitnted of Mathemtics ).

Tucker discusses many of the essential concepts of topology without

resorting to formal mathematical proofs. Thus, his approach lends

itself to a deepening insight into this subject, beyond the super-

ficial statements made in these notes.

SINGER. James Qssa+.P11nansi.<2asl.emly§1s.$live- (A lecture siren at

the Galois Institute of Mathematics). (1935)

This reference contains much.of the material used in these notes.

The theorems merely stated.herein are stated and proved by Singer, as

are several additional theorems which concern the structure and

connexity of linear graphs.

SINGER, James. Two-Iumensional¥Analysis,Situs. (A lecture given at

the Galois Institutewofv mthenatiee). (1936;

Many of the statements made by Tucker are discussed more thoroughly

in this reference which extends, along intuitive lines, into the

topology of two-dimensional spaces (surfaces).
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s. Coded Representation of Graphs and Digraphs

The original branch-node incidence matrix of the previous

section may be encoded in a simple array merely by condensing or col-

lapsing either rows or columns in the following alternative fashions:

ROW CODE COLUMN cons

1 a c a 1 2

b 23

2 a b d e C 1 h

Bbfg @211

M c e 2 5

an f 35

56-£111 g36

111.15

6511 156

It is readily apparent that an encoding by rows gains rapidly in

efficiency and simplicity as the connexity of the structure increases if

the specific node and branch tags are both to be transmitted. Nevertheless.

we shall have frequent occasion to use both forms of coding as required.

Essen} (l3.%"8.~.11¢.P.:I£9B) Zs2.21:1§.1_"-.<>.e Metals

I In addition to the first (node-branch) incidence matrix, the

fietrix indicating the cyclic or closed-loop character of the system structure

is also of fundamental topological interest. This circuital or branch-loop

incidence may'be<h£ermined for any reticulate system by indicating the

incidence of all branches upon N + 1 independent loops where N is the nullity

(i.e. the number of branches-out-of-tree) of the structure.

L O O P S

I II III IV V

r To was s ,, V 1 s s B a 1 1 . . .

RM ‘ b 1 I I 1 Q

A: 1 C 1 1 0 0 0

11% I <1 . 1 1 . .

‘ e 0 0 1 1 0

H f . . . 1 1 ‘

E g 1 1 . . . 1 I

S ‘§ h 1 0 1 0 0

1 1 1 0 0 0 1

\‘.__ _ _ _
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PP§.l. QEQPPE

For the graph previously depicted and discussed, the rank

R = 5 and the nullity N = 1+. Therefore, for the dual graph, the rank

12* = 1+ and the nullity N-* = 5. This dual graph may be constructed directly

from the transpose of the second incidence matrix, merely using the topo-

logical dual isomorphism:

(N +1) Loops 4--> (R* +1) Dual Nodes

(B) Branchefi" <——> Dual Branches

Thus the

first

transpose of the second incidence matrix of the original graph This gives

in coded form:

corresponding to the graphical form'

I

I

I

III

I

n—n

-—-

__

V

V

ll

5

O

ai

al

dl

‘bi

f!

1——w~

-1

-_

the original figure-

-e

-

9

5

1+

~—_i

DUAL: R*

N*

13%

by contrast to

R

ORIGINAL:

N

B

A well-known theorem of topology due to Hassler WHITNEY states Uni

a dual graph can exist only for a planar graph (i e. a linear graph wnich NW

9

‘bi

Ci

e!

ei

gl

incidence matrix of the dual graph is merely the

cc

as

ha

fa

is

s'h

be homeomorphically mapped onto a plane or a sphere)
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E. Coding the Energetic Structure of Multiport Systenm

The previous incidence matrices and equivalent codes may be

used for the topological structuring of multiport systems, provided that

the system is closed, and the following correspondence is employed:

MULTIPORT ELEMENTS <——> NODES

POWER BONDS <+—1> BRANCHES

First, it is possible to close all otherwise open multiport

systems by a simple artifice. Since an n-ported system S must necessar-

ily be bonded to an n-ported environment E , we can always annex the en-

vironment to the system itself to form a necessarily closed system, in

the fashion:

./T1\.

\//

To emphasize the complementary aspect of the environment in this circum-

stance we may denote the environment of S by the underscored symbol, S.

Thus the closed system becomes ,,-ix

§. E S

\__,/

The duality between S and. S is complete since

S 2 S

which means in words that the environment of the environment of a system

is the system itself.

Thus if the system S is coded as:

S a b c ... n

then we may designate the environment S of S as

S a b c ... n

and the two subsystems as a single closed system becomes in coded form:

S a b c ... n

S a b c ... n

If the system is closed to begin with no complementary element, S ,

is required for closure.
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In the nontrivial case the internal energetic reticulation is

also given. For example the structure:

B e

iA~¢i

f

_§ a b

A a c f

B c d e

C b d e f

might be encoded as

From the code itself we may infer the following facts, among others:

1) The overall system is a 2-port

2) It has been reticulated into 3 multiports, namely

a) two 3-ports

b) one h-port

The assignment of CAUSALITY may be accomplished using the code

alone as follows:

I ... EFFORT inputs are unmarked;

II ... FLOW inputs are underscored.

Thus a typical causality would be as follows:

deb

A a_E f

B c_d_§

C b d e f

This means that S itself is of the form

S a b

m

0‘

M

tn

since S ‘a b is its complement.

—-n pm

fl~
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Tiles !.'I:=.¢}1_a2.i..¢§. 9?. §xs_*=_esIsEeI;¢211ee¢§i2I1

Consider that we were assembling the original system from the

subsystems A, B, C, whose ports have been assigned consistent causality.

In this case we would have started with

A

in

0‘

0

-—

; B ag P-| 2| , C EH CH -qt!

The primes would not generally appear in the separate listings and are

here indicated only to prevent confusion.

The initial step requires the unique labelling or, better,

numbering of all ordered ports, for example as follows:

A 1.5.3. B 11.;

E»

This array corresponds to the

1

2

4

5

6

._-

01.

CD

€<>

ls

(element-bond) incidence matrix

7 8.

9 10

A I1

B .

C .

l

1

I

l

1.

1111'

The particular interconnections given previously may now be

expressed'by

UUO“\\J11\D

1|

11

1|

'-‘\O@

O 43"

These column identifications result in column additions in the

system matrix and reduce the matrix to:

A

B

C

S

11,1089

++++

12356

11_1..

.1._1_1_

..111

_1_..“..

ddab1'1c*fd*‘e”
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where the environmental § row may be added such that the column sum

vanishes identically for every column.

The corresponding coded system may now be written:

éaf

A a h_c

Bbie

C c d e f

To render this in a coded form identical to that of the original,

only simple permutation of letters is required in the form:

b c

c f

This yields the equivalent code

C1 U1 11> U1

he o m m

n»ln-lo d

m lm w

0’

-uni

which is merely a permutation of the first system and is therefore topo-

logically or structurally identical.

,3l1°}‘§1i°e11E@_3¢@d4P5 7'_'_* cG_I‘c%I1hFc»c P153l@,'2h5a_.°l1l<i N°it?f°?".k§

(1) CAYLEY, A. oh the Analytical Forms called Trees, with Application to

the Theory of Chemical Combinations, Beport_o§_the_British

Association for the Advancement of science, pp. 257-305 (187?

(2) KEMTE, A. B. A.Memoir on the Theory-of Mathematical Form, Philosophical

Transactions, pp. 1-70 (1886).

A little known and truly remarkable anticipation of combinatorial topolww

whose origin is usually credited to the papers of POINCARE.

(3) KOENIG, D. Theorie der Endlichen und Qnendlichen,Graphen, Chelsea

Publishing Co., New'York (1950).

This relatively recent book has now become a classic in this field.
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Ighckground Reading -- Graphs, Digraphs, and Networks (continued)

-pr"

(h) WHITNEY, H. Non-separable and Planar Graphs, Transactions of the American

Mathematical Society, Vol. 311, pp. 339-362 (1932).

The author here proves for the first time that duals exist only for planar

graphs and therefore for planar logical and electrical networks.

QQ HOHN, F. E., S. SESHU, and D. D. AUFENKAM. The Theory of Nets, Trans-

O\

(

acti§ns of the IRE, Vol. EC-6, No. 3, pp. 15h-161 (September,

1957 -

The authors generalize the concept of a digraph into a net to include

certain higher order structural information. Many theorems and properties

of universal value may then be adduced.

SHIMBEL, A. Structure in Communication Nets, Proceedings of the Symposium

Von Information Networks, Polytechnic Institute of Brooklyn,*d

Brovklyn, pp- 199-203 (1955)-

This paper propounds concepts and methods which enable the determination

of the minimum paths and resultant trees in any communication digraph.

(U HARARY, F. Structural Duality, Behavioral Science, Vol. 2, No. h,

pp. 255-265 (October, 1957).' ('11)

A very readable treatment of various duality transformations applied

to graphs and digraphs.

(8) GRAYBEAL, T. D. Block Diagram Network Transformation, Electrical Engineer-

(9)

125, pp. 985-990 (November. 1951). 0 ~ 0 ~0 it "

STOUT, T. M. A Block-Diagram.Approach to Network Analysis, AIEE Trans-

actions, pp. 255-260 (November, 1952).

Q0) MASON, S. J., Feedback Theory--Some Properties of Signal Flow Graphs,

,Proc. Inst. Radio Engrs. A1, 11th-1156 (September, 1953).

$1) .......... Feedback Theory--Further Properties of Signal Flow Graphs,

Proc. Inst. Radio Engrs. 111+, 920-926 (July, 1956).

The four papers above deal with transformations and equivalencies of flow

graphs.

SESHU, S. and REED, M. B. Linear,Graphsand,Electrical_Networks .

This excellent text has a sumary of much of the above and an excellent

bibliography.

G
e
n
e
ra

te
d
 o

n
 2

0
1

4
-0

2
-1

1
 1

3
:1

4
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
6

4
8

7
4

9
2

1
P
u
b
lic

 D
o
m

a
in

  
/ 

 h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p

d



130 2.751 CLASS NOTES

XII» §PsPs.-Dsisssiass $Xst¢eB_

A. Introduction

§§§§§Et1EE§_PZE§@£E§-§E§-§§§PE:PEPE€9%ES§_§XEEESE

A class of one-port elemnts of great practical importance is

associated with the historical concept of state-determined systems. For

such idealized systems the specification of a certain delimited set of

parameters is sufficient to describe completely the behavior of the

systems These parameters are said to determine the of the system

state

in the sense that when the values of such parameters are known at any

instant, the behavioral configuration is also known at that instant.

Any particular system is then specified merely by fixing a set

of static, generally nonlinear relationships between these state variables.

All problems in the generalized dynamics of such state-determined systems

are reduced to the purely kinetic or kinematic "motion" of a representa-

tive point in a multidimensional abstract space, called the pha§§_§pag§.

In such a phase space any single point represents a possible state of the

system, and.a connected set of such points, or phase trajectory, represents

a "history" of the system. ~

The essential significance of the concept of a state-determined

system rests in the fact that the future behavior of such a system is

determined completely in terms of the complete specification of the instant

aneous present state of the system, together with the temporal fluctua-

tions of all "external forces" during the future period. In many prac-

tically important cases where the external effects are small enough to

be neglected, so that the system may be regarded as effectively isolated

or closed. the. fates b?l1!*f"‘.i9? .15. @s#¢¢'sin¢.<1 <>s=l.¢s sari for. s.1.,1J~129n

§11>s<=.i.f1¢sF1Pe of the 1.I¥1.*?1?*.3E .sPeis_ e.1aI1s.-

This fascinating notion utterly dominated.the growth and evolu-

tion of classical mechanics until just before the outset of the present

century. Indeed, we may quote the following from G. D. BIRKHOFF

(Dynamical Systems--1927):

In dynamics we deal with physical systems whose

state at time t is completely specified.by the values

of n real variables

X1, X2, X3, ..., Xn
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u.

Accordingly, the system is such that the rates

of change of these variables, namely _

GX1/dt’ 6X2 /dt’ GX3/dt’ ’ dxn/dt

merely depend upon the values of the variables them-

selves, so that the laws of motion can be expressed

by means of n differential equations of the first

order,

d.xi/dt= Xi (x1,x2,x3,...,xn) (i-.=1,2,3,...,n)

However, more recent physical treatments have acknowledged the fact that

no naterial system is ever isolated, nor is the instantaneous state ever

capable of complete determination; out of this realization have been

evolved modern statistical mechanics and other stochastic views of the

'7knowable" physical world. Despite this, state-determined "models" of

material systems will continue to play an extremely useful role in en-

gineering analyses which are directed toward the practical prediction

of approximate perfornance.

itstezletemined Sv§Ees§-s§-¥992%§

Quoting from the paper by Arturo Rosenblueth and Norbert Wiener,

its Role of Models in Science:

Nb substantial part of the universe is so simple

that it can be grasped and controlled without abstrac-

tion. Abstraction consists in replacing the part of

the universe under consideration by a model of a sim-

ilar but simpler structure. Models, formal or intel-

lectual on the one hand, or material on the other, are

thus a central necessity of scientific procedure.

Thus, whenever an engineering problem must be studied, other

than by direct manipulation or experimentation with the actual system

involved, it is necessary to have recourse to models of some type.

I Often these are real or actual modelsi in which physical counter-

Pfllts are involved. Sometimes they are earlier versions of the same type

°f System or are extant and similar devices. Often they are simplified

0r scaled down versions in the form of research models and pilot plants.

Qigain, physical models in the form of analogies are frequently used

$111 considerable effectiveness.

In many other circumstances, only conceptual models are employed,
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in which rational abstractions and idealizations are mde to correspond,

with more or less validity, to real situations. These my be rendered

precise--but not necessarily accurate--in the form of mthemtical

models, in which the component elements are mthemtical variables

interrelated througi various mathematical operations .

If these operations can be restricted to a small collection

of simple computing operations, we can thus construct a corresponding, at least approximately, to any given engineering situa-

tion. lastly, if the operations upon and interconnections between vari-

ables are actmlly realized in a physical device, the corresponding com-

puting system does; in fact, constitute a physical model

In previous clnpters we have discussed the nature and descrip-

tion of computing models in considerable detail. We now turn our at-

tention to the state-determined model of the physical universe, which

is intrinsically a mthenatical model, and, although it has certain

shortcomings which will be pointed out, it does succeed in describing

a great variety of phenomena.

B. Elements of a State-Determined System

Any state-determined system my be reticulated into just two

kinds of multi-ported elements: (i) one-port impedances, which are

generically denoted -x, and which include ideal resistances (-12),

capacitances (-C), and inertances (-I) together with the ideal effort

source, (-E), and ideal flow source, (-F); (ii) multi-ported energy

Junctions, which are generically denoted -J~, and which include the flow

Junction and the effort j1mction .- Hence, we have at our dis-

posal a field of seven elements:

1 Port Impedances 3 Port Energ Junctions

.1 .4.

-R

-C -Q-

-I

..E .1.

-F
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The dylnmical models of Newton and Faraday and the field model of

mxwell for electro-mechanical interaction my all be reconstructed

from this seven-element universe . Moreover, Iagrangian and Hamiltonian

mechanics treats systems which my also be reticulated into these same

elements. Hence, at first glance, we might be prone to say that all the

universe may be modeled as a network of these seven multi-ports!

A further reflection will reveal, however, that there are

certain two-and three-port elements which for example satisfy the con-

ditionzlpzo yet are not energy junctions, mmely, ideal transducers,

transformers, levers, and differentials . Obviously, without such ele-

ments it is impossible to model or to construct a host of essential nan-

nade devices. Thus, we must conclude that the seven-element universe

of classical mechanics is by no means complete. To represent all con-

ceivable system; we must not only add other state-determined elements,

but also auguent these with more general multi-port elements .

C. The lbthemtical Construct of a State-Determined System

We shall now concern ourselves with the mthemtical structure

of the state-determined model. The most general form consistent with

the underlying assumptions and concepts of state-determinism will be

compared with the classical form which was stated briefly by way of the

lquotation above.

First of all, the state-determined system is one whose condi-

tion at any time (t) is precisely and completely specified by a finite

feet of variables X (t) =.- {xi(t) |i =1,2,...,I1}. It is therefore

easy to see that an instantaneous condition or state of the system is

Qepresented by a point in an n-dimensional phase-space. As the condi-

glzion of the system alters, due to the action of disturbances at its

immdaries the state-vector Xtraces a path in the phase space which

8-Ppropriately call the phase trajectory.

Before proceeding further it is well to point out that a system

condition is completely described only by specifying eh infinite

flvmber of variables cannot be "‘s‘tate-de'termi11ed,"-~-~ ihaeea there is ho

he of compulzing its etete in a finite time.

we have said that the state-vector X is a function of time, t;
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more generally, it varies according to some running parameter which

usually possesses the dimension of time. Actually there is no "clock"

capable of keeping a perfectly continuous running record of time; how-

ever, we may think of the parameter t as being either discrete or con-

tinuous for the purpose of computation. In particular, analog computa-

tion usually employs a continuous time parameter (either "real", or scaled)

while digital computation uses a discrete time parameter, i.e., the state-

vector is computed.every hundredth of a second, for example.

With these notions understood.we may now turn to the primry

assumption in the construction of the state-determined model. This

concerns the manner in which the instantaneous state is related to

earlier states. This result is equivalent to restricting the nature

of the phase trajectory which may pass through a certain state, say X(o).

In the most general form, this condition is expressed as follows, in

accordance with the functional notation we have employed up to this

point:

X = '1r*m*tx

That is, in words, a unique present state )< (t) is determined by the

trajectoryj)((t-'rPr>o). Such a determination involves a static

(possibly implicit) function ® of all the variables {xi | i =_- 1, 2, . . .,n}

and.a time translation operator 1['of a peculiar type. Let us immediately

compare this purportedly general form with the classical form.which we

have already seen, namely wherein the rate of change of the state-vector

3g_is a static function of the state variables ~{xi | i = 1,2,...,n.}.

That is,

<1(_3§ @{(Xi| 1=1,2,...,n)}

This we my write in the equivalent compact form

a.X

@(X)

dt

or, in the integral form

X=rf"dw*¢I><X> =T*<rI»*X

-cn

Upon comparison with the form first stated it is evident that the time

translation operator TH‘ corresponds to, and therefore must be of the samfi
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general nature as the running integrator [ I <11; ].

1), The Variables of State in Generalized Dynamics

Newton founded his axiomatic dynamics upon the concepts of

force and momentum; thus, a system of mas points was viewed as con-

nected by way of force interactions, and the motion of each particle

was determined according to the fundamental law:

[ Vector summation of forces == time rate of change of momentum. ]

The forces active on a given particle could arise either from disturb-

ances of an origin external to the system, or from internal interactions.

Newton's second law is often loosely stated in the form

EF :2 HE

rather than the original and correct form

211‘ =.- _d___(mv)

dt

Following Newton's enuciation of his "laws of motion" there ensued a

battle royal among the learned dynamicists of the next two centuries

over the notion of "force" and its true usefulness in the dynamical

description of a system. Hertz, in his introduction to The Principles

qf Mechanics, summarizes these arguments in a most profound manner, and

discusses the various "images" of a generalized dynamical situation.

In our position, however, it is perfectly acceptable to define

a certain quantity, p , as the generalized momentum of an element, which

is related to the associated generalized force or effort, e , according

to the exact Jaw

(1

8:673‘ OI’ Pz‘/‘Cat

This form is in agreement with Newton's original statement, and is

acceptable also in the light of relativistic mechanics which tell us

that there is, in reality, a functional dependency between momentum and

velocity such that as the_ speed of light is approached the momentum

becomes infinite.

There arose, as a result of the work of Lagrange and Hamilton,

G
e
n
e
ra

te
d
 o

n
 2

0
1

4
-0

2
-1

1
 1

3
:1

4
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
6

4
8

7
4

9
2

1
P
u
b
lic

 D
o
m

a
in

  
/ 

 h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p

d



136 2.751 cuss norss

another inage of a dynamical situation wherein it was the potential and

kinetic energies which defined the state of the system. We must realize

in connection with this that there is always a correspondence between

the total strain or displacement of a system and its potential energy,

which nay arise as a result of interml defornntions as well as gross

displacements in a force or potential field. lhxwell points out that the

correspondence is usually not a simple one, particularly in the case of

the energ' of deformation. On the other hand, there is a simple relation-

ship which connects the kinetic energy of a particle and its velocity.

Thus, it might be said that the two state variables which arise out of

this energetic description are the generalized displacement, q , and the

generalized velocity or _1_?__l0_g, 1' . These are, of course, connected by

the relationship

f==-2% or qe.-frdt

The purpose of the above discussion is sinply to Justify the

selection of the four variables e , p , f , and q as the variables _o_:§

state with which the dymmical or energetic condition of any physical

state-determined system my be described. Thus, for a multi-degree of

freedom system the following state vectors would be employed:

6 =(e1| if-1’2,3,oea,n) f=(f1 | i = 1,2,3, ...,n)

U 1Z1,2,3,¢eo’n) I 1:.-'1,2,3,.cc,I].)

E. The Tetrahedron of State

It is now possible to identify each of the four state variables

with a vertex of a "tetrahedron of state" and consider a given system

as characterized by the functioml relationships between the variables,

these being associated with the edges of a tetrahedron:

(E
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The correspondences between Q and lp and between F and q are,

of course, implicit in the construct itself; that is,

dp

B] = ffidt or Q = at

q[=_/‘fat orfl:=g:][

However, the other essential correspondences, which are but three in

number, are static vector functions peculiar to a given system, namely,

e : @R(f) °1' F = ‘Dc (9)

ill : @c(e) or Q = % P = ‘I’i(f) or T = ‘I’;-(P)

Thus, we see that the characterization of all dymmical or time-

depehdeht interactions is embodied in the ]p- E and q - f relations,

while the remaining relationships are of a simple static mture. These

latter will now be dealt with in detail.

F. Ellie Characteristic Static Relations

Before discussing in any detail the static relationships

introduced in the previous section, it is well to emphasize tint the

structure of these relations is pecul_ia:r to a given system; it is, in

fact, derived from the reticulation oi’ tlnt system into one-port impechnce

elements and multi-ported energy jimctions. Thus, for examle, the form

of the static vector function ‘III I, or its dm.l, II) 8 is determined by

the disposition of resistive elements (-R) in the reticulated system.

Similarly, QC and Q1 are determined according to the disposition oi’

capacitive and inertive elements, respectively.

Below we emphasize the expected (indeed inevitable!) non-

linearity of these relations. Also, in each case the dinlism of relation-

ships is recognized, along with the resultant necessity to distinguish

between two conplementary "energies" associated with each impehnce

ellfllhnt. Failure to mke this careful distinction in the presence of

nonlinear relationships between the state variables has, at tines,

resulted in serious and substantial errors in the calculation of energy

storage and dissipation terms.
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1. Resistance~Conductance Relations and Generalized Energy Dissipation

canon:—_u-mnemonic;—¢3a|n@x—un@In@cu@Iu—_-nun-can--romann-an—an—

F """ '"“1

' 1

8 : |-'-J \\

P R I...-. /> Q

f } 1/

/ I '

/ \ L. _ _ _ _ _ -.....J

/ \

P 4 __> q Pure Energy Dissipation

\

\

State Relations

For any one-port element the generally nonlinear static relation-

h

/

\ // ._ ,

LP (t) 5 Gd

f 7 ////7/////////////,//

ship between effort (e) and flow (f) can always be considered as a:

I

RESISTANCE or CONDUCTANCE

Relationship , Relationship

R ' G

we will distinguish between these two converse modes, particularly when we

consider causal sense, as follows:

f_._R_.-e

GENERALIZED

RESISTANCE

e = <I>ef<f> = Rm

"""".""Qdnnu0cnc0_n0n0-on-Q-.

e-r-6-0-—f

GENERALIZED

CONDUCTAN CE

r =<I>fe<e> = G <e>

d
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These clearly reduce to the ordinary linear relations in the

special case, namely:

QIOQIQIQ-OOIQIQ1

LINEAR RESISTANCE LINEAR CONDUCTANCE

6"-=R~f f=G-&

1

1

1

Q

_ é

Whenever steady-state resistance, (or conductance) is present in

any one-port, it is clear from energy continuity that available energy is

dissipated into heat in the amount:

§)=f'R(f) ' 0O=e-6(6)

d ' d

8

since no energy is stored in a purely resistive element. For the l11’l88.1

C388! W = 2 , W = G62

d Rf ' d

I

which is well-known.

Let us now consider that we have a one-port system containing ":2 "

separate resistances. Then the total dissipation must be:

£

0,- 4;.

§’d=f-R 6",.-=<e-G

°£M=-

EM

(D

C...»

H3

C_h

if @, f , R, and G are treated as ‘E.- coordinate vectors. Thus the

energy dissipation is a scalar additive function, summed over all available

energy sinks.

Moreover, if we define the functions:

I

CONTENT: Pf E _/‘f]R_(r)<11" ' coconrmm Pe E./'86 (e)de

I

Then it is clear that the dissipation 021 = Pf + Pe and we obtain a dualistic
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1% 2.751 cuss norm

generalization of the RAILEIGH dissipation function, which we shall investigaq

later. This particular choice of teminology follows from the work of CHERRY’;

and MILLAR, both separately, and together. However, very similar notions ste;

from the "power function" concept of WELIS and FIJERTES.

2- §2222£E2222_B21L§i2£22§_§2§_§222£21=1.§2Q_1221=s2E£2%_E2s£§!

-Q

\‘;'._-¢" ‘~ - '=‘&'~‘.=\

|-~ ~\

q'_~‘ ' c._':4r'

e :J' -\

.--2 ff '2]

\ ‘Q,

Er: " ‘Q:

f '35 ~ \~‘ -

‘ ' _; _~' \_ I }_\

W -1',_'

.~=-:-= , 4: -~ ~*‘

_ Q _ n

?-\‘ ‘ .~‘ ~.\_~':.‘=\\_ "'~:.~

"i\:'l"“;'~ ~_~~'¢'I "-\‘ -‘J

-1 _¢- -_- 1-

Potential Energy Storage

]P(1;)§ <1]EP/at E

//IIIIIIIII/IIIIIIIIIII

State Relations

For any one-port element, the generally nonlinear static relation-

ship between effort and displacement can always be considered as a caEci-

tance relationship. Again we distinguish between two converse relations,

namely:

8 ->- C ->- q : Q. -9- 3 —>- e

GENERALIZED I GENERALIZED

DISPLACEANCE , EFFOREANCE

QQQQCQ

q = <I>q_e<=> = (C (en

I

I

I

I

I

I
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These clearly reduce to the ordinary linear relations in the

gpefllal case, namely:

LINEAR ' LINEAR

CAPACITANCE ' SUSCEPTANCE

I

I

q = C - e ' e = S - q

Whenever capacitance is present in any one-port, it is clear from

energr continuity that available energy is stored as ggeneraligziefd potential

energ in the amount:

E E

P

EP=e- (:(e)

since no energy is dissipated in a (purely) capacitive element. For the

linear case:

U = (1/2) Ce2

which is well-known.

For the general case we shall find it useful to define the dual

pair of energy functions, where 2U = Ue + Uq:

Q

""53

DCQQ

Q

EP = q.~ fig (q)

U = (1/2) Sq2

COPOTENTIAL ' POTENTIAL

ENERGY , ENERGY

1

1 Q

Ue§feC(e)-de

flfidfi

Hqef 3(a) -dd

which will later permit us to keep proper energy books. The first concepts

Of dualistic or complementary energy forms date back to the work of CLERK

MAXWELL and ENGESSER, but these ideas are fully developed in the work of

CHERRY and MILLAR previously cited.
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§*=#Ps .Rel@#1°P-s ~

For any one-port element the generally nonlinear static relation-

ship between and ‘ can always be considered as an inertance re—

flow momentum ___

lationship. Once again, we distinguish the two converse aspects, namely:

ll

1

GENERALIZED ' GENERALIZED

MOMENTANCE ' FLUANCE

I

p=<I>Pf<f> = II <1». I f=<I>,p<p> =11“<p>.

l

' 4

I 11“

, f

' |

1

' -" "’ “"7

' P

These clearly reduce to the ordinary linear relations in the specw

case, namely:

IIIOIOQQQQQ

LINEARIZED LINEARIZED

INERTANCE FLUANCE

p=I¢f' f=FnpG
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Whenever inertance is present in any one-port, it follows from

gwrgy continuity that available energy is stored as generalized kinetic

Qmrgy in the amount:

Ek E 2T E f - p

QQIOCO

Ek=f-]I(f) Ek=1>-Th»)

Mnce no energy is dissipated in a purely inertive element. For the linear

case:

T = (1/2) I £2 I T =11/2) 1_'p2

finch is well-known.

. As before, for the general nonlinear case, we shall find it useful

h>define the dual pair of kinetic energy functions:

IOI$i€X&@

COKINETIC KINETIC

ENERGY ENERGY

f P

Tf=_f ]I(r)-<11" Tp=f I|.—‘(p)-dp

finch are needed for the energy principles to be discussed. As before, it

follows that 2T = Tf + Tp.

11. The Three State-Determined Elements (R, c, I)

we see from the above that all primitive state-determined relations

ean be expressed by the three 1-port elements:

R ———- ; C ———- 5 I ———-

Hm above properties of these elements may all be compactly summarized in the

§@€le grand tabulation attached. The linearized values of the parameters

131C, I) are indicated; in the general case the corresponding nonlinear re-

Ifitions must be generated by algebraic or by hyperpolydral functions.
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(Hand) (Nana!)
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;B*—=-°.k81'°.‘1‘1.‘1. C-C“ 5’°_a‘?e."D"=_t¢.1?"1n°‘1 5YS‘?<’=¥'¢$

;§(1) MAXWELL, James Clerk. Matter and notion

Starting from elementary concepts Maxwell demonstrates in a beautiful

fashion, and without recourse to any sophisticated mathematical form-

ulation, his various views on mechanics and dynamics.

2) HEBTZ, Heinrich. The Principles of Mechanics

Much is to be gained merely by reading Hertz's introduction to this

short work. One is lead by his reasoning to a deeper insight into

the fundamentals of mechanics. He points out, in particular, the

ambiguity in Newton's definition of force, as it is implied by the

three laws of motion.

(3) mam, William Francis. 5 Source Book in Physics

Material of historical interest is presented on most of the contribu-

tors to physical science. In particular, chapters are devoted to the

work of Maxwell and Hertz.

Kn) mnczos, ‘Cornelius. ‘Variational. _1irinciples_ or Mechanics

-=4 C'\

s./ \/

Again, the introduction serves as an excellent appreciation of the

basis of the variational approach to the description of dynamical

situations. In particular, the fundamental differences between Newton-

ian dynamics and the energetic method of Euler and Lagrange is pointed

out; namely, the former views a system as characterized by the momenta

of, and the force interactions among, its elements, while the latter

relies on constraints upon the potential and kinetic energies.

Ronni, Edward John. ~_ 9; 5 §yste.fm or Rigid (First

edition, 1

E. T. Analytical lzynanrics (First edition, 1901+)

2 _ ,_ _ _ _ _ _ _ _ _ _ _ _ ,

RENTER, Arthur Gordon. The Dynamics of Particles (First edition, 19011)

These are standard classical references on dynamics. They represent

specific excellent integrations of Newtonian and variational mechanics.
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(8)

(9)

However, the applications are largely restricted to problems of academic

interest.

BIRICHOFF, George 12. gnnsninsg Systems (Published in 1927)

This is a classical modern treatise on the dynamics of state-determined

systems which developed out of a series of lectures given by Birkhoff

in 1920.

CHERRY, 11- 0°11!» .Pas1s1>vsus' sad Case; fliaesfsmnss

The application of Hamiltonian mechanics to electro-magnetic systems

is indicated.

gackgground Reading--Qne-Port State Determined Elements

(1)

<2)

(3)

(11)

(5)

<6)

(7)

CHERRY, E. C. Generalized Concepts of Networks, Proceedings of the

Symposium on Information Networks, Polytechnic Institute of

Brooklyn, New York, 1951;, pp. 176-177.

CHERRY, E. C. Some General Theorems for Non-linear Systems Possessing

Reactance, Phil. g. (7), v 1+2, p. 1161 (1951).

E. C. The duality between interlinked electric and magnetic

circuits and the formation of transformer equivalent circuits,

Proc. Phys. B, v 62, p. 101 (19119).

csmmr,

CHERRY, E. C. and W. MILLAR, Sane New Concepts and Theorems Concerning

Nonlinear Systems, in Automatic and ganual Control, Butterworths

London, 1952, pp. 263-§"(7-1'.l“l' aw Swill A ‘C H

W. Some General Theorems for Non-linear Systems Possessing

MILLAR,

Resistance, Phil.__IL.§. (7), v 112, p. 1150 (1951).

wsus, 12. A. §_.__1_&pp. Phy§., v 16, p. 535 (19115).

FUERTES, F. A. On the Power Function, £1539. Phys., v 17, p. 712 (19116).
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ésrwl"-_@iR@.2<1-#118 -- M<><1<->216. and -‘m.@+2,s~

ROSENBLUETH and Norbert WIENER. The Role of Models in Science, Philosophy

3; Science, Vol. 12, No. A (October, 19u5) pp. 316-321.

ARBER, Agnes. Analogy in the History of Science in Studies and Essays

in the fiistory_9§_Science and Learning, Schuman, New York,

19Hh, pp. 221-233.

ZINSSER, Hans H., M.D. Pitfalls of Physiological Modelling, University oi

Southern California Medical Bulletin, pp. 6-13 (July, 19535.

BRODBECK, May. Models, Meaning and Theories in Decisions, Valuei and

Groups, Vol. I, (1960). K

DEUTSCH, Karl W. Mechanism, Organism, and Society: Some Models in Natural

and Social Science, Philosophy of Science, Vol. 18, No. 3,

July, 1951, pp. 230-252. S Added "**"

JONES, Richard W} Models, Analogues and Homologues in Regelungstechnik:

Moderne Theorien und ihre Verwendbarkeit, pp. 326-328. it

SCHOENFELD, J. C. Analogy of Hydraulic, Mechanical, Acoustic and Electric

Systems, Applied Scientific Research, Section B, Vol. 3,

pp. A17-hso.
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H. The Concept of Circuits and Networks

Classical dynamics has been primarily~-perhaps nearly exclusively~-

concerned with reticular systems and processes which can be effectively V

conceived as composed of state-determined one-ports suitably interconnected‘

These models generally assume storage and dissipation of energy at a finite

number of localized regions, "lumps", or "points": e.g., "mass points" in ;

mechanics; "lumped circuits" in electricity. Such substitutes for the acoq

underlying field continuum have often been remarkably useful and dramaticalj

productive. The relations between the macroproperties of the one-port lumpg

impedances and the microproperties of the continuous fields we shall treat §

the next article. Here we shall be concerned with certain of the system.pr§

erties of lumped constant systems. *

In terms of the previous relationships it is now'possible to generali

the classical "mechanical system.0f many particles" or the traditional "elee

trical network" to deal with any engineering system in which the "m9 prim~

itive parts are all state—determined one-port elements in any"medium9 each

containing generally nonlinear resistance, capacitance, and inertance prop-

erties. It is not the least necessary that the system.be differentiated in

regard to heterogeneity of mediunu since the basic relations above are valii

for all media.

The Structure of Networks

It is first necessary to show that all possible stluctural combina~

tions of one-ports may be obtained using only the two ideal junctions (O, Y

Electrical symb0lism.offers the most efficient explanatory language, but we

can readily verify the result for mechanical systems.

Two electrical impedances in series may be shown thus: X

X1 X2

0-e—@—e—+{1""1~}

X1 X2

"in

m><-----_.

sin
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u-up

[._...

while two impedancgs in parallel are written X

a

[ti]-O1 ?"'°"‘

Any "grounded" impedance (i.e., where one of the efforts is the zero

potential) can always be written:

since the one-Junction can be absorbed directly into the impedance relation-

ship, itself. Similar results hold for the dual situation, which is partic-

gglarly significant for mechanical inertias, namely:

Xb

[+~—-$—~+~

I——|

I

Q

With these properties and conventions, the damped electrical oscillator:

L R

:I:C

I Flow

X

O

___Zero] E [1____X]

ere. T

could be written as the radical:

b|0--llw

Using the facts (LC 1:, R C R, c c c),

I-—{v—l\[',1j

O

Q00

the generalized diagram would give:

Q

Q¢O

v v i

iii

_ Z

32.

III

.__'§'_..

I

:><:

T

.><-—<|>—..><
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The electrical dual structure may be drawn immediately by employing

the relations:

This results in the system:

which would be sketched conventionally as:

L

¢~ P —I. '1UF\--<3

0 R

7 J.)

On the other hand, both direct and dual systems

QQOWJU

I-—!~—'~

_,_T

1=F===O ; I1=F==E1 3 II=F==(3

mechanical systems, namely:

P.'—§§EE.'-‘Z

R

1

I

Q10

P952

QvO¢';d

O-'\€\£/\,-01F

may be diagramsd for

1-I1-4'
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911 ’°¥..1‘3_§.*‘§.‘3.‘?.1I§}_§'.1.‘;§1.EE'E§§E§*EE§_9§..N§’EZ’9€}§§

Thus in practical systems, we are not usually confronted with a

single one-port elemnt, but rather with a plurality of one-ports inter-

connected through ideal energy functions. In electrical science such

networks are customarily represented by a meshwork of lines, each one of

which represents a general one-port impedance element:

5

1

1* 6

3

Moreover each such element may itself be a complex net and so on, ad

infinitum, but this is immaterial. The points are usually called term-

inals or nodes. The line joining any two nodes is called a leg or branch,

and any closed path made up of branches is called a loop or circuit or

mesh. The topological properties of such networks are then obvious from

our previous treatment.

Frequently, it has been assumed that all networks can be constructed

from one~port elements. This is of course not true, and it is possible to

construct other kinds of networks which.contain multiports of various kinds;

even since the earliest days of electromagnetism, following the work of

Joseph HENRX'and.Michael FARADAY, the role of mutual induction--a two~port

phenomenon-~ has been of signal importance.

But this generalized network concept is not limited to electrical

science alone. Largely through the pioneering work of Gabriel.KRON, the

true role played by reticular fields and generalized nets is now better

understood. References are given in the reading list to applications in

such diverse fields as:

NUMERICAL ANALYSIS CONFORMAL MMPPING

DIRICHLET PROBLEM NONLINEAR NETS

FIELD PROBLEMS ALGEBRAIC TOPOLOGY

SCHRODINGER EQUATION RADIATION ANALYSIS

ELASTICITY and PLASTICITY FLUID FLOW
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Eackground Reading - Networks

PHILLIPS, H. B., and N. WIENER, Nets and the Dirichlet Problem,

Journal of Mathematics and Physics, Vol. 2, pp. 105—12h

U923)» ' It It I

LYUSTERNIK, L. A. On Electrical Modelling of Symetric Matrices,

Uspekhi . Nauk (N. s.) Vol. 1+1, pp. 198-200 (19119).

Matem

VON MISES, R. On Network Methods in Conformal Mapping and in Related

Problems. Construction and.Application of Conformal

Nmps, U. S. Dept. of Commerce, Natl. Bur. of Standards,

BIRKHOFF, G. D., and J. B. DIAZ. Non~linear Network Problems, Quarterl

er fppliec_1_ Mathematics, Vol. 13, No. 1+, pp. 1131-I173 (195617

OPPENEIM, A. K. Radiation Analysis by the Network Method, Transactions

_e_1_"_ the ASME, Vol. 78, pp. 75-735 (1956).

KRON, G. Numerical Solution of Ordinary and Partial Differential Equatig

by means of Equivalent Circuits Journal pf Applied Mech;§

ics, Vol. 16, pp. 176-186 (19h55.

-——~—. Equivalent Circuit of the Field Equations of Maxwell, Proceedings

9;; the IRE, Vol. 32, pp. 289-299 (19hl+).

----—. Electric Circuit Models of the Schroedinger Equation, Physics

Review, Vol. 67, pp. 39-#3 (191+5).

--——~. Equivalent Circuits of the Elastic Field, Journal of gpplied

Mechanics, Vol. 11, pp. A1h9-161 (1955).

-—-——. Equivalent Circuits of Compressible and Incompressible Fluid Flow

Fields, Journal of Aeronautical Science, Vol. 12, pp. 22%

231 (19157-

-----. A Set of Principles to Interconnect the Solutions of Physical

Systems, Journal 9; Applied Physics, Vol. 211, pp. 965-980

(1953)-

——-—-. Solution of Complex Non~linear Plastic Structures by the Method

of Tearing, Journal of Aeronautical Science, Vol. 23,

pp. 557-562 (1956); C C C“d"dd ~

BRANIN, F. H. Kron's Method of Tearing and its Applications, Proceedings,

of the Second Midwest Symposium on Circuit Theory, Michigfi

State University, pp. 2.1-2.79 (1956).

ROTH, J. P. An Application of Algebraic Topology: Kron's Method of

Tearing, Quarterly of A plied Mathematics, Vol. XVII,
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XIII. Distribution of Energy over Space, Time, and Frequency

A. Introduction

we are concerned in this section with a quantitative description

of the distribution of power and energy over space and time. The spatial

distribution requires that we consider the properties of continuous and

reticular f . In the general case, these fields are nonstationary or

_ields

unsteady. but for most engineering purposes we may consider the fields as

pseudo-static (or quasi-stationary). Such fields for energetic systems are

governed by scalar potential functions, together with their derived and

associated vector fields. If the fields are truly dynamic, we can preserve

the field language if we employ retarded potentials and a corresponding

integral formulation.

At any given point (or bond) in an energetic field, the local

power state is instantaneously related to the boundary or environmental

power states through dynamic transfer characteristics or operators. These

may be employed either to describe the local behavior in the time domain

or to interpret the response characteristics in terms of frequency or

spectral sensitivity. Thus the local energy distribution over time of

any linear (or linearizable) system may alternatively be viewed as a

distribution of the same energy over the frequency band.

These fundamental facts and concepts, sufficient to deal with

multiport systems. are few in number and are outlined in the paragraphs

below.

In Part IV we treated the continuity of energy in a generalized

field while Part V introduced the concept of field reticulation and the

corresponding reticulation of field energy and power. These reticular

energies were then evaluated for state-determined elements. we now pro-

ceed to the precise restatement of the reticular energy principles and

power balances for state-determined systems. This is the form in which the

Séneralized energy concepts were first obtained; but, consistent with the

assumptions of modern relativistic mechanics and quantum physics, it is

energy and not material structure which is the foundation point for rational

science.
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B. Energy Principles for State-Determined Systems

Boundary_Conditions_a§ §ources of_ElQw and Effort

It is useful to introduce the classically important concepts of

pure sources of effort and flow as indicated below. These correspond,

for the continuous case, to the traditional DIRICHLET and NEUMANN boundary

conditions. .Moreover, it is possible to represent nearly all boundary traz

ports of energy in terms of the generalized HELMHOLTZ and THEVENIN equiv- I

alent sources, the names corresponding to the traditional linear electrical"

equivalents. Merely by extending the boundaries of the system to include

the source impedance functionals, we can represent all power transport a-

cross the boundaries of an n-port state-determined system in terms of the I

ideal DIRICHLET or NEUMANN sources. In that which follows below, for sim-

plicity; let us assume all boundary ports as equivalent to a finite or in~ ,

finite set of such ideal elements.

DIRICHLET PORT: [Element: E

CONSTANT EFFORT SOURCE:

constant

,____»____\

°1°" ‘°

H3 0 ll

IN

O t-1:1

ll

Rise e

Zero Impedance

‘fig f

~ I H

f

Content Pf 2 f (Drop e)d_f =

r

Jf (-E)df

or

(i.e., Power GAIN = E - r)

Cocontent

uouolnnouovyoononocouq-Q-Q-goo-guncao conocnnounco-ococonqnolonnuoinlolhoiocououo up-v-v-unoionocounnor-0 in-ocoanio-Q

/"-if‘-\

o1c»

o w

Ill hi

c>

n

NEUMAN PORT: Element: F - 1

CONSTANT FLOW SOURCE:

f = constant

Rise e

F Infinite

Impedance

,, _ i W; V _f

Content

e e

Cocontent Pe 2 f fde = f

e

°r

(i.e., Power GAIN = F ~ e)

Pure Sources of Effort and Flow

G
e
n
e
ra

te
d
 o

n
 2

0
1

4
-0

2
-1

1
 1

3
:1

4
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
6

4
8

7
4

9
2

1
P
u
b
lic

 D
o
m

a
in

  
/ 

 h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p

d



Part XIII 2.751 CLASS NOTES 155
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The classical LAGRANGIAN function was historically the first intro-

duced to deal with generalized state--determined systems. This may be de-

fined in terms of our relations above in the form:

Lagrangian L = L (f,q) = Tf - U q

= :2: Cokinetic Energies - E; Potential Energies

= Total Free Energy

that is: m

fiH‘r = i%% Tf1(f1> = Tf1 + Tf2 + "' + Tfm

UT i

q * i=1'Uqi(qi) = UQ1 + Uqg + --- + Uqm

We may then write the Lagrange Equation in the form:

.1 (a]I_4) 611.. @111», ~

——- ———- — ——~— + = O

at dlf7 d1qL diff

since we can arrange that P f includes all the energy sources as well as

sinks.

However, it was not realized until comparatively recently that

there also exists a completely parallel and dual form of the Lagrange Equation

eipressible entirely in terms of the effort vector, Q , and momentum vector,

III) . Here, the dual Lagrangian would be a complementary free energy in terms

of the total copotential energy less the total kinetic energy. 'I'hus we may

eXpress the two dual energy formulations side-by-side in the form of Table I

below.
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TABLE I

LAGRANGE EQUATIONS

Classical Form E Dual Form

_—~, _;,___~: , _,L,_ ___, _, ,1-_,,_ _, _;-,, ___

;

5 5 5 ' 5 5 5

_E_(Tf)+U+P 5_5._(Ue)+T+Pe

Q.»

1:9

1+“"""'

$1

, Ct

7 Q.-

N ‘E

dt aj af ae ae

COKINETIC ENERGY: T I. <-> UT e = COPOTENTIAL ENERGY

POTENTIAL ENERGY: U q ‘"’ T P : KINETIC ENERGY

CONTENT: P I. <-> P e = COCONTENT

Let us next see how we may obtain a generalized power balance in

any state-determined system. The dynamics of a normal Lagrangian system

would be governed by the pair of equations:

i(dTf)+dU +aPf

at dfi 5qi dfi

<1

———( )=f

at Q1 1

If these expressions are multiplied together, and summed, there

results:

5.

-533- (Tp+Uq)+Pd=Pa

where Pa is the active content (or power supplied to the system) from all

energy sources. By considering these sources as energ ports, we obtain
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the previous energy expression:

(<1]E*I/<11=)+ Ed = IF’

Alternatively, we may carry out a power talance in te

system.Hamiltonian function

]H[-if-p - L<f,qL>=l}*fl<p,cu;>

In terms of the individual elements:

f'p = ‘? f1P1= E: (Tr1+Tp1)

L = Z (Tpi-Uqi)

i

This gives the general result:

1%

rms of the

= Total Stored Energy

Then a general Hamiltonian power balance gives:

<1]HI dpfi

-¢-- + Z fi - ---—- = 0

at 1 61“.

1

u____,___/ \ zY J

Change of Energy Sources

Stored Energy

again merely a specialization of the retic a

and Sinks

ul ted energy continuity.

i results in the form of the

We may then summarize all the prev ous

generalized energy diagram depicted in the figu

by time—integrating the power flow for an

Z P E O). In this case we may write:

re below. This result follows

isolated or closed system (i.e.,
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for which

EXAMPLE

DAMPED SECOND-ORDER SYSTEM

Ek(t) E Tp = Z1 Tpi

Ep('C) E Uq = Xi Uq-1

Ed(t)§ H/9 §?1(1;)<1t= XI at

t

F‘: 14*’ *EP‘“’ * E4“

C

1)

"*1

6%

4}

ts 5’

1.0%

J7

at

2%,

Representa-

tive Point

W

Trag ectory

9 NILDISSIPATION LINE

R

\ /

1

I

I

/\

‘it
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C. Fields, Potentials, and Transmittances

The finite macroreticulations discussed previously always repre-

sent merely approximate partitionings of the continuous field energies into

5 finite number of abstract individual elements of state-determined or gen-

eral functional form. For the finite state case, these elements are marked

the relational symbols, H. , (:1 , and H , and therefore represent

iinite coordinate systems which are the natural generalizations of rigid

body dynamics.

Electrical circuits and networks are but special cases in the

electromagnetic domain of the general concept of reticular fields wherein

the fluxes and potentials are assumed to conform to a prescribed meshwork.

ihe lumped circuit concept is thus to electrical science what the Newtonian

mass point is to mechanics and the Hookian linear spring to elasticity.

I In particular, these approximations ignore more or less completely

the finite velocity of energy propagation and the consequent field retarda-

tion effects. Thus, while a more rigorous field theory would formulate

iunctional or operational relations between the field quantities, the

reticular field concept presumes that simple static functions relate local

or total variables.

For these and other reasons any particular system representation

can at most hold only within a restricted amplitude and frequency domain.

Dutside these limits, we must inevitably expect discrepancies between

analysis and experiment, between prediction and performance. While we can

partially reduce these divergences by making the reticulation and correspond-

ing model more complex, we cannot ever expect complete equivalence between

the multiply-infinite order of physical reality and the modest finite order

bf our conceptual models.
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Quasi-Stationary Processes and Slowly Varying Fields

Most of the problems of engineering analysis and system.design lh

within the domain of slowly varying fields. For most cases this condition

will hold whenever the dimensions of the system are small compared to the

characteristic wavelengths of all disturbances. Under these circumstances

the field retardation may be neglected and the field properties may be cal-

culated as for stationary processes. In this manner static linear or non-g

\

é

‘1

linear relations may be established among the principal variables which may

be taken as integral forms of the corresponding field quantities ,

The resultant inertance, capacitance, and resistance relations

depend in addition to the material constants only upon the geometry of the

field and are the result of integrations or averaging processes performed

over the space coordinates. Thus only an integration with respect to time

remains.

While a precise treatment of rapidly varying processes demands

consideration of transient field effects, usually represented by systems of

partial differential equations, a description in terms of ordinary differ-

ential equations suffices for slowly varying fields. Moreover, for the

static and stationary states of equilibrium these relations reduce still

further to systems of purely algebraic equations.

By contrast, the introduction of the concept of a retarded potent!

for rapidly varying unsteady motion represents an attempt to preserve the

field concept for the description of nonstationary phenomena in continuous

media. we shall encounter a particular instance of this technique in deal-

ing with wavelike transmission in Part XVI.
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i%5°'i§%‘Z~§_§'13§E2§}‘3_€~E§l-952??

The concept of a stationary field occurs in many branches of

physics and engineering; for example: electrodynamics, aerodynandcs,

hydrodynamics, elasticity, heat conduction, and gravitational theory.

Jnsofar as the phenomena admit the definition of scalar potential functions,

hheir abstract form and treatment is essentially identical. This makes it

possible to establish formal analogies of strict equivalence and to trans-

date solutions and experimental results from any one field into all analogous

fields. Each one of these particular media is characterized by a fundamental

scalar which satisfies the Poisson or Laplace equation, by a derived field

vector which is defined as the gradient of the associated scalar potential,

and by an associated field vector which is tensorially related to the grad-

ient vector. There are additional analogous concepts for each applied field

which makes it only necessary to obtain the solution of a problem.in one

branch in detail in order to be able to predict for every other branch the

similar solution merely by making the proper correspondence of terms. For

our purposes here we shall find it convenient to deal entirely in terms of

a generalized language as indicated in the first row of the appended table.

It is of particular interest to note that associated with each scalar poten-

tial field there is, in general, an associated vector field. In keeping with

our generalized symbolism, we may think of one set of fields as intrinsic or

effort fields and the other set as extrinsic or flow fields. In the elec-

trical case we have the electrostatic field and its relation with the cap-

acitance in the form of the associated field transmittance; in the magneto-

Static case, the associated magnetic flux and field permeance. It is

frequently helpful and suggestive to interchange terminology and other imagery

ffiom one medium to another, so that the maximum.cross-fertilization of ideas

can occur. On the other hand, by manifesting that all particularizations

euise from a single, cmmmn1genera1ization,all field analogies are rigorized

and a methodical approach to field concepts is made evident.
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SPECIALIZATIONS OF

Potential ‘ Potential Equipotential Potential

f W h Function Difference J Surface Gradientw __

GENERALIZED 2 - -~ -- (+) -

FIELD ’ 11 U1-'1lg=lU'ds u=const. U=-Vu

P .-...g,I. I P .~rr.- -.._I ,. ass go:

2 ‘L —L _g _§

L F 31'-_¥'§=f H-ds ?=const. H= -V?

ELECTROMAG : C A Magnetostatic 1 (Ideal Iron Magnetic Field

I Potential Surfaces) Strength

’ 1- 2= E~ds =-const. E= -V8 i

ELECTROSTATIC El8CtI‘0St&ti¢ fl (Ideal Conductor Electric Field ‘

Potential Surface s) Strength

- = E 9 B = COIIS 0 = "'

5 E 6 /'2? * E" 5 t '15 Y7 5 _

ELECTRIC Electrostatic 1 2 1 (Electmde

UHEM V Pgtential Surfaces) do

7 W V 7 ‘ 7 "V 7 7 2 .5 .5 -W V ,_ -5 2

strmmr T Tl-T2=j' U*ds T=-const. U-= -VT

TEMPERATURE ( Temperature 1 Isotherms Temperature

‘3 Temp. Differential Gradient

L 4) *2 ... ..; 1 L _ I

FLUID p 431 -#32 =f V ' ds Q5 = const. V = -fi¢

A Velocity 1 Equipotential

VELOCITY Potential ‘ Surfaces Velocity

T LL 2 -b __§ if -L _. "P

FLUID 11 1-11-n2=‘/' U~d_s H=c0nB’f.. u= -V11

SEEPAGE Pressure Head 1 Péifgsfizzic gizgjgit

I‘ Differential Head Q

I 7 7”’ I 72 -Q W7 -—_ -§ -L

GRAHTATIONAL T Gravitational 1 I Isogravimetric Gravitational

Potential Potential Difference Surfaces Acceleration
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ISOTROPIC POTENTIAL FIELDS

has _

"II Material Associated Associated Field Remarks

_ Constant Field Vector Flux Transmittance

1% for """-7*" I A A = — -L ..L -L --L

K v=;<U v=fV'd.A .7J=v/(ul-112) 7=KAn/Ln

Transmittance = K _ /* p=,.p o=fp-er. o°=<;>/<9;-52>

ipemeability Magnetic Induction Magnetic Flux Permeance ‘

8 n= 5E Q,=fD'dA C=Q/(£1-£2)

Dielectric

Constant Electric Induction Electric Charge Capacitance

"_ J=o'E I=fJ'dA G=I/(E1-£2)

Electric

ajonductivity Current Density Current Conductance

1p ';F= kU Q=’/-I-5 G=Q/(Tl-T2)

Thermal

Ionductivity \ Heat Flux Heat Flow p Thermal Conductance

P P=9V W=fP’d-A G=W/(®1"Cb2)

Mass Density Momentum Flux Mass Flow

F 0' V=oU Q=fV~dA F;-.Q/(I-Il_H2)

Penneability Seepage Velocity Seepage Flow Seepage Conductance
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r:[.'13‘:’£9132§2§_9§_§_§'i§5£§_@€§’3§12%PESEES

Consider a heat conducting medium with the configuration indicate:

Ambient Temperature T

—/ 0 / (e.g., Ground Surface)

47//A//Q’ //// /// / /h// /€/

/@///’/M

(e.g., Steam Pipe) //////(e.g., Utility Duct)

///// ///// / /

We might consider the situation where the temperatures were all considered

as functions of time, T0(t), T1(t), T2(t), and we desire information on

the resultant flow of heat, particularly, for example, the heat loss from

the steam pipe or the heat flow into the utility duct.

This system may be viewed as a 3.port thermal element:

E5

T The nnal T

__z2_11._/i System '-————QZ

If the element can be assumed linear and in the steady state then we know

that the following equivalent sets of linear equations hold:

T = 1R ' Q

T R 1 R 3 R Q

__@l_ _Rll_;_Rl€ ; §l§_ __Ql

_-_@- = --31-£--2@ £--@3- --_@

T3 R31 : R32 % R33 Q3

or Q = G . T

--?i- -?11_§-?1@ i §13_ _-?1

--?3- = -?@1-;-?§@ i ?@3- -_?@-

I

Q3 G31 ; G32 : G33 T3
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However, since we are presumably dealing with a potential field,

C-REEN'S THEOREM (see below) results in MAXWELL'S RECIPROCAL RELATIONS,

namely

R . E R. G . E G.

i3 Jl 3 13 Ji

which merely express the fact that the resistance and conductance matrices

are symmetric. But two additional nodicity conditions will also hold,

namely:

I ~-~ Q1 + Q2 + Q3 E O

II ~-- {D (IHQ) E () ( IH‘+- H. T) (T = Const)

The first relation expresses the continuity condition while the second

equation states the relativity condition (i.e. that the heat flow

depends only upon relative, and not upon absolute, temperatures). As

we discuss later in connection with trinode amplifiers, Condition I

then requires that the rgw sums of Dga(and the column sums of Q; )1nust

vanish identically while Condition II requires that the column sums of

H¥.(and the rgw sums of (5 ):must also vanish.

Finally, as a result of the reciprocity and nodicity conditions

above, this field problem.may be conceived in terms of the following retic-

ulation:

To|Qb To

O

Ra. / \ .Rb

1 1

/ \

T1/ O "" "- O\T2

Q1 Rc Q2

If the values of the three equivalent thermal resistances (Ra, Rb, RC) were

known, the instantaneous heat flows could be calculated.
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This model derives its validity from the presumed superposibility

(or linearity) of the governing temperature fields. This means, for instanc

that we can consider the total heat loss from the steam pipe as the sum of

the loss to the atmosphere (Q10) and the loss to the duct (Q12). While this

is reasonable and obvious, it is not so obvious that these effects are ideal

independent of each other, such that the loss may be assumed in the form:

Q1 E Q10 + Q12 = Ga(T1 - To) + Gc<T1 - T2)

where Ga and Gc represent overall linear heat transmittances or thermal

conductances. As we shall see, each of these conductances may be derived or

estimated directly from the form (alone) of the temperature field, in the

fashion:

PT‘

) Gm=4'/L“'>‘m 1

Thermal ////Running Field Form

Conductivity Length Factor

Thus it is that the macroscopic properties (e.g., Gm) are related to the

microscopic properties (e.g., k,>\ ) and the absolute size (e.g., L).

m

All the above concepts were first employed in a general and

consistent fashion by James Clerk MAXWELL for electromagnetic fields. We

demonstrate below that these tools have universal application and great

utility. In particular, all one-port linear properties may be related

very simply to the geometrical parameters (E size )( shape) and material

properties (E transmissivity) in terms of the overall trehemittehoet

' (Transmittance) E (Transmissivity) - (Size) - (Form)

Property 4' Geometry I
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A B§t’§§.'_§‘3rY§Z-9§'-Y§9.§9§§§1--Ij;§1-S_b.4§§1}§E§E§

It has not been customary in applied mathematics to consider the

particular engineering significance of abstract concepts, nor in specific

physical or engineering sciences, to display clearly the logical necessity

and interrelationship of diverse, separate historical discoveries. Thus

we find valuable at this point a terse summary of fundamental concepts upon

which the field description of all material systems depend.

we are concerned here both with scalar quantities (u) which are

the analogs of geomtrical points, and also vector quantities (U or IJU),

the analogs of directed line segments. Pressure, density, temperature are

typical scalars; while force, velocity, heat flux, current density are repre-

sentative vectors. The treatment below is somewhat different than the usual

in the introduction and use of matrix notation for vectoral relations.

Of course, the ordinary time and space derivatives transform scalar

fields into new scalar fields, and vectors into new vectors. But in addition

to these familiar operations we must consider also three additional vector

derivative operations as follows:

GRADIENT

V

Scalar Vector :> ROTATION

Fields Fields ‘2V><

nrvnscmvcs

V0

To complete the field description, we need also to account for the

material or phenomenological operators relating vectors to associated vectors

in the form:

V=IKUT

In an isotropic field, the general matrix Hat reduces to a simple scalar

constant, K .
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§2§%§£_€’.=£s%§§

If any scalar quantity, u, such as temperature, pressure,

density, voltage, etc., is defined at every point in a region we hare

a scalar field. The general scalar field varies with time as well as

position, which in Cartesian coordinates we would indicate by

u = u(x,y,z,t). But the field is clearly independent of the coordinate

system.in which it is measured; to emphasize this invariance it is prefer-

able to write u = u(R,t), where R measures the position vector in an

arbitrary frame.

If the field is static or stationary, it is time~invariant and

we have u = u(R), alone.

If we connect all the adjacent points in a scalar field having

equal values of u, we obtain level surfaces, isopleths, or isotimics.

(These only become equipotentials if the scalar u is a potential function)

In two dimensions the isotimics are curves, the analogs of the familiar

contour . In the ensuing discussion, we shall find it convenient to

lines

depict our results, whenever appropriate, for this planar case since it

is best suited to the limitations of the printed page (or blackboardl).

The_Fir§t_DeriYe§_Quantity: The GRADIENT of a SCALAR FIELD

This derived -E25 u = ‘Em Generates a

oPeration "'>'mg " "> VECTOR FIELD

The GRADIENT is a DERIVED VECTOR QUANTITY equal to

the MAXIMUM.SPATIAL RATE of CHANGE of the SCALAR FIELD FUNCTION.

3. .-§

The vector U ==V11 may be computed by matrix means; for

Cartesian coordinates, this may be written:

UI- V - u

U7= 1o/ax; B/by; 3/an u
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The gradient is always nonnal to the isotimics and measures

the maximum spatial rate of change of the scalar field. In planar fields,

file gradient is thus directed at right angles to the contours and measures

the direction and magnitude of the steepest ascending slope.

This concept of a gradient is fundamental to the field descrip-

on of physical systems. The gradient generates a vector field from the

scalar field; we might perhaps best visualize this process in terms

the gradient field derived from a set of elevation contours above a

the-dimensional surface such as a plane or sphere.

In general, the gradient vector will be different at each and

every point of the scalar field; we thus obtain a derived vector field

may be represented by an equivalent system of field_1_:Lnes or gradient

kdness

These gradient lines may be approximated by the following simple

sonstruction.

~r~’,-/~ -_.Approximation to the gradient llne

u_2 bet1reenu=1 andu=2

I through point a.

-4'?

' /

/

/

_/

I

I

Z j‘ j

I

/

¢;Ontin1Ji_ng in this manner until a summit is reached, an approximation to

Qicurvilinear gradient line may be obtained. If a system of such field-

Jgines are drawn, any scalar field may be represented in conjugate form

the system of gradient lines as follows:
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Li:/ \e._Z"‘~'/. {/ 1 \\/

~\,%

Original Representation Conjugate Representation

by by

CONTOUR LINES GRADIENT LINES

‘ /

/;* ' ~

< X) /

\1\F

~ \\

\\\

( X '\)

Thzus we have, in fact, replaced the original scalar field by eh

associated vector-field~-the gradient field. Clearly, we could recover

the original contour lines by the same process used to obtain the

gradient lines.

The line integral of a gradient field.between any two points

is independent of the path and is equal to the difference between the

values of the associated scalar at the terminal points of the path; thus

A

2 ‘us

T711 ’ dR = ue - ui

1

If the path is closed, the line integral must necessarily vanish:

- .;

€§ Y7 u - dR..§ O

The significance of this last result lies particularly in the converse

interpretation: namely, that

-k

A ‘

If €§ F‘- dR 2 O, then E 5 grad u

where u is an associated scaar field.
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The_§e292é-Ps£iYe§_@Bee‘2i‘2I=

(The Divergence of a Vector Field)

This derived . '* " '* Generates a

operation SCALA-R FIELD

’ The DIVERGENCE is a DERIVED SCALAR QUANTITY equal ’

to the LOCAL PRODUCTION of FIELD LINES per unit volume.

—§-Q

The scalar divergence O‘ = V - F may be computed by matrix means;

for Cartesian coordinates this inner product would be written:

I I

.,.***;.;‘1:_.'s ‘ii

I

L_______J

o'= We

0' = [6/dxid/dyid/621' [

The Gauss Divergence Theorem

Let us consider any closed control surface A bounding a volume

in any vector field F.

Then the following fundamental theorem due originally to Karl

Friedrich GAUSS will always hold:

I ffA;'d1EffU(6.?)dJw' I

. .\b

\ Y_ J _ Y i

Surface Volume

Evaluation Evaluation

Control Element

SURFACE: A

VOLUME = if
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The GAUSS Theorem.(together with its STOKES’ conjugate below)

may properly be considered as the basic theorems of mathematical physics,

since from them may be derived all conservation and continuity principles,

as well as GREEN‘S theorem and the reciprocity principle.

Field Tubes and Solenoidal Fields

anus-nunnixnnmxnnan-Q-n—n-—|1_u-I-nunxn-u-q--n-nun‘;-p-nu-nu-n

-41

If in a general vector field, F, we restrict attention to regions

which are divergence-free, where

P7‘.

~11

Ill

O

then we can readily see that there will be neither production nor destruc-

tion of field lines within this volume. Thus any internal field line will

be conserved.

In such regions consider the field between two arbitrary surfaces

A and B. (These would become curves or points for two- and one-dimensional

fields, respecti vely) .

Let us draw an arbitrary closed contour, a, on surface A. Thrown

each point, G , on a, a field line will pass which will intersect the sur-

face B at point £3. As the point Q is moved around curve a, the point

will trace a corresponding closed curve, b, on B. Moreover, the field line

segments, (1 £3 , serve as generators or directrices of a tube T, which we

shall define as a field tube.

FIELDTUBET

Curve

$( b

Surface Surface

A B
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In electromagnetism such tubes were first named by Michael FARADAY

"?sphondyloids" but James Clerk MAXWELL used the term "solenoid" from the

Qreekow A 77 ' 1/ (solen) "a tube". The current usage in electrodynamics is

flux tube ' '

gpbg of inwducption or . In fluld mechanics such tubes are called

stream t b s.

u e

Everywhere in such tubes the field is conserved, resulting in a

sontinuity relation. Moreover, by definition no FIELD VECTOR F can inter-

sect a field tube.

Eh@_<P122r§-PsrLrs§-92eI2‘22'-.22

(The ROTATION of a VECTOR FIELD)

This derived rot ';'_ gx F Generates a

operation I VECTOR FIELD

The CURL or ROTATION is a DERIVED VECTOR QUANTITY

equal to the LOCAL CIRCULATION per unit area.

-L-L-L

We may compute the vector G = V X F very simply by matrix means;

in Cartesian coordinates this outer product becomes:

G = VX - IF

G1 0 i-d/0zi+d/dy F1

= ;575si"6"i-'I575;< . I575§;¥575i"'6"

3 , 3

T2§_.§‘2<21§s§_9é2:22-lsEi912-¢E12s9rs111

Let us consider any closed contour C bounding an area A in any

ii

Eector field
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Then the following fundamental theorem, due originally to G€O1‘g

Gabriel STOKES, will always hold:

S

I 12yce.—-e//Amt-...t ]

fv e____w___J its Y 1

Circulation Boundary Surface

Evaluati on Evaluati on

¥.1fE“9’E€‘PE913‘2'3l-l“i1.‘2l§§

If we know that F is identically Zero in some region, then we

may always write

an

III

1+

<1»

*9-

—_f grad ¢ =

--§Z§ A

since V X V¢ E O for any scalar field. The ¢ so associated with F is

called a scalar potential Wfuncétion, following the original terminology of

George GREEN. The corresponding field is known as a potential (field.

Conversely all gradient fields are irrotational by identity.

Solenoidal Fields

- - _ _ — - i - - _ Q _ - — M

__ -5 _Q

If we know that G E 1- V X F then necessarily:

6 ~ -G‘ E O

since g ' V X E vanishes identically for any

I

l

vector field F. Such divergence-free G fields are called solenoidal.

Conversely, the vector F associated with G is said to be a

vector pogtlenwtial (function, and generates a corresponding ivecitor pgogtegntial

field
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‘-Calm‘ and Ve°’°°?.'_§’9’E§13.*3.1E§4.E_1f.1EE3.E§§

We may now summarize the results above for the dual cases of

acalar and vector potential functions.

IRROTATIONAL FIELDS

(Conservative)

-\ .>.

If: V X f = 0

-§~ --.-L

Then; f = 1- grad 8

~3 ....\.

Since: VXVe 5 0

Fhen e(s,y,z) is said to be a

WALAR POTENTIAL FUNCTION WhiCh

generates a (SCALAR) POTEN'I.‘I.AL 5 generates a VECTOR POTENTIAL

PIELD. S FIELD.

2

-I ---B ; 4.. ...).

Faking f >= + grad e we have for { Taking f = + rot F we have for the

;he components 5 components

v

i

ae/ax 5 (M,/2>y> - <a1=~,/as

_______ -_ , _______-___________________-_

1

be/by E - (OFZ/Ox)

be/Bz § (OF),/ax) - (OF),/by)

Mr the two-dimensional or planar field we find.Fx E F e O and FZ may

band-000410 401800;-moot Ndinocndtyvoflueqdtflpdnno -Q

SOLENOIDAL FIELDS

(Source-free)

"-’* Q.

If! V'f=O

.3. ._..>..>

Then; f = 1- rot F

_.>- -‘~_ ._.\

Since: V'V7<F = O

Then F(x,y,z) is said to be a

VECTOR POTENTIAL FUNCTION Which

Y

>e taken as the scalar, f. Then we obtain the results:

E‘ = [ae/ax;be/2>y1=[Bf/by:-bf/?>X1

This conjugate plane potential field is of singular importance

zo the analysis of all physical systems. Its relation to conformal

“fiPPing we next discuss.
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13%2se_¥.’2E2Iz§i2~1~§-2i1e1.9e12£2£=22~l_1isB§

Many plane potential field problems may be solved readily em-

ploying functions of a complex variable. We outline here only -a brief

account of the resultant conformal mappings.

If the argument of any algebraic or transcendental. function is

a complex number z = x + Jy, then, in general the function w == f(z) will

also be a complex number w = u + jv. If this function is analytic then

(Eu/5X) +j(5v/Bx) = f'(z)

(bu/BY) +J(5v/by) = JI"'(><)

Comparing terms gives the CAUCHY-RIEMANN equations:

bu/bx = Ev/by ; Bu/by == - bv/bx

But these conditions have two interesting consequences. First they en-

sure that every transformation w = f(z) which satisfies these conditions

will map portions of the z-plane into the w-plane such that relative

directions and angles are preserved; such transformations are called

confonnal mappings and would map any set of three z-points as follows:

z-plane w-plane

W’

Z3

Q

W2

O Z1 ,7
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as a result of conformality a rectangular grid in the z-plane is mapped

Nljhto an orthonormal meshwork as indicated.

z-plane

;\ :: 5/u+'-——*—-

Y /I l

1'1"/44/44¢; oz/4/.14 ~

‘ 1 1 1 1* ‘

"I \ I I V A

.""f".'"~.""t

‘A \ = l I i

‘ ' : 1 _ I1 A tfi f l

?'l////O////////I////' " ' I

The second interpretation of the CAUGHY-RJZEMANN equations results from

the fact that they are precisely equivalent to the results we obtained

above for plane potential fields, namely

E‘ = grad e = [Be/Bx: be/ay]

-X --3

also r = rotF = [br/by;- bf/bx]

Thus any conformal mapping produces a plane potential field.

We may always interpret one set of lines as equipo_t_entials, and the con-

jugate set as the corresponding fieldlines. However, and perhaps more

importantly, it becomes apparent that the field form factor A is a con-

formal invariant and represents nothing but the appropriate aspect ratio

Of the conformally equivalent rectangle"! This fact we treat in more

detail below.

Bficksrovsd Receding -- flavlformel berries

(1) BECICEINBACH, E. F., Editor: Construction and Application of Conformal

Maps, Proceedings of a Symposium, National Dureau of Standards

,A_P1>Jl.i;@§ M§Eh§Q!8¥i;¢_B 5;e,1"i,e_S., V0l- 13 (S1952) ~ S S O V I I A I I I I A I ' I

Perhaps the single most useful reference in this subject.

(2) ROTHE, R; OLLENDORFF, F. and POHLEHAIJBEN, K.: Theoryqof motions, (1933)

A translation of a classical German text which predated American

engineering application.
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Background Reading -- Conformal Mapping (Continued)

(3) BEWIEY, I» V-= W0-Dimensional Fielfis is Elsstrisala Ensinssrfms (19(+

An excellent treatment of the practical use of conformal maps to

several fields of engineering.

(h) KDBER. H= Pi¢Fi9PsI¥,9f 999?¢rmal Representation (1952)

A useful table in applying mapping functions.

(5) NEHARI. Zea“ Cs?-fPrmsl.1YarPisa(1952>

(6) CARATHEODORY, c.: Conformal Representation, Number 28, Cambridge

Tracts in Mathematics and Mathematical Physics (19525

The two above monographs deal with the analytical and formal pro-

perties of conformal maps, including 3-dimensional transformation.

D. Field Form Factors

As indicated earlier in this section, the transmittance of a

homogeneous energetic field depends only upon the property constant of

the medium and upon the field geometry in terms of (size) times (shape).

This latter shape constant is measured by the field form factor, ;\ ,

which then can depend only upon the (normalized) boundary conditions.

For a field tube, these boundary constraints consist of fieldlines along

the walls and two terminal isotimic surfaces.

If the field is a potential field, the form factor is unique

and invariant under conformal mappings. These properties of ;\ yield a

number of simple bounds and estimating techniques as indicated below.
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The Evaluation of Field Transmittances

§ _ _ — Q — — — — — _ — — — — — — — — — _ ¢ — — — — — : — — — — — — — — I-_

The general field relations above may now be applied specifically

to the problem of evaluation overall transmittances of a field tube. we

assume in each case the existence of the following primitive vectorial re-

lations:

f """"""""""""""""""""" '11 """"""" "'7

; A scz-use POTENTIAL: u e u(R,t) §

E The POTENTIAL GRADIENT: u = - grad u i

E An ASSOCIATED VECTOR: v = /< u §

n ___________________________________________________ __;

we may represent an arbitrary field tube in the following planar

fashion:

li=1i1

Boundary

Boundary Equipotentials

Fieldlines

Then along the tube between the two bounding equipotentials we have

the relation: 2 ___ __,_

POTENTIAL DIFFERENCE: u, - ug = Jr U ~ dR

1

mule across the tube between the bounding fieldlines we have the relation:

TOTAL FLUX: v = Jf IF- dA

A

we are now in position to define the overall field tranamittance in

We fashion: __ __

n/A v - an

FIELD TRANSMITTANCE: J’.-—e --it-2-----_ e --Y--

_/G U - an U1 ' u2

1

hlevery field of physical origin, it is this quantity which is of greatest

Jfisnificance and importance at the macroscopic level. Historically, these

Menomenological relations were discovered independently and generally are

mfid after their discoverers (e.g. OHM's Law).
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However, it is our present purpose to demonstrate that given the

existence of an underlying relatively homogeneous and isotropic field, the

corresponding transmittance may be evaluated from.the field geometry and

material transmissivity.

where Av and Lu are an appropriate area and length, respectively,to absorb all

information about the field geometry. But we may further factor the geomet-

It may be readily demonstrated from.dimensional reasoning that, since

l

-—.-L

I

--L

U -srsdu and v= KU , then:

1- - A

U-in -.=

:72‘ /< f_. _.. /< "*j§L"'

U-dR. 11

rical aspect into a (size) x (shape) product since

I

Av/L = (An/L ) A = (L2/L) A = L )\

Here An and Ln are arbitrary or nominal dimensions but L measures absolute sir

' ' form

U.

1'1

and ). measures the characteristic

(OI‘¢OvO¢O|

I I

I I

Thus we obtain finally:

FIELD TRANSMITTANCE: J’-= /< - L - A = (Property) -(Size)-(Form

l

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I
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I

I

I
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I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

$13115:

M

ii@‘I¢

____________________________ __.. ___‘___;;C__-_’_I;;;.;;_Y_-.._-;1

MATERIAL GEOMETRICAL

Parameter Parameters

The value of A, depends only upon the of the field--the boundsfi

form

configurations and conditions~-and not in any way,upon the absolute scale or

the particular medium. This fact is not only the principal justification for

the practical use of field analogies; it also permits rapid estimates of trans

mittance by simple inspection of field geometry.

For two-dimensional or planar fields the dimension L can be taken as

the transverse width of the medium, giving a particularly simple result for Us

transmittance per unit width, namely:

ZiZZjiZilj1ijiiiiZiiiijiiiiijiiiiiIiiiijiilijiiliiiiiiiii

,4-0-coo-4

PLANAR SPECIFIC TRANSMITTANCE: ,7“/L -. /< - A

Iiiinunfltuutix

_1$$1$$i

tfiitii

ithi

lo-0-0-4-‘I

This relation clearly implies that geometrically similar planar QQQQ

,have_identical form factors. But the same result is also true for all potenfifi

fields.
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En@rsi'..S‘29£sss-2~ss_1.2isashes-.2n_l2-s_€2’2ss‘2i2~}_€is%§

Given the steady potential field e(x,y,z) and the associated

-J >

vector field f(x,y,z) = - k grad e, the field energy contained in an

arbitrary closed region is given by:

“* 2 - --> , ..

IE"-= dlf = K] Igradelg dz

95‘; ‘Y/‘

But using the divergence theorem these volume integrals may be directly

equated to the surgace integral to obtain

E A ‘) J‘ -.___.s. ..s.

= y A ef-d.A = k A e grad e°d.A

In the discussion below, we shall restrict attention to the

special case of plane potential fields. However the methods and relations

derived are of general validity.

For this case, the above general principles reduce to the

following relations:

/'

be 2

. L = k ‘ --—

IE / ff AM ax)

Cy

Q!

H»

+

/'\

==k}/(e-T-Eds

c n

The form expressed at the lower right is most easily evaluated

alone e-lines and f-lines as indicated below:

0/

ll

W

be

(D

~11

In

k

Q

WC?

.__§)2] . dxdy = klfi [(-gl§)2

E’

n

W

§9\

S

+

/'\

df

(‘/O.’

-—-ff] <3-><<1:>'
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Thus we obtain for the energy per unit width:

B2./L = k jg e df = K (65 " ei)‘ (Th " fl)

= k ' E ~ F

It is obvious now that this is merely the simple summation of the equal

energies distributed in each orthonormal cell. Moreover, since F = )\ E

then we obtain finally

ptbcflddnusntitid

1 A

I I

I I

I I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

\

IIIIII-Iunnulyn Q Q x x x > £ x x r @ Q $ @ x @ pa-spun $ x @ $ @ : Z $ @ Z i $ III!-Dl?FII~

_ A 2 1 F2

= k ' L ' E. = k a L ° -'

inn:-n

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

Sou-oaaou-4001

A

Thus the form factor ;\;not only serves as a measure of the field trans-

mittance; it also is a direct measure of the energy storage or dissipa-

tion in any potential field.

§§E§§;§E§€§¥_§§P€§@EPe§€§EEi2§§§

Returning to the volumetric evaluation of field energies we are

now in a position to state a pair of complementary extremum principles

which may be used to determine the field energy and therefore the form

factor. These we shall name after their promulgators, namely:

.RI;'msirl@

Of all arbitrary scalar fields

in a region satisfying a given

boundary condition, the POTENTIAL

field has the MENUMUM energy.

¢1iU¢I6Q¢IlOiIOO|lO0I4ClU¢I¢l¢8

?11'fi9M8°.1\I’s Prfieceirle

Of all solenoidal vector fielm

in a region satisfying a given

boundary condition, the IRROTATIONM

field has the MINIMUM energy.

The two principles may then be used very effectively to

estimate upper and lower bounds for the field form factor to obtain re-

A I-~ A .e.~. A

D "" T

sults in the form:
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For DIRICHLET's principle we make an arbitrary assignment of

' compatible with the boundary conditions; for THOMSON's princi-

isotimics

Ple, the fieldlines are assumed. If, and only if, the assumptions corre-

spOnd to egpipotentials and gradient lines, respectively, will the

corresponding field energies be minimized.

For some of the interesting history behind these dual principles

we may quote POLYA from the work cited below:

An important special case of Thomson's principle...

was already known to Gauss...That the two principles

can be used to obtain estimates of the capacity from

opposite sides, has been observed by Nexmell to whom

the method was suggested by an investigation of Lord

Rayleigh...Maxwell, however, did not derive upper or

lower bounds from his method in concrete cases, ob-

serving that the "operations...that are in general too

difficult for practical purposes".

That this is not quite the case, particularly in this era of

machine computation, is amply testified to in the book of POLIA and also

in CRANDALL*s text which is referenced below:

It is perhaps easiest to visualize this application for the

case of dissipation in a planar field. ,However analogous developments

are possible for all energetic fields.

_________________________________ -_7_________________-_____________------

Rsnsrrle i PI.'j__Il_c;jt:gJ-;e_

Let e(x,y) be an arbitrary 3 Let f(x,y) be an arbitrary

Scalar function such that e 2 1 z sourcedree vector function such

On surface A of a fieldtube and % that the fieldlines are normal to

6 E O on surface B. Then E E 1. ¥ A.and B, coincide with the field-

OQOQOIIIQIQOOQ

9-I

D

2 tube boundaries, and enclose one

unit of flow. Then F E

in
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T53; EI §>J4l§¥EE e I2 dq/I IP23 as $3 I/2! EII 2 dctf

EG1>'2=G1> ERT'F2“RT

E1

I¢¢O§QO40I91iIIQOQ

But the above minimum.principles tell us

G I -4* R

-..._ g RT __..

U!-D

I

Y

and the equality signs hold only for:

-Q .;

‘72% E O I §7x£‘ E O

s

Thus we may obtain upper and lower bounds in the form:

7 """"" '"' """"""""""""" “'1

2 5: as I

: 3

‘ ii R it '

: 13> RI :

$3

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

L.

If the bounds are close then

*4

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

cl

e'.l_"\/GD-GT §

I N I

i R= \/Rs-Pt 3

1'80

I

I

I

I

I

I

I

I

no

(Note in the above approximation if arithmetic means were used different

estimates would be obtained for conductance and resistance, which is not

particularly logical.)

§399¥f=21i°.uR@ Rssfiéag ~- 2151221-5512 - ,Th.‘?P§°P Rlissiples

(1) POLIA, G. and szsso, (2.: Isoperimetric Inequalities in Mathematical

Physics. Annals‘ of Mathematics Studies, Number 27 (1951).

(2) COURANT, ‘F’-II= 121.1’-"£11!-‘?’9§$ Plfilmpls, QQ1?fQ1?m==1l iMsppil}s, a1,1dpMinima1

Surfaces. (I950).
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Maxwell's Principle of Transmissivity

A universal field principle of great utility was first ennunciated

by James Clerk MAXWELL. It may be stated in general dualistic terms in the

following words.

-0-0-out-0-0 -0-4|

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

, DECREASED } INCREASED

i the overall transmittance is correspondingly

E nscaasssn ; INCREASED

§ 3

1

r ________________________________________________ --

It then follows that fixing any

fieldline E Eequipotential

I

DECREASES i INCREASES

the overall field transmittance.

These last conditions amount to a loosening and generalization of

the

THOMSON Principle

respectively.

In any field, if the transmissivity is locally

vO¢O

vi-OI‘ -0:4

-Oi-O§-‘Q

DIRICHLET Principle

i-4-u-4-cw-0-0-0-o-0-0-0-1-4-0-0-0-4-4-4|

The transmissivity principle has practical application to uniform

and nonuniform, linear and nonlinear, continuous and reticular fields of all

sorts. As indicated above, it may provide bounded estimates of the form

factors and transmittances of fields; but, in addition, by judicious com-

pensatory or balanced increases and decreases of transmissivity (or local

transmittance) throughout the extent of a field a rational estimate may be

readily obtained.
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E. Rectangle Diagrams

In the earlier discussion of state-determined elements, the concept

of complementary energies was introduced. While these notions originated

with MAXWELL and HELMHOLTZ in the last century, only recently a striking inter

pretation was given to the distribution of generalized energy over reticular

fields in terms of rectangle diagrams. These figures, introduced chiefly

through the efforts of CHERRY and MILLAR, represent the generalization of the

concept of form factor to arbitrary linear and nonlinear fields. They serve

to portray graphically the local distribution of stored or dissipated energy

over the extent of a reticular 1-port system or network of like-kind 1-port

elements (i.e. all-resistor, all-capacitor, or all-inertor reticular fields).

For each of the three species of nets, the rectangle diagrams are

mosaics as follows:

RESISTIVE FIELD CAPACITIVE FIELD INERTIAL FIELD

€ ~

I ‘ a

O

'9 loo

\l

,‘ I

I

I/*. -=7-'-'

P‘-.’. '.

" e.‘

-; f:-3.

O

t =1 t

III E EIIJI; TH? E5 ii 11¢

K.

‘=5

m

K [V]

FF]

Since the appropriate generalized energies are all compatibly distributed, so

must also be the corresponding normal and complementary energies. For a unifmfl

continuous field, with unit property constant, the rectangle diagram simply ho

comes the conformal mapping of the field into an equivalent rectangle of iden-

tical form factor; as before, the form factor, A. , measures the aspect rank

of this rectangle, all of whose elements are equal squares.

However, the importance of the rectangle diagram is rather for dephi

ing the case of nonuniform and nonlinear reticular fields, where the elements

themselves will also generally all be diverse but compatible and contingent
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gmtangles. Clearly, the micro-reticulation can then extend indefinitely

ypthe field substructure if desirable, but this is not a necessary require-

knt.

F@list1E_@E9Z%¥ friseisese-€9§-§§sEi2_esé-§Ee§i9eerI_Ei@%§§

Whenever we deal with continuous or reticular, linear or nonlinear

fields of like-kind elements operating under steady conditions, the dual

pir of Lagrange Equations cited previously yield a simple set of dual extremum

hinciples for each type of element as follows:

IQ-Q

EAPACITANCE: E .

<9[lT q/<3Kfl_ 0

RESISTAJVCEZ <3 P f/ <9 f e 0

tmmumm= d'I‘f/dlfzeo

Bhme all these pairs have identical topological structure, we shall center

wmention on the resistance case. These dual extremum conditions give us

-QIOQO-On-Q10-OI-Oil-O-I001

aUJe/ aaeee

aIP’e/ aeee

a'1Fp/ ape 0

Mmple generalizations to arbitrary fields of the classical

THOMSON Principle

hscussed above.

For the resistance case, their significance is the following. in

NW'reticular field embedded in a fixed environment, where all bounding parts

bme been represented as equivalent

A Neumann (Helmholtz) Ports

kW‘&ny arbitrary internal assignment

Flow ii?

IO-O-OIIOHOQ-O

VOFQ-IIOIOIJO

s-Q-Q-Q-gr-Q -Q

of

DIRICHLET Principle

Dirichlet (Thevenin) Ports

Effort T2
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compatible with the boundary conditions, that set which minimizes total

yo-at-Opo-0 <0

Content Pi Cocontent P8

represents the equilibrium or steady-state configuration. Similar statemenm

hold for capacitive and inertial fields.

Not only do these principles offer a particularly attractive way m;

estimate the steady-state solution for such fields but they also lead direcfi

as before to bounded estimates of overall transmittance.

Again, for the resistance case an approach to the minimum for:

I

C O N T E N T 1 C O C O N T E N T

?

w i l l f u r n i s h a n a p p r o x i m a t e

L O W E R B O U N D i U P P E R B O U N D

I

I

for the overall conductance (E resistive transmittance).

These properties may be made self-evident through use of rectangle

diagrams as indicated below.

§E§€5¥_§§§§§@§_§E T§§9§-9§_R§E§§§§§§_Dia§r§9s

we may demonstrate the relation of the above principles to rectamfi

diagrams in terms of a loaded resistive Wheatstone bridge. For simplicity,l

us consider the case where the variables have been normalized as indicated.

broader application of these ideas should be obvious from this example.
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GENERALIZED THOMSON PRINCIPLE

Assignment of (fA, fB)

I I I I , ...- _ . ‘...

‘FAHII fa;-Fa Ul1-+‘A

<)'—'-CI}--<1

‘FBJU UH"'F5

1111111 1 1 1 g ' J J 1 :1

III

Rectangle Diagram:

\.\§§‘.§\

I

5 E

4 I

I

I

3

4

ft.

]P’i]P’

f f, equil.

For the linear case:

Rf E: R

‘I000-to-00000-scout-0-0-0-0-0:0]

Rf

Cl

H:

A

4

|o-0-0-0-0-0 so-0-o-on-0-4-0-0-n-0-0-ovo-0-4-0-4-0-0-an-0-4-Q-o-0-4-0-4-0-1-0-0-0-0-on-0-b-o-n -O-0-0-0-0-0-0 -o-Q-o -o-o-o-"0-4-0*-Q-4 -¢"¢"¢-°'4'¢'¢'"0 -'--¢~'4-0-"0-Q-0-I

R

G

§

4

GENERALIZED DIRICHLET PRINCIPLE

9

R

Q

0

(D

Assignment of (ea, eb)

Rectangle Diagram:

- 9-‘=1

\\\\\\\\ *\ \\ I

‘\ ez}

\

\\\\ \

1' . \

IIIIIIIIIIII

\\ \ . 7

I ‘ \

O

IJIJIJIIIJJIIIJ4

/

’///’/

////I I

\

///

/ C

5

]%D<a 1- jflme, equil

For the linear case:

G Z G

e

I

fououiubuouit-owe-ova-ouooncn so
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In the above relations, the equality signs hold only for the

equilibrium.case, corresponding to a correct assignment of system variables

The_§99§§_§99§PE?5E§§913

’ As another example of the application of rectangle diagrams, consia

the problem of determining the overall transmittance of the following bridge

structure:

I////g/I/////////////‘.1

I/2.[] [11

. 1 r

(>-{:1-4) EEE 51-

‘I

1[] [1/z

Z0007/nnovv/A001

O

C)

I

1

><-e~

I

.i\--\_(>-

Q)

§><.'

X

where the local linear transmittances are as indicated. The solution of all

such linear (and.nonlinear I) bridges may be elegantly determined using a

simple rectangle diagram construction originating with Stephen A COONS as

follows:

Coonfs Construction Rectangle Diagram

A
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ans gives a final transmittance:

This result may be check using the MAXWELL Transmissivity Principle

g follows:

,.-uunuwu-_-nun:--nun--I-—|—§-I

LOWER BOUND

inhabit

.71 5/7 = 0.71

Imro Central Transmittance
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T
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T
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,__ __ _ ___ __._.._Y._
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I

-v-1-1

@131I-11::$1_$$$—b$11i1hv_Ih-nnvunxbsixxhnhllhn

UPPER BOUND

Infinite Central Transmittance

-n———-To-——4>

<3

1‘?

.7 -2 1-5/2-0 =-. 0-75

up -> -

1*],

2».§L _. _ '
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ppkground Reading -- Rectangle Diagrams

IO CHERRY, E. c. and MILLAR, w.= Some New Concepts and Theorems Concerning

Non-linear Systems, Automatic and.Manual Control, pp. 263-27h (1952)

i3 GARDNER, Martin: Mathematical Games, Scientific American, Vol. 199,

NUmb@T 5, PP~ 136-1A2 (November, 1958)
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Background Reading —— Potential Functions

(1)

(2)

(3)

(’+)

Background Reading

GREEN, George: A-E Essay QR We APP}i¢d-Piss of Msfihsmtical A-Pslysis

to the Theories of Electricity and Magnetism (1858).

----------- --; Mathematical Investigations concerning the Laws of

Equilibrium.of Fluids analogous to the Electric Fluid, with

other similar Researches. Phil. . (1833).

Trans

These two papers by'a self-taught genius (and miller!) are the

foundations of modern potential theory.

KELIDGG, 0. 1).: Foundeptions oij Potential Theory (1929).

MACMILLAN, w. 12.; The Theory or the Ploptentisl, Second Edition (1958)

The above two books are the classic references.

—- Fields

(1)

(2)

(3)

(it)

(5)

(6)

<7)

MAXWELL, J. C.: 5 Treatise on Electricity and.Magnetism, Third Revised

Edition, Vol. I and Ii (1891). 9 if

Maxwell's contribution to field theory ranks with Newton's gift to

dynamics.

MASON, Max and WEAVER, Warren: The E,lectvro_-n,s,gn_e,t,i,c Field (1929)

A.definitive work of an analytical nature.

SKILLING H. H.: Fundamentals of Electric Waves (19H2)

, ._I_-l;_l;“"_:;1_'_i:;_.;__ "l_1;‘

An outstanding lucid introduction to field phenomena treated by

vectorial mechanics.

WEBER, Ernst: Electromagnetic Fields, Vol. I - Mapping of Fields

Second Edition (195%). II'I " " "I

Very instructive and readable introduction to field theory.

ROGERS, w. E.: Llvrltropducjtipofnp tg Ele_ct:I:i:c_ Fields (19511) .

Especially elegant graphical and analog field plots.

SCHNEIDER, P. J.: (conduction Rest Transfer (1955)

An excellent treatment of transient and steady field phenomena dis-

guised under the rubric of an engineering speciality.

BITTER, Francis: Currents, Fields and garticles (1956)

A text which has been used in the basic undergraduate curriculum at

MIIITO
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F. The Temporal Response of Physical Systems

Let us use the closed, state-determined system.as an example.

fie conditions at the boundary between system and environment can always

be at least approximately represented in terms of set of (possibly mixed)

finvenin and Helmholtz equivalent sources, where:

Thevenin Source Helmholtz Source

F —-O -

Z

I111

I

y_\-;._.

I

Wamay then further idealize these sources by extending the prime retic-

idation -— the fixing of the system boundary -- to include the source

mmedances as parts of the system itself in the fashion:

Ideal E J E Original Ideal E Augmented

Source ; . ; System Source ; System

I Z I 1

For both continuous and reticular fields this strategem results in

Um classical boundary conditions of Dirichlet or of Neumann, or else mix-

hues of these forms. The specifications of E = E(t) and F = F(t) of

cmuse include constants and null values as important special cases.

Let us now consider a multiport state-determined system S which

Ems been rendered into such a form:

X//gm

~\\

U0

/

m

In general each internal state variable will be determined adjacent

V>&H appropriate energy junction; this situation we might indicate in the

fashi On;
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On the above diagram the (m + n) ideal boundary sources are all independent

variables or inputs while the internal energetic variables ej and fk are

each and every one dependent or output variables. we may then indicate the

final explicit functional solutions in the form:

H: (D

OQOWIODQJQ pl

/'\

d‘

\_/

ll

O

I

Q

W.

-(t) = \I/3. [s(t) E(t);F(t) r(t>1

J 1 2 I m 1 I 2 n

k_[E1(t): "'2 Em(-)3); F-1(t): '°': Fn(t)]

we are merely stating that the instantaneous value of any internal state

variable is a function only and entirely of the history of the ideal environ-

ment. we should note that the output variables conjugate to each external

input source are now determined from.within the system and are therefore

included in the set [ed , fk].

It is also interesting to note the singular result which arises f0T

the special case of a co tant environment. In this case, for a state-de-

ns e

termined system, the response traiectory is uniquely determined by the inifififl

: ' '

state alone

The Bessel?-.s.e. 2"; kisses ézstsse

-

A system is linear if all the elemental components of a system

are linear, in the sense that the governing relationships among the energy

variables are all linear. In the case of the state determined systems, the

G
e
n
e
ra

te
d
 o

n
 2

0
1

4
-0

2
-1

1
 1

3
:1

4
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
6

4
8

7
4

9
2

1
P
u
b
lic

 D
o
m

a
in

  
/ 

 h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p

d



part XIII 2.751 CLASS NOTES 195

“W-'="""e&'""""1e**

E

zimitive characteristics are linear static functions while for the more

eneral n-port linear elements, the reticulation may be carried only to the

evel of linear functional operators.

If the functionals NP'j and. ‘§7k are all linear operators then

km superposition property implies the additional functional reticulation:

O

(Dos

=...+]F-Eh+ +Z'F+..

J Jh Ji i

fk=. +YkhEh+..+FmFi+..

Q 0 0

-I Q I

0 0 <0

he operators III. and IF‘ being dimensionless are termed transfer ratios

Jh ki’ * A ~—’

Mule the dimensioned operators 2Z.. and.Lfi? are called transfer impedances

2

,1

. J1 kh A A

hm.t§an§fer admittances, respectively; all four classes of operators may be

1

I

onsidered transfer functions.

Using scaling constants, the transfer impedances and admittances may

Mso be expressed in pure ratio form; for example:

Z31 = RIFji = (E0/FO)IFJi

Ykh = GIFkh = (F0/Eo)lFkh

tythis means all the transfer operators reduce to dimensionless operators

AF‘ab, or to such ratios multiplied or divided by a nominal resistance

tmmtant. we may then restrict attention to the single element:

f

P

y=]Fx or

reefer Charasteristiss Q11 Li-near §§a’§s-D'2i=.aImnss Beticskar szeiass

Such systems are reticular complexes of the following seven linear

irlinearized elements:

[ E.’ F.’ R.) C.’ I.,.é., .i. ]
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A simple example involving all seven might be the system'

f e

E1 1 ~ so

/\ 1

I R C

The general functional relations

-

-_

f

e :

which in turn linearize to the

f ~_—.

e :::

using the resistance R as the scaling constant

Any of a wide variety of linear reduction schemes will yield for

the above system:

for e and f would be written:

\I/ (E,F)

‘I’

form:

(1/R)- Fll'E F12 F

IF-E+R]F F

2l 2

1 (I/R)D + 1

__ _ ,1 P)

F11 “ 1 *+ '('I(%§~()JDD+ (:1:'c)1>'-'=‘ 5 F12 1 + (RC)D + (IC)D2

F21 = '+ I(IR‘CI)*D' l+ ‘(Ilc)h2 ’ F22 '" ' 1 + (RC)D + (IC)D2

Since each operator is dimensionless, and, indeed, the numerator and

denominators are separately nondimensional, the coefficients of the powers

of D are accordingly time constants raised to the corresponding power.

Thus the three physical parameters (R C I) manifest their effects

through the three time constants (T , T T ) where

T12RC , TEIC , T I/R

1.

2

(Er?)

1 2’ 3

2

W
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[n these terms the above operators become:

TlD

1

F21 = 1' ;.. + ’ F22

fhe fact that F E

21

lng for all such linear passive systems.

From the above we may see that the general case of a linear system

F is a consequence of

21

..-

>-

¢-.~

the reciprocity principle hold-

1

1 + TlD + T§D2

- (T313 +1)

1 + TlD + T§D

paving _r external bonds to the environment and a total of _s additional

State variables, will entail ( r + s ) energy junctions whose ( r + s ) output

utates Y may be related to the r input variables Xby the linear matrix form'

F ... _, ...

yl IF 1F F1

p ll 12

IY2 F F ‘.. 21 22

r+s I = I I I

U O I Q

‘yr Fr] FT2 "' Fr

yr+s Fr+s,1Fr+s,2 "° IFr+s

fisisrsund Reading -- Linear Bysfisms

"Y-'=']l"-X

,I‘

Y

r - columns

I1) CHENG, D. K.; Analysis of Linear Systems (1959)

Q

1"‘?

IX1?

X2

xv:

'1

r

* rows

un_~—u

J

I2) TRIMMER, J. 1).: Response of Physical Systems , Second Printing (1953)
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G. System Response in the Time and Frequency Domains

?13§-P§§E££2’££9E_9€_é€E1‘££s€;.’_§1§£1s.%§

Under normal operating conditions the variables of most physical and

engineering systems will undergo arbitrary variations over time. The general

situation will involve stochastic signals, the word deriving from the Greek

O'TwX(10'TL K O Q (stochastikos) meaning, surprisingly enough, both "to

aim" and "to guess". Such variable signals are those which have some prob-

abilistic element and are thus not completely deterministic. At the extremes

of the stochastic range, we find the purely deterministic (i.e. point-predict-

able) signals at the one end and purely random (i.e. distribution-predictable)

signals at the other end.

Since any deterministic functional operator, “E? , applied to a

.stochastic signal, IKI , will produce another stochastic signal IE? , we are

necessarily concerned in all systems with an adequate description of arbitrary

stochastic.signals.

The detailed description of random signals and processes we leave to

be considered in 2.752; here we shall concern ourselves with purely determin-

istic but otherwise arbitrary signals.

Consider first the _u_n_g:_ site; or _,j_un_1__p function, u(t)=

robe

1/2

/_

In I I I I e U(t)

r—1

E + sgn //./.111./1111111 .|

o 4-

--u»<~ /~~- I >

Time t

This discontinuous but nevertheless analytic function was first introduced

into system analysis by Oliver HEAVISIDE and is frequently called in his honor

the Heaviside function.

A completely arbitrary stepwise varying signal can be defined by w
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equation:

X

I x(t) e a_kU(t-Tk) }

{Ms

,;, t

Here the coefficients, ak, and jump times, Tk, are assumed at will (subject

to the implicit ordering; Tk < Tlm).

If we wish the jumps to be at synchronous clock intervals, T, we

need merely to set Tk E kT, to obtain: X

I

1 1 1

,, , I ,

GO

I X(t) e g_me.Ku(t-kin) I P1 ’

Now the sequence [ ak ] is a precise specification of any such X(t), given a

specified clock interval, T.

The significance of the above results lies in the fact that such

1

__--

1-_.__- _

descriptions in the time domain are the precise equivalents of the conventional

Pburier series in the frequency domain. To demonstrate this let us for sim-

iflicity consider an even periodic function. This would be sketched and ex-
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panded as indicated

aunnu gn-

1

I

|||

11 [V18 I

- -> X(t)

t bk cos kwt

PT’

O

1\>

=I

\

E

l___

F-

Now by analogy to the last expansion above we have

Clock Interval: T <——-P (1) : Fundamental Frequency

Jump Amplitude: Bk 4-—-> bk : Harmonic Amplitude

Jump Time : kT 4--"P kw: Harmonic Frequency

Of course the general expression for a Fourier series will involve

both odd and even terms since any function can be expressed as the sum of an

odd and an even function. Thus the general Fourier series is written in any

of the equivalent forms:

X(t) = Z ak sin (kw+&*6ik)

k

k 8k S I1 k COS

= Z( i 1<w¥.+h k0JT)

= éhk cos (1~:w*[+.;i;k)

The angles k and 43k are called the harmonic phaseps. We shall generally

find the last form most convenient in use.

It is also not without interest to speculate on the frequency analofl

of the asynchronous arbitrary stepwise time signal above. This may be p05’W'

lated as the (generally) aperiodic signal:

x(t) E Eh}, cos (wkt + ¢>k)
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This is clearly a generalization of the Fourier series which will frequently

give the appearance of a quasi-random.signal if the set of [cuk 1 are rela-

tively incommensurable.

Thus with either the set [ ak, Tk ] or the set [ bk, wk, civk 1

we may describe to an arbitrary degree of precision any normally encountered

X(t) over a finite period of time. we are now in possession of a descriptive

mechanics sufficient to treat the dynamics of any linear system either in the

time or the frequency domain.

SBBs£E9§2’Ei913_E¥.‘9E§¥."3£1.i=§-9€-T:Z9se£_§.¥§EsI2§

Any functional operator, II , is said to be a linear operator A. ,

if it satisfies the linearity condition:

[A<<n1x+JbYr> nix + [BAY]

for arbitrapy constant matrices K1] and HI). Of course the vector variables

X and Y must be such as to lie within the domain of definition of A .

The above condition is both necessary and sufficient. Thus if the

operator is "known" to be linear, then the linearity condition is necessarily

satisfied. The above condition is customarily written for scalars and in the

form of two simpler conditions as follows:

A(X'1 +X2) r; .A.X1+AX2

AaX E a_A_X

*0-0-0-0-0-0-out-0-0

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

fa-0-onoco Q-0-0-1

1

It is perhaps easier to see now that linearity implies only that IQI is

distributive with respect to addition and comutative with respect to scalar

multiplicatiqn.

For the systems of interest to us, we are concerned in the scalar

Y =qP[x]

case with situations.
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But from the above we know that:

If: Y = j&.X

and: X = :3 c Xk

k k

then: Y = Z c

k k

Thus Phe _I':¢_SlP;QnS:Q F2? 2 lines: esysetees F2 2 <i1s.’wr1>e@<I1¢.e saml-g¢S¢.<l <>,Ii 2. we 1.s,11’@_<==,<1

Sum °feS1%nal§ is.E§§.9Qr?¢sP9n@in51Y."?i5ht?§ §P@§9f the Kssssnsss #9 93??

signal acting alone.

This superposition principle for linear systems is the basis for the

application of nearly all mathematical and scientific theory to the real world

Up until its promulgation by Daniel BERNOULLI in connection with the vibrating

string problem in 1753 the practical application of mathematics and analysis

was severely restricted. The first dramatic results after its enunciation

were the masterful trigonometric series expansions of Joseph FOURIER in 1822.

The superposition property is obviously also valid for linear multi-

port systems in the form

Y‘-=1lX

X:

Y:

**[V1 F*t”1

P9

>><’

>4: w‘

k

In the paragraphs below we indicate the application of the super-

position principle first to the representation of behavior in the time domain

and, secondly, to representation in the frequency domain.

§§§¥.’._139§l5."2¥.1§§..?.*E§-?H‘.1§_P9¥.‘§.3P3_3§§13§Y§9§

Consider the time-invariant linear transfer operator IF (D). we

define the step response, F(t), as

F(t) e IF (D) me)
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Thus the step response is merely the output Y(t) resulting from an input

X(t) E U(t). We may then determine the response to an arbitrary jump

function by using the superposition property as follows:

Given: Y(t) = IFX(t)

and: X(t) = g ak U(t-Tk)

and: F(t) = F u( t)

Then: F(t-Tk) = IF?U(t-Tk) [time invariance]

and: F X(t) = IFU(t-Tk) [ superposition ]

Therefore: Y(t) = Z ak F(t-Tk) I

k

This result implies that for linear operators a knowledge of the step response

alone is adequate to determine the behavior in the time domain to an arbitrary

degree of precision. It is this fact which has raised the step response to

the eminence which it has held for the last seventy years or more. Of course,

if the system is essentially nonlinear and the normal input is arbitrary then

the step response has little if any value as a behavioral measure; it is worth

stressing this point in the light of contemporary proclivities for obtaining

such meaningless data.

If we wish to pass to the limiting case of a smooth x(t) then the

Sums must go over into integrals. This transition is natural if Stieltjes

integration is employed. Thus we define X in the form:

t

x(t) e _[ dX('l')

co

If X is (purely) continuous in real time, t, (and umbral time, T ) then

this reduces to the Riemanian identity:

t

x(t) e _/la) ax(r) = ><(t)
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But if X is (purely) discontinuous at a series of discrete times [ T ]

k

then the integral is evaluated as the sum of jumps or salti in X up to

time t, namely:

I-3

It

d"

x(t) = %§ ak U(t-Tk)

Having established this relation we may then state the integral form of supu

position as convolution integral:

‘ Y(t) = j:iD.F(t-‘T) dX(T') I

Due to linearity, it is simple to demonstrate that a complementary form of

this convolution integral exists, namely:

t

l Y(t) = if x(t- r) dF(1T) I

-co

Furthermore, if F(1') has no discontinuities (including one at the origin!)

then we may usefully introduce the concept of the impulse response or

weighting function, f(t), where

t

r(t) E dF(t)/dt or F(t) E Jf f(t)dt

—<n

Substituting f(t)dt = dF(t) into the second convolution integral -— a step

valid and useful only if r(t) is finite ( F(t) continuous) -- we obtain tn.

far more common -- but less useful -- form:

I r<t) E x(t~r)i"("r)dt|

g.

I

These convolution integrals are all originally credited to DUHAMP

Except in electrical engineering they were little used until the advent Of

Norbert WIENER. Now due largely to the central role they play in his writi

they have come into increasing use throughout engineering and physical scid
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5i§E§EESSZ-§§§B9E§§-§9§-€§§3B§EEZ_P99§§§-SSEEYZQ5

Let us next consider that we disturb a system with an arbitrary

input which we characterize in the previous generalized Fourier form, namely:

X(t) = E: bk cos( wkt + (pk)

Then if the system is stationary and linear, the response, Y(t), must be that

iue to the superposition of responses, Yk, due to each Xk acting alone. But

these individual responses may be derived by examining the behavior of a

Linear operator excited by a pure sinusoid of frequency (U k.

Representation of Sinusoids as Phasors

A.unit amplitude sinusoidal function of time may always be repre-

sented as the instantaneous average of two-counter-rotating vectors (or

sinors or phasors) in the form:

I

4\\*“’

. + - //| \

x(t).-.1. [.+J<"t+.-Wt] / I '+\

2 2 _‘_ | \

__ ____ __1_.T___

_ \\ | I /

= cos wt \\ M /

“I""|/

I

><

This principle is actually used

s a common type of sinusoidal driver or

vibrator.

[H this way, we may avoid the artificial use of real and imaginary parts and

Lmy introduce the symmetrical occurrence of positive and negative frequencies.
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§E'§SE§EEZ_§§ 9.29135?

It is then simple to demonstrate that the n-th time derivative of

X(t) becomes:

and therefore that an arbitrary linear operator, F (D), acting upon X givei

the result:

D“ x(

4+

\./

Ill

ml-=

[(+sw >“e"'3 "’ t + (-aw )ne"*j“’ t1

rm-= IF‘<1>>><<+=>=-H IF‘<+:1w>=*~j°”°+ 1F*‘<-;1w>e'J'“’**1

2

This may be visualized in terms of phasor diagrams.

Observe also that the _m§nitude H and the phase

pretation both on the polar and the temporal plots.

Im

It is evident that F (-j CU )

= F * is the complex con-

jugate of F just as X“ and Y“

Re are the instantaneous? conjugates

of X+ and Y+, respectively.

NF have direct inter-
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p Clearly, then, the response of any linear system P to steady

[nusoidal excitation is uniquely characterized by the behavior of F (j (1) ),

particularly, I F (J (1)) I and I F(j w) This frequency response may

vindicated either by the polar locus or Nyquist Plot (in honor of Harry NYQUIST)

[the magnitude vs phase locus or Nichols

(following Nathaniel B NICHOLS)

fby the pair of

Plot .

("" log magnitude) vs frequency and phase vs frequency

q sa-in = ___ as or Bode, Plots (after Henryk W. BODE). Certain of these we discuss fur-

r below.

lex Frequency Response

F? Historically, the principal reason for the interest in sinusoidal

rsponse lay in the characteristic variance of waveform under linear trans-

nrmations. However, this property is not restricted to sine waves alone; in

ct, it also holds for a very natural generalization in the exponentially

mped or attenuated sinusoid of the form:

X(t)=e 0-tcos w t

it we may now readily generalize as we].J. the previous concept of rotating

users to include this complex form in the fashion:

A X(t) 12 [ est + es“? ]

1 where s = 0' + jw

8* = 0' - Jw

Such conjugate phasors not only U’ ‘

Pdecay (CT < O) in magnitude as well. l

R18, the complex frequency, s , repre- :

‘BB a domain which is simultaneously

ating and changing scale, but one in

Ch the relative phases and magnitudes of

hater-rotate but spirally swell ((7 > 0) I _t)

I

. Phasors remain invariant! &
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As before we may examine the behavior of Dn X(t). The result is

readily obtained as

t *t

Dn X(’@) ==-15 [ (B)n es + (s*)n es 1

which is equivalent to: I Dnl = ( 0'2 + Q) 2)n/2

and: [_1_>_r_‘ = nten"1(w/0")

It is particularly enlightening to interpret these results in

phasor form for the three cases:

0' < Q 0' E Q 0' > Q

(DECAYING ( CGNSTANT (GROWING

AMPLITUDE) AMPLITUDE) AMPLITUDE)

a > 90° a E 90° a < 90°

This representation leads directly to a particularly elegant con-

ceptual picture of the characteristic roots of linear operators simply as

those complex values of s for which 1/ IF (s) 2 O and thewrefovne whfiifh give

.Y¢°’°91*i~‘—‘:l P"-i‘P¥1.l.ibF1.a ‘>5 tho? ,¢°F¥1’l?X .Ph§BPF‘ disersms -

The complex frequency response of any linear operator F (D) is
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q Re I 2 Re

/

“Eben:

II

I-\)_..§.

I—'I

Y(t) - IF (s)eBt + F(s*)eS*t ]

F* X" 1

II

ml —*

“ii

>4

+

+

Again, as with ordinary frequency response, the operator IF (D) is character-

ized by F (s).

9ene¥§]:§E§§-§§§2E9EEZ_13‘E§29E§§-§§-§-§9E§9E‘2§§_1‘§§E2P3§_§’€9E§§§

The above process can be very effectively interpreted as a conformal

flapping process of an s-plane into an F -plane. In particular, the ordinary

Iirequency response becomes a mapping of the imaginary axis s = ,j(U|+w into a

-‘siorresponding curve on the IF -plane. This locus is simply the Nyqhfist lot

P

in the form:

S - plane ,_ -i-F IF-plane

(c0MPLm< FREQUENCY) (NYQUIST PLOT)

D

H

B

I

I

Nyquist

Plot
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But we now have a much more general context for this mapping, namely

the ggmplete complex frequency response in the form:

Sp - plane ——-——————-I- HF‘ - plane

1%

All the conventional results of f

from this field map but neefil additional

from. Moreover, this characterization leads di

following.

+'fl)

*2 I

4

3+---

2+--—

|-I-—

—a I sof————>+0

......J..._ ._.Q..| {---

I

':"-:--<>-at ’ ‘"""

e""

2+.

+-<5-21"

‘ In

I,‘

requency response may be obtained

, properties may be inferred there-

rectly to the description next

\

1
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H. Linear System.Response in terms of Potential Functions

Char“1°§§§;E§§12E-P.X-§9i§§_‘3{1§_§‘3Z€‘39§

Consider a general system transfer characteristic, 1F: (s) in

terms of the complex root-variable, s = CT + juJ. This may generally be

expressed as a ratio of polynomials, finite or infinite, in the form:

IIF"<s> = 19(8)/Q(B) = < .$.1grr,{s“>/< Enksk)

However, these may in turn be written, at least implicitly, in the factored

forms, to give

.l'ZZ%. 1 I :m°Es ""“'"'""1

r_’“-\(S-'P)(S-P)--' (S-jp)

P s J, pg 2 _

F (S) = stat = A <2s“- nip (S <12): ' A T f Potts -_-_-J

The real constant, A, measures the infinite frequency gain of the system,

while the roots of the numerator and denominator polynomials give rise to

the ZEROES of F and the POLES of IF , respectively. Since F is completely

determined by these terms, one may consider that in this sense, any transfer

characteristic may be considered as characterized completely by A and the

poles and zeroes.

FQPSEPZEIE..9§-§Z§P§‘l‘_IEEEP§9E§

If one now divides the transfer characteristic by the constant A

and takes the logarithm, there is obtained the normalized transmission charac-

jsrietie, G =in<1F/A). Thus I I I

(Goo = ind?/A) = 8<s> +.-1¢<s>

T \

log phase

magnitude angle

ratio

Xsinse F = A - es - eJ¢ = (Mas)Xe3(Ph8'Se)

BY considering the characterization of IF? in terms of its poles and zeroes,
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the transmission characteristic G can be written:

(5 (s) Z E2 ln(s - pk) - 25 in<s - qk)

"Sources" (:) "Sinks" (:)

The terms on the right may be considered as the poptiepntial fifpunctpivon

due to a SUM of sources G) and sinks G) located at the zeroes and poles,

respectively. This may be visualized and, indeed, realized in an analog con-

sisting of electrical charges, fluid wells, or other situations, thus giving

rise to a FIELD in which the re_quipotential:s are contours of constant log

fieldlines

magnitude and the are contours of constant phase angle.

T:8§_§’2.’§?.E’EE‘;§}_I5.‘E13E’E?.9E_.§9€_?.’91€§_§£1§_§§€‘3§'3§

Consider the function:

w(s)

+ for ZERO; - for POLE

ll

1+

E

cu

Now:

RADIAL fieldlines are curves of CONSTANT PHASE

CIRCULAR equipotentials are curves of CONSTANT MAGNITUDE

90°

I

O __ I 1,50 Phase: B5 ,» F~l\ /

\\ // I \\ / mm mm

/~< : source sink

\ / \ _

, ,< I >< \ _ I

I

1800 -- — -L -|- -L I I .... _.Q°

)<

I

\
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I

All system.functions can be found from this one distribution by

locating sources at every pole, sinks at every zero, and then suming up

phase angles and log amplitudes for each distribution. This, of course, is

identical to vector multiplication of all vectors and

vectors,

pole zero

and is the basis of Walter D. EVANS’ "Spirule" and other more complex devices.

Transmission Functions as Potentials

However, in many practical applications of linear system response,

it is helpful to return to the basic conception that

both

are analytic functions of the complex frequency s = CT+ ju), for which the

IF"(e) and (G (S)

Cauchy-Riemann equations imply the existence of a set of orthogonfl potential

functions.

In this light, G (s) can be viewed as a conformal mapping of

.I? (s) which is in turn another mapping of the s-plane in the following

fashion, for the particular case of a pure delay 1E? (s) = e_Ts:

S - plane F - plane G - plane

+-Q)

I I

,i:1__

<s—F-

\\\\\\\‘ ,

I-—I

5

I

____i~I

_.._.._,_i"

I I

'“_fi-Pr

i1\\\,\\\;;\\

I I I

I" ' I

__r_

\

Clearly in this instance there is neither need for, nor value in,

| Re

I-—>

I

I

I

I

1

determining the "poles" and "zeroes" of F before constructing the map of G ,

Since this latter map is even simpler than that for IE? itself. Indeed, per-

haPB the greatest value of the transmission function lies in its generally

Simple form both for finite reticulations and for continuous systems.
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I. One-Port Elements and the Impedance Concept

§§§§€§}£E€§_99§:§9€§-5§}§E29E§

Consider the interaction between two open or closed systems con-

nected by a single energy bond:

S1 —-—-—-——-—— S2

The causality of this bond could be assigned in only two possible ways:

S1 |—- S2 or S1---| S2

If we now replace each system by a functional ope1‘ator,uP, we find that

both cases may be represented by the unique causal scheme:

e(t)

‘H’, 1-

r(t)

These two relations, Kip , andupb, we shall speak of as general

a -

ized impedanrce rpwelations. If both systems are otherwise isolated from the

environment, the relations are generally deterministic in nature; if one

or both are nonisolated, the operators will necessarily take on stochastic

properties. In either event, we recall that the meaning of the functionals

“Pa andu“HJb is that the entire histog of the input variables (f and e,

respectively) is required to establish merely the present value of the

output variables (e and f, respectively). Bothqpfunctions could repre-

sent extremely complex fields, networks, processes, or other systems, but

we could still always speak of them as impedance relations, so long as but

one port were involved. Some writers, such as KRON, have attempted to

generalize further the words impedance and admittance to cover n-port systemfi

where fend @ vectors were used as inputs, respectively. This usage been

comes proportionately clumsier and more specialized as the portality of the

elements increases, and/or essential nonlinearities are present.
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Therefore we now restrict attention to a deterministic system

or subsystem capable of exchanging power only at'a single port as indicated

above. It is clear that for such elements the over-all behavior is defined

by specifying the functional relationship between e fort and flow at the

_f

single port of entry.

Steadv-§Ea‘2s_.¥1112§§2122@-.13§%sEi9s§

The static characteristics or steady-state relationships for any

one-port element are generally nonlinear static functions of the form:

Y=cI;>(X>

For the practical (nonideal) case this single curve is usually

presented in the form of a graph, defining the range of all possible opera-

ting points for the component. This static function may be approximated to

an arbitrary degree of precision by a polygonal function (particularly for

essentially nonlinear elements), or by an algebraic function (particularly

for curvilinear elements).

?¥§§@§§-;@§ed§§§§§

From a causal standpoint, since we have seen that the power trans-

fer must depend upon the product of one input variable, X(t), and one out-

put variable Y(t), two general possibilities exist for the nonequilibrium

or transient case, namely:

IMPEDANCE FUNCTIONALS:

X(t) = r(t); Y(t) = e(t) e(t) = qpef fit)

ADMITTANCE FUNCTIONALS:

><<t> = em no = f<t> fit) = LP“ 8“)

It is necessary to make a distinction between these two forms,

since for the general nonlinear case, a well-defined converse of a given

fhnctional relationship may not exist. The choice of the terms, of course,

has an historical background.
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SW@e—D@tes.sEss_ImP@ss"-22%

The classical state-determined elements [ E F , R , C , I I

may now all be interpreted as special instances of the generalized impedance

functional since

e = E

e =IFIf =

e=Sq = S-

f: F =

f‘==£;e =

f = H‘p = IE‘ ~

51§P9E?.’_91I-E13?_l3IE13§S1‘2{19§_9.9‘32€B’E_

In electricity the impedance concept grew out of the desire to

generalize Ohm's Law and the notion of resistance to make certain elementary

direct or constant current concepts applicable to problems involving period-

ically varying current. Historically, this need arose in the last few

decades of the nineteenth century, under pressure of the growing electric

power and telephone industries. In dynamic analysis, even before 1900

German and British physical scientists, notable among them.HELMOLTZ,

KELVIN, MAXWELL, and HEAVISIDE, saw the analogous structure of electro—

dynamics and classical dynamics. For these early writers the natural analog

of the electrical impedance, relating voltage to current, was the relation

of force to velocity. However, largely due to the historical precedence of

static elastic analysis in mechanical problems, the principal variables in

mechanics were taken to be

force

impedance as a force to displacement ratio may be considered as the attempt

to generalize Hooke's Law and the notion of a spring constant to problems

in dynamics. In short, the principal justification for differing definitimm

of impedance between the electrical and mechanical fields 1S the practical

requirement that the steady-state conditions should reduce, at least for

small variations, to linear algebraic relations between the principal

variables in the respective domains.

1

_- .

D

1

-1- ‘

D

HP

“Pi

f -1111,

,}-sass

and displacement In this sense, mechanimn
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In our treatment below we shall loosely use the term impedance

to describe all general effort-flow dynamic functional relationships. This

renders unnecessary any such distinction between varying definitions.

Besides its roots in classical dynamics, the impedance concept

is also firmly founded in the field substructure of material systems, so

that the general properties of all energetic one-port elements are de-

rivable from the nature of their underlying fields as outlined elsewhere

in these notes. An excellent treatment of the dynamical aspects of the

field basis for impedances is given in classical papers by CARSON and by

SCHELKUNOFF. The term impedance is credited to BEDELL and CREHORE and its

use became widespread through the prolific writings of Charles Proteus

STEINMETZ.

Linear One-Port Impedances

If the general functional operators,uIIIfe andUqIJef, are assumed

to be linear operators in the form:

Z Euipef

NKIE-mIIfe

}' LINEAR FORM

then we have the more customary definitions of impedance based upon linear

system.behavior.

Conventionally, these linear operators, themselves, have been

associated with the concept of a linear impedance, namely ZS, ahd.its

reciprocal, the lineag admittance,“i? , since now:

=€=€

'?<.N

* f =

ef

*e=

fe

ThusZ-YE]; or Y=1/Z

However, for linear systems with constant (i.e., non-time-varying)

Parameters, these operators may be advantageously expressed in the form:

Z= Z(D); Y= Y(D); D E <1/at

G
e
n
e
ra

te
d
 o

n
 2

0
1

4
-0

2
-1

1
 1

3
:1

4
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
6

4
8

7
4

9
2

1
P
u
b
lic

 D
o
m

a
in

  
/ 

 h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p

d



218 2.751 CLASS NOTES

However, an ambiguity in nomenclature would still exist when we

attempted to interpret these expressions in causal form. We can preserve

our original meaning by interpretating causal impedances and causal

anmittances in the sense:

IMPEDANCE (Relation) : f --> e : Z

ADMITTANCE (Relation) : e -—>-f : 3&7

as indicated previously.

In any case, all such linear systems become linear one-ports.

In the steady-state, a single straight line characteristic will always

relate effort to flow.

Background Reading -- Impedance Concept

(1) BEDELL, F. and CREHORE, A.: Derivation and Discussion of the General

Solution of the Current Flowing in a Circuit Contianing Resistance,

Self-Inductance and Capacity, with Any Impressed.Electromotive

Force, Journal AIEE, vol. IX, pp. 303-37a (1892)

(2) CARSON, J. R.: Electromagnetic Theory and the Foundation of Electric

Circuit Theory Thg Bell System Technical Journal, pp. 1-17.

Qmmnmg1mn) "'" ss*”

(3) SCHELKUNOFF, S. A.: The Impedance Concept and Its Application to

Problems of Reflection, Refraction, Shielding and.Power Absorption,

The Bell System Technical Journal, Vol. 17, pp. 17-#8 (January, 19%)

(u) CHENEA, P. F.: On Application of Impedance Method to Continuous

Systems. §9srnel sf Annlled-Meshssies, np- 571-57h (December, 1953)

G
e
n
e
ra

te
d
 o

n
 2

0
1

4
-0

2
-1

1
 1

3
:1

4
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
6

4
8

7
4

9
2

1
P
u
b
lic

 D
o
m

a
in

  
/ 

 h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p

d



flirt XIII 2.751 CLASS NOTES 219

The Flow of Power and Energy in Systems

We are now in possession of all the basic tools needed both to answer

gglqe questions raised in Part IX concerning the steady-state of energetic

‘systems and also to consider the transient flow of energy over the extent of

the system.

We may view this process either in the time domain or in the frequency

flomain. In the first instance, we merely consider P k(t) on each bond k

pf the system; in the second case Pk is further spectrally decomposed into

P k( CU 1) where the (1)1 are all the frequency components present in the

power state. Then by a simple generalization of the conventional description

employed for a-c power systems, we consider the power flow Pk( (U 1) and

real , ,

i power flow, (,4) 1), along each bond k at frequency i It may

reactive .

sometimes prove convenient to reticulate further each bond into its spectral

aomponents , (Pki , Qk 1) .

hasi29E_€2r§£_2s§-‘§9s§s»z_P2-132‘_&£22%a£-§r§Ess§

At the beginning of this section we discussed the application of energy

principles to state-determined systems, ending with a triangle diagram depict-

mg the history of total system energy for a closed system. Now we may ask

Bow this power and energy is distributed over the extent of the system, recog-

bizing that the microstructure is either continuous or quantized depending

ppon the ultimate level of energetic reticulation.

It is easiest to demonstrate this state of affairs for a reticular

Bystem. Let us take for example the simple R-C system driven by a unit step

in effort:

EU(t) /R

E -———- 1\C

glearly, we may sensibly inquire as to the values of [ PE(t), P R(t), PC(t)]

761‘ each of the three bonds, and therefore determine also the corresponding

males I 1EE<t>, Ego, 1EC<t> 1.
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If the system is linear then the following results are readily obtain

in terms of T 5 RC:

PE(t> = (E2/R) 8'“/T ;IEE(1=> = (IE2/R) [1 - e"°/T 1

1P’R<t> = (E2/R1 cf‘/T .1EIR<t> = <n-:2/an 11 - eff/T 1

PC(t) = (E2/R) [e_t/T - e"2J°/T 1 ;IEC(t) ‘-= (TE2/ZR) [1 ~ 2e_t/T + e'2t/Tj

1P’E= 1F°R+IP’¢ $EE=IEIR+-IEC

Similar results will obtain if DER and (C: are nonlinear elements.

Moreover, diagrams such as these can be drawn for all bonds of any general

reticular system in contact with a particular environment.

If the system is not so reticulated we must return to the field de-

scription in terms of a local instantaneous Poynting vector, F (t), and ener€

density GE (t). However, solutions for such cases are impossible to obtain

or yet to conceive except in the simplest classical linear cases.
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age Spectral Decomposition of Power into In-Phase and Quadrative Terms

Based upon our remarks above and assuming a generalized Fourier

mpresentation for an arbitrary but stationary power state [ (t) f(t) ]

mqrsingle frequency component will have the form'

w/E 1 (wit)

flms the corresponding power component ]EDi i(t) fi(t) becomes~

Z

an

-

hlelectrical engineering, the first term has for many years been called the

hhphase or real

pmnn~component These components have the temporal form.

REAL POWER

PP

UP-

ti:

§

f'S8n P sgn Q then the reactive power is said to be lagging otherwise it

-\/.5 Fip cos((4)1t) + \/._, Fm i ( wit)

ZEF o(wt)i(w t)

ZEF (wt) iiQ i i

i 1P 1

E F [ein(2w t) 1

EF [1+cos(2(U t) 1 1 1Q i

i iP i

[1 + cos(2w t) ] [sin(2u) t) ]

power component and the second term the quadrature or reactive

I'I€X{Ki

REACTIVE POWER

-COO-O-O-001:1-0vOuQvOuOwOvIOc0-Qcqcl-0:0

iii‘
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In a-c power nets a very useful convention has evolved for indicat

ing the flow of real and reactive power. we may modify this for our purposm

as follows for any bond:

P

————>

__l_,

Q

It is then simple to demonstrate that for an ideal energy junctiom

Pi P2 Pi + P2 + P3 E O

..._._> <....___

______ J _____

Q + Q + " O

Qh Q2 i 2 Q3 ”

Similarly, we my demonstrate for linear elements the following

results:

P O O

--a- -——> -—<>

R C I

0 Q Q

Thus we may apply all the tools of a-c network analysis to the

determination of [Pki, Qki] for each power bond, k , and spectral line, i

In nonlinear devices, such as rectifiers and parametric amplifiers

a number of significant relations exist amongst these doubly reticulated

spectral power bonds. Some of these constraints have been studied recently

by Paul PENFIELD as generalizations of the earlier MANLEY-ROWE formulas.

Since power may always flow out of a multiport element in a differ

ent frequency band than it enters, the macroscopic irreversibility of micro-

scopically reversible systems is no paradox. The generalized forms of the

second law of thermodynamics represent attempts to express this intrinsic

"band-and-bond" scattering property of all physical systems.
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Two-Port Elements and Energy Transport Processes

,;' :_ : ' ;;:__l___"t_ *___é——-1%." J’-at-I'< ' ': _

A, Generalized.Two-Port Elements

We have earlier suggested that the behavior of mny standard

engineering components my be studied.by considering them as two-port

elements. These two energy ports we shall arbitrarily designate generally

as the "upstream? and "downstream? ports, 1 and 2, respectively and are

the only ones for which the device is to be represented and investigated.

Thus we are led.to the problem of specifying the necessary characteristic

quantities and relationships to define adequately system.behavior, even

when the exact internal contents and construction of the two-port system

H H

may be unknown or, indeed, unknowable .

81 82

PORT 1: -———- TWO-PORT ----— : PORT 2

£1 fa

In all cases, the behavior will be characterized in terms of the

two power flows:

R a) = 81 (t).1"1 (1.); Il1”2<t> = e2(t) .1~2(».)

and.therefore in terms of four variables:

e1’f1’e2’f2

Since at each port only one of these variables may be taken as an input,

we will generally have the situation depicted below, which indicates that

the output variable at each port is functionally determined.by the input

variables at both ports, that is:

Y, <t> = ‘Pa [X1 <1=>, x2<t>1

Y2 (t) =

“Pb [X1 (t), X2<t>1

Y2 X1 -I; {

X2 X2" 1: I 2

acaiufialli R??°;1¢.U:1aT°.e.‘1 TV°."P°I'F$
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Moreover, only four possible particularizations of this causal

sequence exist, namely:

I: ‘IMPEDANCE: }—— 2-Port -1 III: ADPEDANCE: ——I2-Port _1

II: IMMI'I'I'ANCE: |—— 2-Port |—— IV: ADMITTANCE: ——I2-Port I_

The names employed for the four configurations follow from the

partitioning of the words

im - pedance

ad - mittance

and associating the prefixes with the upstream.port and the suffixes, with

the downstream.port of the two-port element. The four possibilities then

follow simply from.the mnemonic scheme:

im pedance

ad mittance

Thus we say that a given two-port is in the form of an impedance,

we merely imply that the causality of each port, taken alone, is in the

form of an impedance functional; by contrast, an adpedance two-port implies

that the upstream.port has an gdmittance causality and the downstream port,

an impedance causality.

The static characteristics or steady—state relationships for any

two-port element are generally nonlinear static functions of the form:

Y1 = <I>a(x1, X2)

Y_-=<1>(x,X)

2 b 1 2

For the general case, these curves are usually depicted in the form of two

graphs, each of which relates two of the quantities with the third as a

parameter to give a family of curves, as follows:

Y2

Increasing \x

X2 \ /1

Plus ‘\Q::\\\ Increasing X1

X

X1 2

K’
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However, particularly for operation over both signs of X1, X2,

the use of "contour" or "hill" characteristics is common; these have the

form;

Legend:

Y1: —-—-————-

Q

.-X . _ _ _ _ __ _

1 Ya

Such static characteristics have the important consequence that

they provide a complete specification of the range of "operating points"

at which the device or component may be maintained under steady operation,

and over which, it may course during transient operation.

B-Primitive Energy Transport Processes

If we consider the typical vehicle propulsion system as indicated

below, we can distinctly recognize a small number of basic processes in-

volving the transport of energy from an upstream port to one downstream.

The elements used for these purposes may frequently be classified into three

primitive types, namely:

s) ENERGY TRANSFORMATION ELEMENTS: I -- Transformers -- ] e [ -—TF-—— ]

Generalizations of the lever, gear, hydraulic jack,

and electrical transformer.

b) mmscr TRANSDUCTION El-EME1\ITS: I — Transducers -- 1 -e [ ———II‘D—-— ]

Generalizations of the motor - and - generator,

pump - and - turbine, magnetohydrodynamic devices,

heat pump, etc.

(D

ct III

O

<1) ENERGY TRANSMISSION ELEMENTS: I - Transmitters -- ] [ —TM—- ]

Generalizations of the rod, shaft, pipe, wire, conduit,
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Thus the physical scheme:

- TURBINE — SHAFT - GEAR - SHAFT - PROPELLER -

Can be represented in general terms by the elements:

-TRANSDUCER-TRANSMlTTER-TRANSFORMER-TRANSMETTER-TRANSDUCER-

or ~~_ ~TD .e..;~ TM. a.1.'~. TF2. ~~e_~= TM o .~TD W

The principal benefit of such a generalization is that it readiw

permits the cataloguing of linear and nonlinear two-port relationships for

such components and devices once and for all, quite independently of the

media in which the devices operate.

VEHICLE PROPULSION SYSTEM
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C. Linear Two-Port Elements

If the general functional operators for the two-port,ufl?;,

and uilg, can be presumed linear over the practical range of operation

of a particular component, then a most

fication subsists. This is manifested

Y1 =Wa*[Xl, X2] = F11 ° X1

Y2 =Wb *[X1_, X2] =

which may then be summarized in the single causal statement, in matrix

1.11-2.] . [-52-I]

IF22 X2

The matrix_ZYkthen has the four physically realizable particularizations;

form:

=<

is

‘A-‘X [Fa

§§9§§~}_I$§PE'§E§§

these have evolved into a fairly standard symbolism over the

decades, at least as regards the electrical field. The four

matrices, in standard forms, are as follows:

r

Configuration I Matrix: Z ‘E -5%

Z21

Configuration II ...Immittance Matrix: H E -13%;

h21

a

Configuration III .......Adpedance Matrix : Q3 E -gll

821

Configuration IV ........Admittance Matrix: ‘Hf’ E -ll;

Y21

The relation of these causal matrices to the possible

2—ports will be indicated subsequently.

in the reductions:

+IFl

combinations of

last several

X2

F21 ‘ Xl+ F22 ' X2

causal

1

i 5&2

1 Z22

I

§

1; 13;:

; h22

1

§

% 5&2

| g22

I

3

1 ll?

iii

V22

significant and powerful simpli-

1-;

-L

T

ad-

1-an

-L

i
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Transmission Matrices:

In addition to these four causal matrices a most significant

standard form was long ago developed, which established a direct spatial

correspondence to the ports themselves. This relates the power states,

EI1 and..Sg2, at each end of the linear two-port through a transmission

matrix in the form:

S1 =

el

fl

Of course, the inverse transmission matrix,FVH , relates .352

to .531 in the form:

-9

(D

I

I

cramp’;-0-0

1

1W'Ss

%~I~I€ZI

E353 = IVE E31

1

While the].V.IIand M matrices are clearly noncausal, they have

the peculiar advantage that the overall coupled transmission matrix for

two 2-ports in tandem or cascade may be obtained by direct matrix multi-

plication in the fashion:

el 2-Port 2-Port_,N e2

fl

ft- _

Isl" ts

F§§e§§Pi.I@e-@i

fl - I:,,_1lb+]Da (Cb

I a

__~p-

5%

S13 Q7

-one-of-on-0

A

OE

At

E

8

f2

1%-- ii

EDI? :I. [ f2

. [ii

I3 bi’ ID am fg

I b

-0-0-0}-ac-0-0

I

I

b
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Historical Notes

A long history is associated with the development of linear two-

port concepts. In electrical engineering these systems have been known by

the various alternative names:

FOUR TERMINAL NETWORK

TWO~TERMINAL-PAIR NETWORK

QUADRUPOLE ( or QUADRIPOLE)

FOURPOLE ( or "VIERPOL" in German)

as well as a number of others. The designation fourpole was first used by

Breisig in 1921. While the first practical use of such concepts was in

the theory of long power transmission lines and associated apparatus in-

cluding transformers, Breisig apparently was the first to have used the

.p§ , IE3 , (I, IED, operators for-pommunication lines and networks. T

application of the matrix notation is credited to Strecker and Feldtkeller.

Much additional valuable material on general linear two-ports can be found

in works by Baerwald, Guillemin, Pipes, Le Corbeiller, and many others.

QZESZS 9f_§P§_T§§T_§9IT

The word "port" used in this connection apparently originated with

Harold A. WHEELER to describe the coupling holes in waveguides. This

image was presented by Wheeler to the IRE in the following words:

It has been customary to designate each entrance or exit

of a network as a pair of terminals, based upon the circuit

concept of wires and conduction. The result was cumbersome

terms such as "four-terminal pair" with the unobvious mean-

ing of a network with two pairs of teznnnals. Furthermore,

the terminal-pair concept becomes artificial in the case of

electromagnetic fields transmitting power within boundaries,

through holes, and from.one region to another in space.

After considering many alternatives the writer has

adopted the term ... "port" as the general designation of

an entrance or exit of a network. A self-impedance be-

comes a "one-port". The usual transducer becomes a "two-

port" ... The general network ... a "multi-port". This

plan ... is first put to use in this monograph.
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13e2i2£e2eEl'_sss-§21:e2E€2

Certain special relationships frequently exist for linear two-

ports which may be directly expressed in terms of the matrix elements,

namely:

' Z215 Y22 “ Y21

Z12 — —

{detlwe A-=Zl][D -B ‘C=l

SPACE SYMMETRY! - A e ]]])

PASSIVE RECIPROCITY:--..

Thus any symmetrical, reciprocal (i.e., PASSIVE) linear two-port

can be described completely in terms of only two linear operators, for

example, A and 1B since

A RECIPROCAL

for and --- LINEAR TWO PORTS

wwynnn amen

Z

u

2

é

§a

I___'___1

r-*——\

Two-Ports Composed of 1-Port Impedances and 3-Port Junctions ¥

An extensive and useful subclass of two-port elements arises frmn

the interconnection of one-port elements, coupled through energy junctiona

in a polymerized chain of the form:

where

I~q~q~ -t—1 J=Ow1

Z Z Z Z = 1-Port Impedances

Since the individual one-ports could be either impedance or ad—

mittance functionals, both forms of energy junction are involved and two

different particularizations exist:

...; __

O

Z

r " \

—-1-— and --o--

Z Y
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We could call these structures impedance two-ports and admittance

_l__vl_. ._ _ _____ 1>~~

two-ports in strict conformance with our general usage. However, we

should note that since the conventional causality for each junction would

give the forms:

—m— +—@—1

l T

Y Z

there results a "cross-over" between these causal usages and the conven-

tional noncausal usage immediately following. The best solution seems

to be to call the structure with the effort junction a SERIES IMPEDANCE

and that with the flow Junction, a SHUNT ADMITTANCE, which agrees with

standard electrical terminology.

sneer ImPe@e;11¢e_2~I2<}.£*912a1.’2Ee~922-€:132.2“2§

For linear 1-ports the corresponding series impedance and shunt

admittance 2~port transmission matrices become:

SERIES IMEDANCE SHUNT ADMITTANCE

...] n_. __.Q __.

Z Y

mdsknq

¢o-0-ofono-0

[""§;"§Z"] it"?-"I

From our previous analysis it should now be.amply clear that both

22 and NY might consist of any number of energy storage and dissipating

elements, so long as only one energy port communicates with the rest of

the system. However, for each matrix, two simple cases are particularly

noteworthy; namely, where:

ID CD

ZZ ={:or ; ‘flT= {for
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we may indicate these by bond graphs and corresponding matrices:

r—— I

I

_l__

0 1

-on-on-o}oio-0

in-u—>

3

112

ID I

-_-_ 3 __6_

1.___.

R

-o~aq|\oan-0

§Z°?.1.97£’3:?.§-9?§_1393l-Z13?E’?-.E€E.1_§13?.'1~‘3§

Using the above elements, we may now demonstrate their unusual

value for rapid determination of 2-port characteristics of typical polymers

For example, a commonly encountered form of damped oscillator in any medlmn

has the following properties:

In a similar fashion we may depict a certain linearized fluid

system in the form:

-——-TANK—~——————— RESISTANCE TANK ———————-—-VALVE ———-

55:0 E 1 O c~*O

C1 R C2 G

I 1 1 1 1 I

_-_1__r__9 . _ _ _ _ _ _ __i__§___ _ l__r__Q _ _ _ _ __l _r__9___1

I I I I

L C1D } 1 O § 1 2D I 1 G 1 I J

F 1 “

‘_____l-f_§§-I_?lsP __________ __I ____________ _-5 __________ __

.. G[I+(T1l+T21'I‘T22)D+T11T22D2] I 1 + T113 .1

where: T11 E RC1; T12 = RC2; T21 = Cl/G; T22 = C2/G
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- 0

C

bhshna
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1

p-u-
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.11 1~- 1

» 1 A A 1 A 0. E.~ 0..

I R c G

T : 1 T1 1 1 T

_l_iEP_ _l_I_§; --_1_9_ _l_1_9_

o I 1 0 3 1 cu 3 1 G I 1

... I I .... I I ...

1- I - 2 -1

L 0 I 1 _ cu:+ G 3 1 J

'_-..1:(.IPi1i2(9P:s2-§_----I12-_i _1i__-f

‘cu + c 1 1

L ' _
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D. Some Standard Forms of Two-Port Nets:

A number of recurring 2-port structures formed from.impedance

functionals have been given names in electrical science. As mentioned

previously, the topology of such nets can be described simply in terms

of the junction structure alone, using the conventions:

[-—— 1 --I

O

I--9

-1

-Q

-_.

[...._

[..__.

1 ._.....

Z

Q.......

Y

‘-

p-

_-

‘-

-

.1.

The canonical structures may then be

simple order as follows:

I) The " L - Net "

2) The " PI - Net "

3) The "Tee - Net"

IQ The "Lattice - Net"

or "Bridge - Net"

U

I

O

0

‘I

O

I

I

I

I

Ii“!

O

--u—-

1

vi-1

enumerated in a unique

I

O

1

O

-1

I

-J--c>

-_-:-

O

I

O

0'“ /

I '-

I .-+\I

O.__-_

1

-»--<9

I

L-.-I

[ ——-ZZ -

I

I -—— YY'——- I

__

-—

-_

.-.

—-

-_

_-

‘-

-_

These structures may in turn be cascaded or

the following ladder nets:

5) The " L - Ladder "

5) Ire " Pi - Ladder "

'U The "Tee-Ladder"

I—m-4“= [-

[~H—fln= I-

I-Tm—P =I-

-o

-o

Q_i

Q-1

Q--I

-o

polymerized to form

-c>

we

¢._n

Q..-I

Q-A

‘O

O

O

1

-O-1-]

I

I -—- EII~—- I

I -—— PI -—— I

I ——— TEE -—- I

I -—-IAT -"'1

1

-1-0 I

O
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and may

such as

8) The

9) The

form as

a)

b)

1)

2)

3)

1»)

8)

9)

be combined in various other ways to form other named structures

ZZ

u n / \ .

Bridged - T [ ——-O O ——-] = [ A O e.~1 as O as 1

\nn/ I I

1 ——-O —— 1

TEE 1' - <5 - I

H H / \ ‘ '

Parallel - T [ ——-O O ——-] = [-—— O O --]

\.m._/ 1 1

1 -—-O —— 1

The above topologies may all be represented uniquely in coded

follows:

gg ab 3 1 ab.

Z1 at 3 O ab.

EL ab ; YY ac ; ZZ bc

PI ab 3 YY ac ; ZZ cd ; YY bd

TEE ab 3 ZZ ac 3 YY cd 3 ZZ bd

LAT ab 3 1 acd ; 1 bef ; O cgh 5 O dij 3 O ekl ; O fin

O fmn ; ZZ gk ; ZZ jn 3 ZZ hm ; ZZ il .

-Bridged TEE ab; O acd 5 O bef 3 ZZ ce ; TEE df.

Parallel TEE ab; O acd 3 O bef 3 TEE ce 3 TEE df.

G
e
n
e
ra

te
d
 o

n
 2

0
1

4
-0

2
-1

1
 1

3
:1

4
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
6

4
8

7
4

9
2

1
P
u
b
lic

 D
o
m

a
in

  
/ 

 h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p

d



Part XIV 2.751 CLASS NOTES 235

jE.Description of Linear Two-Ports

Each of the six forms of matrix for the linear two-port (i.e. 22 ,

G1 , H, Y, M , MA) involves for the general case four independent

functional operators, which most simply are the corresponding four matrix

elements, themselves. The specification of these four elements completely

deteI'mineS the behavior of a linear two-port; in particular, at any given

frequency four suitable measurements will suffice to describe response.

If the network is passive reciprocal, only of the functional

three

operators are independent and there is thus one constraining relation among

the set of four; now, at any single frequency three measurements will suffice

to define the system.

These various methods of specifying system behavior are inter-

related so that given one set we may find any of the others. We shall

here consider these relations.

?@§_¥9E§€E99§§EPE2€_9€_?Y9:§9€§§

There are five possible ways of interconnecting a pair of two-

port elements; these may be described as follows:

1) Cascade: "V A *1 Y ' B /A\

2) Series - Series: ——- 1 V 1 _._

/\

3) Series - Shunt: '*"'-' 1 g M 0 --

1») Shunt - Series: ~-~—- O V 1 ....

fx

\/

5) Shunt - Shunt:
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In the cascade connection we have already seen that the

IVE — matrices simply multiply to obtain the interconnected behavior.

The remaining connections are governed by the ZZ ,HHH, Q; , iyr matrices

respectively, as follows:

2) Series - Series: ZZ = Zia + 2Z.b

3) Series - Shunt : H = Ha + Hb

M) Shunt - Series: Q5 = E;a, + Q; b

5) Shunt - Shunt: Y = Ya + Yb

The extension of these results to systems of two-ports cascaded

and coupled through energy junctions is straightforward.

T¥§9§§§€_§@%¥§E§§€1§§iE§_9§_?Y9:§9§§_¥§P§

The questions which arise in connection with systems involving

linear two-ports are commonly grouped in the following categories:

I. The TRANSFER Problem: wherein one seeks the effort or flow

at the downstream port in response to effort or flow at the

upstream port, with ideal terminations generally assumed at

the downstream port;

II. The TRANSMISSION Problem; wherein the power state at one port

is required in terms of the power state at the second port with:

a) Unrestricted terminal conditions, or

b) Terminal impedances specified;

III. The INSERTION Problem: wherein is sought the effect of in-

serting a two-port into a system in place of a through bond.

Typically these problems are "filtering" and "protection"

situations, where performance is measured in terms of the

change in power, effort, or flow after insertion from that

occurring before insertion.

All these problems require consideration of the transfer character

istics of a given two-port. These may be readily determined in terms of flw

elements of the IVE — matrix as indicated in the attached table.
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MATRIX FORM: CAUSAL FORM:

I" “ “ “ _ — — ” """ ‘I

L... .._... X" I _ IF ~ I X2

~I> ls £5 ~I> 21 -8 ‘-1;

| 0 ‘ * 0 0* 0 I

e2 | IE1 I “F22 :

| I -4 1 €s_If5Iei‘ I 4 Y1 \_ _ _ _ _ _ _ _ _ ____I X2

Determinant A= E AD -BC

5: 1 for PASSIVE (RECIPROCAL) SYSTEMS

C VARIABLES II TRANSFER OPERATORS I

A Inputs I Outputs E1 E2 I P21 IP22

sh at A

E X1 X2 y_‘ y2 6y,/5x1 O3’,/5 X2 5Y2/5 X1 OX2/(3 X2

Y e1 e2 £1 r2 n/Is -A /1s I 1/1s -AX/IB

IE1 e1 £2 £1 'e2 E/A +A/A 1/A -B/A

f1 e2 e1 f2 B/HID +A/D I/D “IE/D

Z f1 f2 e1 e2 A/C ‘A/C 1/II: “ID/C

TRANSFER OPERATORS FOR LINEAR TWO -PORTS,
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Background Reading ~— Early 2.Port Literature

(1) EVANS, R. n. and SELS, 1-1. 11.: Transmission Line Constants and

Resonance, Electrical Journal, Vol. 18, p. 306 (1921)

Introduced ABCD constants to power engineers.

(2) BREISIG, F.: Theoretische Telegraphie, Second Edition (192A)

(3) smnscicss, F. and ~, 12.: Grundlagen der Theorie des

allgemelnen Vlerpols, Elektrlsche Nachrlchten Tecknik, Vo 6,

p. 93 (1929)

(A) .BAERWALD, H. G.: Die Eigenschaften Symetrischer hn-Pol...,

. d. . d. , Phys-Math. Kl., vol. 33, p. 7811 (192:

Sitzb __ Preuss Akad ,__ Wise

The above three works carried over the use of linear 2.port concepts

into comunications circuits.

(5) WAGNER, K- W-I Operstqrenreeslersms (19110)

Related the 2.port operators to transient response.

Be¢ksr9v~nd Res-div-_s —- Es-frley Use 9f +3-POI’? .Ma,tI'i.<=.e.1S.

(1) G-UI.LLE1\4IN, E. A. = ,c,onnoni_e,ati_o_n netrorhe, Vol. II (1935)

(2) PIPES, L. A.: The Matrix Theory of Four Terminal Networks, Phil. Mag.

Vol. 30, p. 370 (19110). '""

These two authors are principally responsible for the present nearly

universal use of matrices for linear system.analysis.
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Background Reading -— Current Works

(1) Le CORBEILLER, 19.: Matrix >A_r1_al;ys;i;s got Eleictricaflq ,Ne,t_wp_rks (1950)

1A very readable account of the 2.port matrices.

causal

(2) WEBER, Ernst: Linear Transient Analysis, Vol. II (1956)

Nearly the entire volume is devoted to linear passive and active 2.ports

largely treated in terms of transmission matrices.

(3) KUPMILUI-‘R. K- 1 .13 giis fq11;e9.11<~=t1s_¢h<= El.¢@.tr0te¢11nik.

Fifth Edition (1957). ' i i

This classic German text has been kept up-to-date and matrix methods

are used throughout.

U0 LAURENT, Torbern: Yierpoltheorie_und Erequenztransformation (1956)

A.book principally concerned with freqpenqyhdqmain behavior for

communication systems. LACY

ggpkground Reading -- Gyrators

(1) TELEGEN, B. D. H.: The Gyrator, a New Electric Network.Element,

Philips Researah Reports, p. 81, (April, 19MB).

This epic-making paper has stirred up a revolution in microwave

techniques.
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XV. Transformers and Transducers

A. The Concept of Ideal Two-Port Elements

we have earlier introduced the concept of a class of ideal multi-

port elements for which

ii IF) E O

where the sum.is carried over all ports. In the particular case of three

ports, the ideal effort and flow junctions satis ed this condition. We

shall now consider two-port elements of this class indicated as follows:

deal Element~————-] or [ E?-————]

I I

Losses of effort and flow, as well as dynamic effects, such as in-

ertance and capacitance, can then be appended to these ideal elements to

model certain types of real elements, in the fashion:

Losses and

Dynamics

[ ____O . 1 ___________ Ideal ________1 . O ____]

Element

\ _ _ _ _ _ _ _ _ _ _ _ _ ____ ____

a model for

/'_'_""I/\'_"-'“"\

[ Real

Element

Particularly for energy transducers this need for "interdiffusion"

of media exists; it is not generally possible to represent the real process

of energy conversion without energy losses which involve state variables

from both media concerned.
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However, for many energy transformers, it is often possible to

embed the losses and dynamics in trehsnnssion elements at the two ports in

the fashion:

Transmission Ideal Transmission

r Element Element Element

gr; ——-TM*». .~ IE'*e a TM--

The use of the above reticulations for practical representations

uwolving the transformation and transduction of power we shall now dis-

cuss.

B. Energy Transformation Elements [ ~———-——-TF‘———————-]

These useful devices may always be considered in a lossless static

fbrm, since dynamics and dissipation can be readily included imediately

upstream and downstream of the transformer ports. This may be seen

readily in terms of particular instances. Consider, for example, the

treatment of pivot friction in a lever:

FV FFV

1 1 p 2 2

A 0/ l) }§[—-1-—-TF——-] or[—--TF--1---]

1 \\\\\\€ fig: R R

SCHEMATIC MOLECULES

Similarly, the inertia of a real set of spur gears could be ap-

pended to the terminals of the primitive transformer in the fashion:

‘"2 _._. ._._ .... ....

,6//:_\\\ [ 1 TF 1 1

(U1/> \\\ I1 I2

/1’ //

T (HO _,// or [--1--TF——]or[--—'I‘F--1--]

I1 \E:_/ \" I2 I’ I"

In this case, the inertial impedances can be appended to both sides

m'an inertialess transformer or reflected entirely to either side.
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This last example, then, gives us a prototype reticulation for

handling the general case of a lossy, reactive transformer, namely

—-—1-————TF

1 __.__..

Z1 Z2

where the element, TF, can be considered static and lossless.

This is usually considered as an ideal transformer for \hiCh

dIE/dt E O ; R1 5

1

.

0

._\

Ill

(D

H3

.-A

‘-

@-

-__

e22

f E:ED2

§S€2i_2Z2§2§_?§§2§P932252

We may then obtain the relations between efforts and flows for an

ideal TF by considering a two-port matrix whose A , B (E D Ops-Idi

are all constant at the values a, b, c, d, respectively. Then we have

1 "(Z1

I

I

-0-ounce}-0-cco~o

[ e1 J [ a

f1 c

The input power may be expressed:

e1f1 = (ae2 + bf2) (ce2 + dfg)

= (ae)eg + (ad + bc) e2f2 + (bd)f2

Since the power balance requires that ITD1 E ]ED2, then the

following three conditions must hold:

ac E O 5 ad + bc E 1 3 bd O

Only two possibilities exist: the first corresponds to the normal ideal

transformer; the second case to the gyrating transformer or gyrator

first discussed by TELLEGEN in l9h8. We can treat these two devices in

parallel fashion as follows:

b

d
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2.751 cmss NOTES 2l+3

NORMAL TRANSFORMER

(Ideal Transformer)

Conditions:

H1

0

Ill

b

Matrix:

O

[

Relations:

|

Olm

en.

fl

91

f2

)

-av-0|-0-0

|

97 : O

I

= 8.82

= Hlfg

OI‘

= SE2

= afl

Determinant: A: + 1

The relations between these two types of ideal transformers are readily

gyrator or gyrating matrix, ,

conceived in terms of a primitive unit

playing a role analogous to the identity matrix, , defined as follows~

Nil"-=11

Thus I or [ -———- ] represents the normal or "undisturbed bond while

(13, or [ -——-- GY —~—--- ] represents a "gyrated" bond. Moreover det I]: 1

[i'_

1

dz1/az

iiiiiil

GYRATING TRANSFORMER

(Ideal Gyrator)

, Conditions:

i

a § a d E O 3 c

I

§ Matrix:

:

2 t 1

1 1

Z

} Relations:

§

Z

; €l = bfg

:

; fl = b'e2

E

} or

I

3

: Ql ‘-= bfg

I

g €2 = bfl

Z

{ Determinant: A= - 1

es]; [

I ---Z:

while det G; = - 1.

In these terms, the two transformers are related as follows:

no-ofnea

_?___] ; M: G: [ _..%?__

---- NORMAL TRANSFORMER—- --—-— GYRATING TRANSFORMER----—

=~:uF~~o -as ———t1-to o~ e or

a'O _ 1'0 a'O , 0'1

[ 6-§-5. 1 [ -5-§-T- 1 [ -5-g-5. 1 [ -7-: 6 1

1

-1--—u-—

no-of-0-0

I

I

H

1

GI——--]

5--- 1

1/b
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This permits us to include the gyrator within the framework of ordinary

ideal transformers in all that follows.

The constant_a measures the (flow) transformation ratio. For the

various comon particularizations this is interpreted as:

MCHANICAL LEVER:

GEAR TRAIN:

HYDRAULIC JACK:

ELECTRICAL TRANSFORMR:

§?i“3S§§:Z§¥_E3§_¥§§§3}_?€?:n§§9E‘§§E'§

h-

-

-1

gun

lever ratio

gear ratio

area ratio

turns ratio

The two causal bond diagrams for an ideal transformer would have

the form:

ADPEDANCE IMITTANCE

—]1*F-1 |—TF|—

which can both be expressed by the diagram

I +t+ I -3

Immittance

--————-0

e2

Can be reflected (1 : 2)

e1-——4———1I$I———~1———-

__4____ a .Adpedance

<----

e_.__fi__._f

1 2

The gyrator is included within this scheme simply by crossing ow

or gyrating inputs and outputs as follows:

1

,1 .2 }

f f2

Impedance\

Form ;

Indicated]
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%3PhY§Z:E§~.‘:-§li’E‘§’E9E‘§

E The gyrator has assumed great practical importance in electrical

engineering, particularly in the domain of microwaves. It has been en-

dnwed with status as a standard circuit element having the symbol:

ZI><[Z

Although realizations of the purely electrical gyrator have been

proposed using active elements such as amplifiers, it must be recalled

that the ideal gyrator is inherently a passive device, namely one which

neither stores nor dissipates energy.

From the standpoint of internal energy reticulation, the ideal

electric gyrator instantaneously converts electric to magnetic energy and

vice-versa. This indicates at once its enormous practical importance

since a capacitor connected to one port looks like an inductor at the

other port. We may see this immediately using the unit gyrator GY in the

form:

------- GY ------- c

G1 O E. 1 . E2

fl 1 3 0 CD32

fl = ea

or {'81 if = D ct fd

whence the capacitance acts as if it were an inertance. The importance

Of this result for UHF comunications cannot be overestimated!

This instantaneous conversion E e -=-“'3 Em suggests an electrical

Italization in the form:

El Electrostatic F Mechanical to E2

to Nbchanical Electromagnetic

I1 Transducer V Transducer I2

Since, if the two transducers were themselves ideal, the conversion would

be instantaneous.
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2&6 2.751 CLASS NOTES

More recently, the gyrator has been approximated in solid state

devices, using, for example, (a) the Hall effect, and (b) the Faraday

rotation of a ferrite.

These practical realizations then permit gyration in another medi

by the simple scheme:

Medium Medium

X X

el X - Electric Ea Electrical Eb Electric - X e2

fl Transducer Ia Gyrator lb Transducer £2

As long as the two transducers are themselves similar, near-ideal devices

effective gyration will take place between ports 1 and 2.

In all such practical embodiments the self-impedances Z11 and Z22

will not be zero nor the transfer-impedances Z12 and Z21 be perfectly

skew-symetric, as is the case with the ideal gyrator.

$132-Z132r€s2’2Z..sl22‘2ll2e%_?£ess€2ls2s

In the problem material considerable attention is given to the

modeling of electrical transformers as two-port elements, It is par-

H H

ticularly interesting to note that a so-called perfect transformer

(with unity coupling) may be represented in the form:

o A TF--——

I

which in conventional electrical symbols becomes

a : 1

r-*-\

\____\r____J

Ideal TF

K in J

:“v

Perfect TF
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Part XV 2.751 CLASS NOTES 2&7

The corresponding 2-port matrix would become:

PI N -n

1 1 1

1 ' O ' O

~ =: ..._._.._%,_,,___,] 0 [__.._§....§....._.--

L 1/Ln; 1 o ;1/o. _

T’ a g O -7

= ---------- --: --------- --1,

L a/LD } 1/a it

Furthermore, a possible causal representation of this structure

might have the form:

-10-1‘-PF--1

l

I

with the corresponding computer flow graph

e1

f1

If the transformer were linear as implied,—P @-Ptransforms to‘P'[§'7

1 L.

I

This same structure may then also be indicated in linear block diagram

form as:

ft 1 1 £2

Finally, it is most important to realize that by no means is it

P0ssible to reticulate this system into a purely [13, F, O, 1, R, C, I ]

Structure; such a transformer is an essential two-port device.
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Geometrical Constraints as Space Transformers

Inn:in-I-Ibcucnhlnnnxtunxhndnn$qn@cn—|x—n_-in-—@§i-.1antic-cannon:-niunxi

The introduction of the ideal transformer as a fundamental 2-px§

element now allows us to represent many two-and three-dimensional geo-

metrical constraints as simple transformer couplings between the several

axes involved. Some examples can serve to elucidate this possibility.

For example, the ordinary flyweight mechanism, originally in-

troduced by James WATT and still employed as a speed sensing element, has

the following form:

1-Iw

M‘,

(U460

er

68 I

c -.--1--.

9 \ 8

M

T F

X to

FFX

The important "gyroscopic transformer action" or "rotary-angular

transduction" involved can be expressed by the well established dynamical

relations:

St

CENTRIFUGAL TORQUE: M6 = [Ig(9) -cu] cu = ~w I

arsoscomzc TORQUE: Mu, = [Ig(9) - w] S =

However, it should be noted imediately that the existence of one of theme

relations immediately implies the existence of the second. Moreover the

modulus1;EJof any space transformer or gyrator will always be a functional

of (at least) the adjacent bond flows ( Jfr). In a holonomic system.the

functional gives way to an ordinary (static) function of the coordinates

or displacements ( [H ), while for the rheonomic systems the functional

becomes a function of the rates or flows (,jF). In the example above WE

have a mixe situation with the modulus

d

‘K13 E <1? ( 9 ,<u ) = §t>( ¢[; JF)
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Part Xv 2.751 cmss NOTES 2&9

It is also interesting to note that for small changes about the

equilibrium

CD -= const. = b

and we have the previous case of an ideal gyrator. This implies that

the parts of the system each side of the gyrator are mutually dual; thus

for example it is C8 and not I8 which adds to the Iw to give the effec-

tive inertia when looking into the flyweights from the rotary bond.

Another enlightening example is the case of a suspended vehicle

or platform for which the rotary as well as linear energies must be taken

into account. Such a system.might have the abstract form:

I

‘V

—— ——TF

///,TF 1 \\\\

(>‘-.TF--1 --TF-"C)

A, | £2 |

A 0, A2

I‘ 1

F F

There is now no need to "transfer" or "reflect" the linear and rotary

inertias to the two support points; the four transformers indicated take

completely into account both the efforts and the flows associated with

the two inertances.

Similar considerations will apply for all dynamical problems in

two-and three-dimensional space. By these means, physical space itself

becomes either a variable or a parameter, depending respectively upon

whether an energy is, or is not, associated with a corresponding spatial

variation. Moreover, the relation between system geometry and system

topology is thereby made directly evident.

The technique of using ideal transformers to relate space axes

derives from original work of Vannever BUSH, Gabriel.KBDN and many others.

It forms the basis of highly successive use of passive electrical analogs

by G. 1:. McCANN and his followers.
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C. Energy Transduction Elements [ -——-TD-——— ]

An energy transducer or energy converter is used to convert

available energy in one medium into available (or possibly unavailable)

energy in another. Some of the more common forms of transducer are mani-

fested on the transduction tetrahedron below.

Mechanical

gate“

Electrical °

UPLE

Thermal

Fluid

TRANSDUCTION TETRAHEDRO_N

In recent times, some of the branches of this tetrahedron have

even become well-established domains of engineering science such as

thermoelectricity and magnetohydrodynamics (MED). The most general relation

ships for such transducers are clearly no more than that for a general two-

port, but considerable insight is gained by considering some useful trans-

duction models and representations.

Below we indicate models of the form:

[ --TM-—— TF-—— TM-—- ]

[---———-TD———————--1

since a 1OO per cent efficient transducer is always equivalent to an ideal

transformer.
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P E11 ¢ ,

,.__-,-. _-_--=-.r.,={-: F

--= -..'-.',-J3 .- -. , ————-

-9‘-""" 2 3

--.‘:'.':':'_:_-1_:_—_- :5-: V

FLUID - MECHANICAL

I

MECHANO - ELECTRICAL

This we may see for the fluid-mechanical piston transducer since

F(t) = A - P(t)

~ Q(’@) = A - V(’@)

-4‘-'."_ _ _..*f‘.-_ -0-.. . _€_.

v ‘" o 17A Q

firularly for a solenoi transducer:

Thus:

-0-cafe:-on

d

F(t> = (B1) ~ I(t)

E(t) = (Bl) - v(t)

' 1 '

HIP-Ii

|.__L__|

ll

' -—*| I

so

1—'|

noun-orouoct

O1 131

|1—'

l._._'_|

| I

<1:'-1:1

Q--J

Note in the latter case that transduction is in the form of a ggator.

In all such cases the coupling modulus serves merely as a transformation

mtio, with no loss of energy. All dynamic and dissipative actions are then

fimluded in external generally nonlinear impedances, as we have noted has

lmen standard procedure for many years in electrical transformer practice.
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This gyrating model of electro-mechanical transduction is

considerably more general than would appear at first glance. For example,

a very refined representation of a 3-phase synchronous machine can be

obtained from the directly generalized relations

7 M =

E3 =

€=€

O

l I

where E= [El(t), E2(t), E3(t)]

Cd

= [I1(t), I2(t), 13(t)] are the

instantaneous phase voltages and currents of the three phases and the modul

Lp=mp(H:N)

has the three phase components

1IP1=

“P2-.=

¢r3=

see

*5

(

(

1[) - Sin(kNt-G7T)

-F'U0l\)

HI) - sin (kNt - 7T)

sin (kNt - —-7T)

Yet another generalization is possible following standard acousiflt

practices, particularly where the transducer is approximately linear, nameli

an impedance matrix representation, which in this application is-originally

due to Henri POINCARE, and is conventionally written:

el Z 1

[";;"] ~[-t;

ZZ 1, ZZ 2 are the (self) impedances of Medium I and Medium.II, respectivafi

while 1T;12 and <H‘2l are the so~called transduction gperators that descrih

the coupling between Medium.I and Medium.II. The dramatic history behind g

such developments is discussed delightfully by HUNT; some recent applica-

tions to electrical machinery are treated by RIDEOUT and SWIFT.

Another form of description has evolved out of the field of fluid

machinery in the form of relations based upon dynamic similarity, whidh am)

iiiii . 1-lint

-0-0-0:0-on

N '==3

L_._?_J

1"“-"--1

H: H:

l\) P

;____)

used extensively for problems involving pumps, turbines, and aircraft and

marine propellers.
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The general turbomachine may be depicted in the causal form:

k%%— Turbomachine -%%1

Here it is only necessary to realize that a geometrically

similar flow field will exist for any operating point along a line_of

similitude defined by:

Q = rcu

This constraint imposes severe restrictions upon the possible form of the

resultant machine characteristics, giving as one of several possibilities

the pair of relations-

M = f(r) - (U2

I P = s(r) ' Q2 u

The corresponding computing structure may be realized in the form:

P--ti O-—_-—-—M

Q cc. ecu

Particularly simple models result upon taking

I\l

f(r) == a -+ br -+ cr2 +---

g(r) Z (e/r2) + (f/r) + h + ---

where the series coefficients (a, b, c, ..., e, f, h, ...) depend upon the

8eOmetry of the device, including the possibly variable blading and other

modulating parameters.
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Lastly, we may obtain certain general results for the case of

constant efficiency reciprocal transducers operating over a small range.

A.per-unit notation reveals:

<11?’ <11P’2

1 -'-‘-’ Ill + V1 ; 1.12 '1" V2

H301 iEIO2

where u = de/e = d(ln e) and v = df/f =.- d(ln f)

thus U1 a : b u2

____ = ___%___ - ----

V1 C : d. V2

If efficiency is constant:

a + c E 1 ; b + d.E 1

and if the transducer is reciprocal:

-——\l

I

| ID

I

I

I-6-

-I

can-n|n-one

-‘I

I

I :0“

D"!

~

ad - bc E

These three conditions reduce the matrix to the two forms

f ... ..

§.?.'.....-1 Q1: p._.._l

a;2 - a 2 - b

A value a E 1 or'b E 1 then yields 1OO per cent efficiency, and corresponds to

the ideal transformer and gyrator, respectively.

Besides their use as power-level energy converters, transducers fonn

the essential elements of most continuous measuring instruments for physical

lete.list of instrument transducers

and engineering processes. A very comp

has been prepared by D. B. KRET of the Du Mont Laboratories, entitled Transduc

..-‘E _C‘?ml1i.l5‘°.i.°F‘. U.8.e.f“§L. 1’ .1".i1“31Y1.l¥ .111. 9_S.°.1_l5L;°%r.aP.hY*
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°“P_d "' 3l?.¢.t39.?5¢9‘%5f@:° Ir?-n§§'1u.¢.e.r§.

HUNT, F. V.: Electroacoustics: The Anal_ysi_s of Tqransqducjtion and Its

Hjgsgtprigcqal Baqkgroynd (1951F)*'*f * * * * ' ‘ if I I ‘ * i

A superb account of the history of the subject.

2) Ham. F- A-1 or Ele¢.’€1fQe¢,<%"s_?i9s H955)

Presents the physical principles underlying electro-acoustic transduction.

maimed ass?-sins -- Eleocosis-Me,¢.hBsleaflet EP.rans:1s¢?.I.s.

i

1) RIDEOUT, v. 0.: Analysis of 17>. c. Rotating Machines as Two-Port

Netwrks. Ctosfeoreonse Paper. CP-57-760 (1957)-

2) SWIFT, W. 13.: Analysis of D. C. Rotating Machines as Two-Port

Networks, AIEE Conference Paper, GP-57-761 (1957)

; These companion papers give an excellent introduction to the d. c.

machine as a transducer.

3) warms, D. c. and wuouson, H. H. : _E__le;c_t;r;omeic,han,ic,al Energy Coniversiqon (1959)

The current definitive work in this subject.

G
e
n
e
ra

te
d
 o

n
 2

0
1

4
-0

2
-1

1
 1

3
:1

4
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
6

4
8

7
4

9
2

1
P
u
b
lic

 D
o
m

a
in

  
/ 

 h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p

d



256

2.751 CLASS NOTES

XVI. Energy Transmission Elements

A. The Two-Port Element: [ ——— TM~——— ]

the source -~ to another place where it is to be used —- the load -- a 2-port

transmitting medium.or transmission element [ —— TM-—— ] is required. Some

common realizations might be indicated as in the following table:

[Io-one-0-ounnnco-on-0-0-0-one-o}n-0-0-0}

To convey or transmit energy from one place where it is available ~

""""""""""""""""""""""""" ""1 "*""""--"*"""'"'"'"" 7

FORM OF ENERGY : TRANSMISSIQN ELEMENT :

____________________________________________________ -_L

*1 :

Fluid § Pipe or Duct §

I Y

I 1

Mechanical } Rod or Shaft §

I I

I 1

Electrical ' Wire or Conductor 1

Zxxanunaniiiiiiixiiibunniauikicniii

I-000-0-0-0

1111111-niihniu-iann_i1i1

#1100

The absolutely ideal -TM- is the simple power bond:

[-—----1

But all real transmission elements possess static and dynamic properties re-

sulting in the dissipation, scattering, and storage of energy.

Thus, in the case of power transmission, nonideal behavior manifests

itself in pgwer losses; while in devices for the transmission of signals

and information, all real transmission links will delay, distort, attenuate,

scatter, and contaminate the desired signals.

The paragraphs below deal with, and distinguish between both situa-

tions, and relate behavior to the limiting cases of pure wavelike and pure

diffusive transmission.

S§§§§Z-E9§§§§-§E_§9Y?€_§€§E§@§§§§9§

Within and around any -TM- element, part of the available energy befi

transported is continuously consumed and converted into heat. Under steady

operating conditions, along the entire transmission path, from the source to

the load, there will be a net convergence of the Poynting vector, H] , re-

sulting in a power gradient approximately parallel to the transmitter and a

continuous decrease in power level along its length.
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, ’f%

1 ..

i; w

E? No practical devices exist which can transmit power over space

if

1 .

E$>forms:

Loss in Effort 1 RESISTANCE : [

Loss in Flow LEAKAGE 2 [ -

T The resultant steady loss of any transmission system.must therefore

e capable of representation in the form:

I--1-<>-1“

R G

,y'be modeled:

2 [--1--0-—]

R G

~ e e

A To Re and Ge are eguivalent resistances and conductances.

_§@§§ Effects in Power Transmission

§ Under transient conditions of operation, the field effects of energy

or the extent of the transmitter.

flihout such corresponding parasitic §§§£§§§§e- or gupportjlosses. However

éé effects of these power losses on the overall flow of power in engineer-

ig systems are usually restricted within fairly narrow limits.

A On the one hand, since any resistance in the -TM- consumes useful

fiper and thus lowers the efficiency of transmission, it is generally un-

ksmmuca1.to permit too high a value of transmission resistance. On the

er hand, since lower resistance usually implies larger quantities of trans-

ssion materials, there are also lower practical limits to power loss.

As a result of the above considerations and other factors, the

fimdy rated percent power loss of most transmitting elements will be modest.

any case, all such losses in energy can be reduced to combinations of the

1

R

O

G

ere the index n is taken sufficiently large. Under most circumstances, by

ining resistance and conductance relations, the overall loss relations

Qrage, in the form of inertance and capacitance distributed along the trans-

gssion path, will produce significant effects upon system.behavior. These

ll be manifested in local variations in the distribution of power and energy
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While a tranamission system can be roughly characterized by a

reticular model of low order, whenever the wavelengths of the power state

variables [e(t), f(t)] become small by comparison to the length of the trans-

mission path, the continuous nature of the ~TM- element must be taken into

account.

@EE_§9EEE2§_2§_§§ElEB1&£_E9§§_JEESEE2EB

An actual length of transmission line in any medium may be conceited

as having all effort and flow losses concentrated in reticular fashion at the

upstream and/or downstream ends in the following manner:

[ ————-— Actual Transmitter with Losses

A’ \

r

Loss Lossless Loss ]n

[ " ‘Element "I" Transmitter Element

Clearly, if this situation is assumed to hold for a sufficiently large number

n, of appropriately small transmitter segments, any real transmission system

may be approximated to an arbitrary degree of practical accuracy. Frequently

only a few such elements are necessary. The particular sections or junctions

at which all energy losses are presumed to occur may be called loss junctions.

It is particularly important to realize that while certain forms of

linear loss may sometimes be handled in other analytical fashions, this use

of loss junctions becomes mandatory for the representation of essential non-

linear and/or reticular resistance and leakage (NONLINEAR: e.g.: electrical:

corona loss; fluid: turbulent loss; thermal: radiation loss) (RETICULAR: ed

electrical: suspension insulators; fluid: bend losses; mechanical: bearing

resistance).

Under rapid transient conditions, many factors conspire to make achw

dynamic losses somewhat more complex. The flow will usually vary from point

to point due to distributed capacitance; this will necessarily cause the local

losses to vary. If the flow has sufficiently high frequency components, add-

itional resistance and scattering phenomena.are present which do not manifest

themselves at lower frequencies or in the steady state. Indeed, all experi-

mntal evidence in every field medium.indicates that the higher frequency com-

ponents attenuate more rapidly than lower frequency signals.

G
e
n
e
ra

te
d
 o

n
 2

0
1

4
-0

2
-1

1
 1

3
:1

4
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
6

4
8

7
4

9
2

1
P
u
b
lic

 D
o
m

a
in

  
/ 

 h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p

d



13 XVI 2.Y5l CLASS NOTES 259

The Canonical Transmitter Matrix ( T )

@1115_9¥.1_§§.’-E“l1‘Z’E?."1E_§1lZ9¥P§i_-5§.*Z?.E‘5-.t?.‘1I_5.1§E"‘3*£1§IB‘.E§§§i"§

Consider the general asymmetric 2-port:

[ ———- TP ———- 1

is etric 2-port can always be produced by connecting two such two-ports

bfik-to-back in either of the alternative fashions:

-———TP---—PT———— or -—--PT--—-—TP-—-——-

But we know that for any linear reciprocal, symmetric 2'port only two

the four operators can be taken as independent.

A canonical form for the transmission matrix of all such reversible

elements can be obtained through two new defined operators:

Propagation Operator T E cosh-1 A

OE '\/ E1/YO

results in a final transmission matrix:

N

Characteri stic Impedance

Q

*%

cosh F

-0-cafe-0-0

Z0 sinhIF

M " ‘ (v";“;;;.;"i'~ "" ";;;;'if‘

Céxsider now a chain or cascade of _n such identical reversible elements;

[-—-—TT—-—TT-——--

-—-T‘1?—-——]2[—--TT--—-]1fll

1 2 n

may consider any such system as a reticular t_ransmit_te_r.

n coshlp, Z0 S1I'1hIl-V cosh nu‘; Z0 sinh n]?

Then: n

: . '

M = T .-_- __________ _-1 ---------- -- = (S ---------- --1 ---------- --

n YO sinh cosh IF LYO sinh nll-‘E cosh nlr

I I
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The value of the Tmtnx is now obvious since it is the only form for

M which preserves its nature upon multiplication; these properties

result directly from the identities of hyperbolic trigonometry.

§2EP1EE9E§_§§E§9€E_?€§E§@£EE§£§

Consider a uniform one-dimensional linear transmitter:

I

Bi-— Total Series Impedance Zt——————>'

I

-r----r-

Wire, Rod, Shaft, Pipe, Duct, etc.

Q

'4-—~—-— Total Shunt Admittance Y ———-———>'

11$

Since the overall structure is symmetric, this system has a T -matrix-

T=

Moreover, we may consider this system to be reticulated into n identical

T=

symmetric micro-elements to obtain

If n is sufficiently large the structure of the micro-element is not oritict-it

Either of the following two molecules would serve as micro-elements-

cosh F

1

cosh

sinh

no-0-0-0§oc0-0-0

I

I

I

I

O

:3 l—-:5 -

*=.1' e

I

I

-0-no-0:0-0-on

i N

IO

t

ZL§;£_l:°

2 ear}

sinh-1-I‘

I1

;;;;gr

Iicbub

G
e
n
e
ra

te
d
 o

n
 2

0
1

4
-0

2
-1

1
 1

3
:1

4
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
6

4
8

7
4

9
2

1
P
u
b
lic

 D
o
m

a
in

  
/ 

 h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p

d



XVI 2.751 CLASS NOTES 261

f------— 1“

TEE

_-Q-_--¢—u-_—\n--—_

[ 7

1-

For both cases, there follows directly,

-1-~ 0.»

Z

1+ t

__..._€E

Yt/n

dj-4

2

zt/211 Yt/n Zt/2n

I

N

I-1-I

H3

2

Zt Yt

A113

Zt Yt

ri-

+

1+

2,12

the values:

¢esh(-3-1-][‘) =.- 1 + (-1-§)ZtYt

2n

2 1

We may determine the T matrix for the continuous transmitter merely by let-

Z = (2.6/Yt>[1 + (-—;)ZtTt1

° 7-Ln

1

‘pp

IOIOIOIOhOnOIlvOlOnQ\QnQuQuQ¢-‘g-Q‘;

¢Oc0QcQIOaQnQ\fluQ

[

[

@~

PI

ii~

-,1

“

1

I’

Yt/2n Zt/n

1+-Ztyt

2

_nuuunn1c—ud_n$yuI_

YZY

t+tt

I )+n3

[\)l

nun:-0-000:0:-0 nofouono-ocoioaono

I

O .

Yt/2n

zt/

D.

xii

Ii

Z Y

+

t t

2n

2

cosh(%1[1 ) = 1 + (-1-2-)ZtYt

2n

Zj = (Zt/Yt>/I1 + <—‘-§>Z,Y.,1

ltn

until

--Q

for cosh(-A-H1) E A andzi E

hing the number of microelements, n, become infinite. In this case, for

Either ~TEE~ or ~PI- elements there results:

Yielding the final results

2

lim ]["= zt -Yt

n—>(D 2

lim Z-.= zt/rt

n—-(1)

Overall Propagation Operator T = /Zt - Yt

Characteristic Impedance Z0-e /zt / rt
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Substituting these results into the system.1[‘—matrix gives:

' I

T cosh \/zt YtVZt/Yt sinh /zt Yt

/Yt/Zt sinh /Zt-Yt cosh /Zt-Yt

Note that specification of either of two pairs of operators, (Zt,Y£) or

(F , Z O) is su.f:E‘icient to specify T in any instance. It is also obviow

that both direct and converse relations exist between these two sets in the

con-000-0-ofo

I

I

I

I

fashion:

iw

d‘ Cl‘

ti".-4 c+

1f‘ = Z ' Y 3 Zt = in‘ ' ZZZO

Z; / 1 Yt=IF’/Z0

The inf-matrix above is the canonical form for all linear uniform

transmission elements, regardless of the nature of Zt and Yt. We shall find

it convenient in the treatment below to deal with two limiting cases of trmn

mitters, namely:

—~——-WAVELIKE-——- -—-— DIFFUSIVE-———-

TM TM

Zt 2 ItD Zt E Rt

Y E C D Y E C D

t t t t
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C. Generalized Transmitters and Wavelike Transmitters

Consider the one-dimensional generalized transmission process

governed by the matrix differential equation:

| A15 /61> NS =‘?

where S 1-: [-2-] is the power state vector. This relation is simply a

formulation of the intuitive relation:

S+dS = [I+Nm]S

Let us assume a matrix solution of the form:

sx = mi, s2

where S2 is the downstream power state and M X is the 2-port transmission

matrix for a length x of -TM-.

Then:

ds/... . (MI/ox) - s,

NS = N MI S

which yield an equivalent differential equation for M , namely

(<11VlI/dx)+N1VlI= o

This relation could be used directly to determine differential equa-

tions for the A , B , C , D elements, but a much more instructive pro-

cedure, at least for wavelike transmitters, is to first transform the power

state S to a characteristic state Rin terms of characteristic (or scatter-

and

2

illg) variables (u,v) where:

is ssi~s~1

ll

bl-

f"_'_l

1- s

_.n.|_..\

aouojvono

-A:-I

l__.__.|

U I
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with the converse relations

s = 1E* - 1I—1I - IR

e '/E’ ' u

["2"] =[ [-2--s-he-1

We can relate the characteristic state, Rx at any upstream

point, x, to the downstream state ,R2 , by the ezgression

RX = \]HIIEMIE*1H[ R2

RX: Q ‘ R2

Thus the characteristic matrix, Q , (which is directly related

to the scattering matrix) plays the same role for characteristic variables

as the transmission matrixmal plays for power variables.

If we define a matrix T analogous to N above, by the relation

—>(-

T E IHI IE N IE IHI

then the differential equation for the general characteristic matrix, Q ,

(6.0/dx) + TU =0

is given by:

This last equation can then be solved for the case is a uniform _l,ossles_s_

wavelike transmitte; in a very direct fashion as follows:

For the wavelike ‘IEM

O

N ' c

'I'hen T can be found to be

T »./Jlctn , o 7 ; o

= -u----u-ml-en--u---. = |.“...~_.|I.~.-;--

_ I

0 ;,/1&1) o 3- y

if the scaling constants are taken as R0 2 1/Go =1/J,/C

UI

co ~00-ores-0

e:**=

‘U

I__.____...I

Q
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Writing Q = [n-‘-an-£~.{§_—:'

63.0’

we find Q’; /31]

V: X = ________ __

O <10)/ [0,

T“ L O; fin -

Adding matrices we obtain:

7 .

From the primitive statement CD + <1 Q = ( I + T dx) Q , taking into

.€§_'.:-2i§_i.é§.'i."-.?.’../?_ = O

6' - 65.51 wfl

account the nature of T , then necessarily:

/3 5 6 =-_: O

For Q and afl , we have the parallel developments:

I

ale

fie

f

5?‘

\'<

dln

Q

I

4+ yd.-=

Q,»-)/Q

Q--yo:

fdI|_na=fo-)’d.x

O lI1 =X X

Q >'

[a=e7x=e]F]

O

@OO$K@@@QIOIOIOlO

l§§Z$Z

the

4 dnizpys

ln =—>/X

I

Ii pl

dx

Q91

./f:,..0'=.

.a;+,.,a

ln

....a=,

he

.0’

-.= )/dX

O

.>:.€€_-

7 C’

‘J: e- Yxz e-

no-0-calm-on-0

21./2-]

-7 ,5
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which is

This yields the final universal transmission relation-

L O

I Q = (-31-

unsafe-on

0 1

e'IF_J

in the form of a transformer.

This matrix is actually applicable to a broader class of transmitun

than merely the wavelike variety, but the latter instance is our present con~

C!€I'D.u

IF:

For this wavelike case:

q/-46 'XD = »\/(._,Qx)(@x)D =»\/ItCtD=TD

where T is simply the weye propagation time from upstream to downstream

port. The corresponding Q} -matrix is

TD

O

"_*_"'_'i7

ll

I

I

I (D

I

I

I

I

-oeocofona

I

I

-TD

e

As a last step we can transform this result back to the transmission

matrix M , to obtain

OI‘

with

M = 1E:*1I~1I@1r-Ins

cosh TD sinh TD

cosh TD

ll

I

I

I

I

I

I

I

I

I

I

I

I

no-0-ofucouo

I

I D1

IO

I

I

I

I

I

I

I

I

L-____J

G sinh TD ]

O
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D. Ideal Wavelike Transmitters

we are here concerned with continuous elements of the form:

WIRE, PIPE, Ron, SHAFT, DUCT, etc.W

—e 1 , _ _ ;_ >1 lm _ r~_s;~< _ f I _ , es

Iwying the fundamental transmission matrix:

cosh TD i R sinh TD

........... _-1__9_---_-____

GO sinh TD i cosh TD

I

T = Propagation Time = 4/ It - Ct

Rb = 1/GO = Surge Resistance = q/ It / Ct

This same matrix can be used for general operational analyses,

describing system.behavior in either the frequency or time domains. Contrary

to common opinion, transients and vibrations in such transmitters become ex-

inemely simple to investigate so long as the most effective description'is

employed.

Use-913--99¥.12sEz1.1z%s_9§."-1i2219ssI3s2L1s-Ys.1:is13%s§

A significant simplification takes place if the variables are trans-

formed in such a way that both effort and flow are measured in the same units.

This normalization will then eliminate one of the parameters in the trans-

mission matrix, as indicated.in the following tabulations

N O R M A L I Z A T I O N S C H E M E S

‘iiiihniinucniibhulxii$10-xixiiiflibiixikiiinidl11111!-nIn1ikcni1ini11iii$batik

ITEM T

SCHEME A, SCHEME B SCHEME C

Normalized

State

V /

ector € _ e € Goe é: /Go . e = P

7

s

¢=ROf = f =Ro'f=

(‘D

H:

wsnm 1 = ----- --4 ----- -- = ----- --+ ----- -- = ----- --+ ----- --

Matrjx SS on sinh TD§cosh TD sinh TD§cosh TD sinh TD}cosh TD

E1 * ‘

N0I'malized } F0811 TD:sin.h TD] [cosh TD:sinh TD] [cosh TD:sinh TD

]
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Intrinsic Wavelike Transmission Matrix

11111111111iiiiiiiiiikiiiiiiiiii

We may consider the reduction to intrinsic variables as a factorhs

of the transmission matrix in the form:

Q-

cosh TD } R0 sinh TD

IMI = ------------------ -~ g ------------------ --

— Go sinh TD ' cosh TD -

'~/Roi cosh TD i sinh TD ~/sOi o E

Z -----' — — — — — — ~ — — — — — — — — — — ~ — — Inc-

o gt/so sinh TD § cosh TD o Ex/R0

IUVH == IBZ ' 'H7 ' IPI

The matrix Iki is that for an ideal transformer of modulus O

while the matrix EH1 represents the ideal wavelike transmitter with transit

time T. We shall find it convenient to adopt the symbolism:

C

T == ['3'

where C E cosh TD and S E sinh TD.

C2

uovonofoco no

Note that the well—kn0wn identity

1

—Z~l

S2 E 1

merely expresses the reciprocity condition for such transmitters.

QIESESEPSZZSPZE_9€_§E§§P§€P3§-Y§ZE'§-.§P3}§§

OI‘

Consider the transformation:

[ii = if" I

V

1 -~%-§-A-] - [-2-]

i

= (1/ ~/5) (6 + f) [Sum]

= (1/ ~/EA (e - f) [Diff ]
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The inverse transformation is readily determined as:

[fl = e

I

I

_A'_A

I

no-0-o}ouu-0

f = (1/w/2) (u

The instantaneous power, P (t), can

P=e~f = 112/2 - V2/2

P == const .

8

--—--—-_-_.--_.._..i

V

'7

f

1

Here:

TRANSMITTED POWER _

(or COFLUENT Power) '

REFLECTED POWER ,

(or COUNTERFLUENT Power) '

OI‘¢

power.

7 u

-:1 ~ s

or: e = (1/ -\/ 2) (u +

V) [Sum]

- v) [Diff.]

now be expressed:

Ei> <$1

=Pt'Pr

Maximum P always occurs

2

whenu -* max , v2-~ min->0

Zero P corre sponds

ll

+

C

to v

C-‘J> 2

Pt 2-: u/2

<$1

P = v2/2

r _

Thus u(t) measures the instantaneous value of the downstream flowing

ofluent power and v(t), the instantaneous value of upstream flowing or

Qounterfluent _

The variables (u,v) are known in electrical science as scattering

Earameters and in fluid mechanics as chara.ict_eris_,tic variables. We may define

E1 gharacteristic state vector, R , by the definition:

Ia [--E,‘--1
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which is analogous to the normal state vector:

" f

$ = [~13--~]

Then the relation between these two measures of state is given by

the converse pair of relations:

Pi-1 =

"\

2

Nate that since IHI = [8 23] E I , the scattering operator, ]H[ , is

_.l_.

2

[

..l..

1

I

-0-01:0-0

I

I I

--A‘-1

I

I--..--I

O I

I'_|_"1

wpv QQ

L--_l

anna-nunvoioionn no

I'_T"""I

Hum Cf)

I-..!.-.1

II ll

|\>I-*

l"’;'_1

-3:-A

cocojnao

I

' E

I I

_..q,..

I

L---J

O

I'__""l

I

<:m zfi

LZJ

analogous to the gyrating operator G , in being another of the (many)

square roots of , and therefore representing a duality transformation.

Characteristic Relations for_Wavelike Transmission:

Let us now apply the scattering matrix H fore and aft of an

ideal transmitter T , thus:

N E
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4-
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Q-

u-e
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H

Z1 Q
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I

II+ I
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(HQ

I 0 0
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[
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_.,... _.}_. E

I I

I I

newton hOlO:OIO

II

I

an-ofo -0

{iii

ii

ix

1»

no-ofovl fiovafi-on [Q] U)

U

xiiiixiixiu-ntgb

C ...

11111111111

6

T15

iii

iiiii

iiiii

or I N = l:------»---------

O

A";

iilnl 11

nabs

k

ifihiiiicn 1111

AT ""1 ]

Thus we may write

R 1 = N

[..E‘1.-] ,_. . [_i‘2..]

V1 O AT V2

.-eel»

%--1

1 .

d

u

-1

. R2
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where Z§t;22e_TD is the time delay operator. we may then obtain the two

time domain relations:

u2(t) -.= u1(t-T)’

W = ‘7@“°"“”

These characteristic relations were first obtained.by Bernhard RIEMANN in

1860 for the nonlinear case of sound waves of finite amplitude.

§acxgromnd Reading -- Method of Characteristics

(1) RIEMANN, Bernhard: Ueber die Fortpflanzung ebener Luftwellen von

endlicher Schwingungsweite, (1860) §es§mmelte_Mathematischepflerhg,

pp. 156-175; Second Edition (1953).

(2) MASSAU, Janius: Unsteady Flow in Open Channels, Annalee de iLassocia—

gtiqn_des_Tngenieur§ sortis des ecoles spécialesqde Gand T. 23?

pp. 95-21h (1900).

<3) BFRGER<>N,. I» = , P2 Cans 9-also Bélisi an 11lCdI?5~“#l_i,9&E9, sou ¢9as is ?<>ss-is

as §;ei@ir1,@;fwsi l<195<>>

_3?v°i1?%¥TFl“¥?‘1.,3eiai§§‘:i1?-‘$5 -- $9,s#FsI¥1e lisiriesese ~

(1) GARLIN, H. J.: The Scattering Matrix in Network Theory, IRE Trans

actions on Circuit Theory, Vol. or-3, Number 2, pp. 88i97

(June, 1956) .

yd

(2) REDHEFFER, R. R.: Difference Equations and Functional Equations in

Transmission-line Theory, Modern Mathematics for_the Engineer)

Second Series, pp. 282-337 (1961) ‘E w"*" E
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¥12Ps‘.2-P:112ssss2<2_2§-s-&9f§%2fs_Z¥*i12_Pf£Y1ss-e_£-isssf-!13i_&.<2ss

System: e1 e2

E TM R

Structure:

Disturbance: e1(t) = E sin(Ut

Response: f1(t) = F sin Qut -db)

TRANSFER CHARACTERISTIC:

Setting the ratio R2/Rb E r, the intrinsic transmission matrix

yields:

"§"§_."‘

t_._'__i

II

nit:

I

uo-poo‘-l-one

I

(1:17)

L-____.l

I

%3~§‘*

“> 119-

Im

L____J

Therefore the operational transfer characteristic becomes:

_ 9b1 _ Sr + C _ ;rCT4-1 _ r tehh TD + 1

H111 " 5 1 " or + s ‘ r + 5f‘ " r + tehh TD

FREQUENCY RESPONSE:

In terms of frequency response

F (Jul) = 1 S S are ~t:8"n— 90$ 3----------(Periodic Functions)

11 tan 01

|-3...:

++

C_1L:.

Since the arguments are periodic, the transfer function will itself be

periodic, Moreover, any transformation of the form w = (a + bz)/(c + dz)

with w and z complex numbers is a bilinear form.which always transforms

CIRCLES into CIRCLES (note that [St. LINES] CZ [CIRCLES] and [INVERSE TF]<I

[BILINEAR TF1).

In this case z - j tan QJt is a straight , and ]E?11(z) is

_ line

therefore a circle. To determine the circle, it is only necessary to fix

three points. Since all frequency responses of linear systems must give

polar plots symmetric about the horizontal axis, we know that the center of

the :E?11 circle must lie on the axis. The two additional points may be
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quickly found by noting:

(1) At: (.U1'»=O,"_f7T,~_f27T,..,—_I_-2n7T,

(2) At: we

-UNIT ‘?‘ CIRCULAR

CIRCm\ I ,1 __ \ FREQUENCY

/ ' \ LDCUS!

/ | traversed

// | at uniform

I | w T speed.

--1-——-—-—-I--II—— :

\ :7T/ 2

\ I

\

\ I

\\_- ' Z

I

I

G ' '

ain — —— —

4 I 1 .0

ta.n(.UtEO

F11 =1/r

--.

I+

r\>l=|

1+

co

'\3|=I

tan(Ut—->60

Thus the final locus has the appearance:

...,.: 2n+1."_,

2

""1""!

I

I

+

-_--_-—-n--1

1-¢-,-.

I_..__I__1 .___ __

Phase __'.(_:£4?_§\'_/fjyl
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9.1222-22€9i'i1_?£2i1§12i-Eieie

A general variable parameter wavelike transmitter can always be

considered as a finite or infinite sequence of small elements, thus:

Variable Mater;

Parameters

Z Z

Variable u ‘1

CROSS-SECTION , ~'~"~"'~"~‘~"~"~*~~.-~

"¢‘;“£'=§t.. _ Q.

1.""‘.”"' ‘N

1'41" - "-_-‘..-~...._

//, *--~

- I ‘!==i>

/ 7 “J;

'I// - ' ‘=3

IIIIIIM» ~ " - ~ -

I \\ | I \ ‘

‘I \ \ '____ ,’I ‘

/‘\/\( I \ I I’ 7, D

I1

\ ‘ - -

\ ' ,1!!!” 4% .'¢?o?I*Io:o§¢I0YoYo%*.03!‘W~7’/////~//72¢

\ I A .

\ | I

,u s<—- AS ....‘

Equivalent Pair

OD of Uniform 'I'M's

\

\

I

I

r 00000 \

Upstream Match Downstream Mate?

of ‘T1 of 5

Half Section Half Section I

GHARACTERISTIC GHARACTERISTIC

IMPEDANCE 4 nwrnnawcs

Z01 E Zu Z02 E Zdg

K .
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Each small section may be considered as two lengths of uniform trans-

mitter having equal transmission times Tu = T d = T. The properties and

eorresponding characteristic impedance of one half-section are taken as that

at the beginning of the physical element while the parameters of the other

half-section are those corresponding to the end of the physical element.

V It is then apparent that as the lengths and corresponding transmission

gtimes shrink to zero this model will become exact, both for abrupt and for

gradual non-uniformities.

V The advantage of synchronous timing for all the elements can now be

made evident. We may factor the transmission matrix for a double element

into the intrinsic forms:

Ru, T ' Rd, T

Upstream : Downstream

"""""'”""" Half-Section Heii"-see1;ien'""""'"“"""""'

1

i4e.1i..-<2.. I!.12s§-_9_ i(<2s_1§--<2-

0;,/cu s ; c Oi‘/Ru 1 o ;./Ra s ; c o ;,/Ra

I

T‘ ~/Rd/Ru I o E

L O L/Ru/Rd .1

¢- 1 ?

1r r'O 1T

L O :1/Pi

=i

l =1

E

Thus it is that the matrix for the general case may be expressed (except

f01" the terminal scaling) by the finite or infinite product:

1'1 2

Mn=gITEk
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where close to unity, the matrix EYE n may be approximately refactored to

the forms:

In the special case where the transformer ratios, rk, remains every-

Under these conditions, behavior is comparable to that of an equiv-

1<=1 1‘ 1<=1 1‘

M. = <112“> <".F1"1s> <"fi“1E> <112“>

alent uniform transmitter for which the local intrinsic variables

e (X) = ./to e(x)

9/><><) = ~/R0 ~ fa)

satisfy the wave relations. This result is known as Green's Law after

George GREEN, who in 1837 derived these relations for gravity waves in

shallow water channels.

may be indicated in terms of the pressure surge following sudden shutoff in

flow at the small end of a tapered pipe. The Green's Law estimate would be

A practical example of the use of Green's Law for engineering estimates

obtained from the formula:

P(s)/Po -Z .,/zO(e)/zoo = ,,/no/1>(e)

where D is the pipe diameter. The following tabulation gives typical resulu

[Income-can-0-nun-on-ououn-ounuucnoo-ofoco-0-0-0-on-0|

Station

0

1

2

3

A

5

I

Q-0-0-0-or-on-0-ounce-0-nvoco-Quota -on:-ofnuo-4-at-0-an-0|

1131-n-nit

Diameter

1.00

1.20

1.110

1.60

1.80

2.00

13111111

I

I

I

I

I

In-on-0-0-0-0-0-0-0-0-0-o-on-one-0-0-0-oft-on-0-0-0-0-0|

1

Calculated Pressure Rise

Exact Results

1.00

0.82

0.69

0.60

0-53

0.117

1111131111111

}o-0-0-0-Q-n-a-0-0-0-0-0-on-0-0-0-nu-000]:-0-0 u-0|

Green's Law

1.00

0.83

0.71

0.63

0.56

0.50

f0~¢-0-0-0-o~o-Q-4-0-0-Q-0 -0-0-Q-Q-0-ouifnvo-Q-"0-can-Q!
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E. IModeling Diffusive Transmission

WeYs%ifs_T£sf§séEEef§_fiEf-Pif2sf§i9&

Consider the transmission micro-element:

I

I-4'9

where Y(d) 1 CD but is a general function of D. This situation is a much

closer approximation to reality than the pure capacitive case.

For example, consider Y(D) = COD + [C1D/(I + T1D)] corresponding to

the I port element:

OQ

\ /

/

__:u

T = RTC1

It is easy to demonstrate that this results in a dispersion or

scattering action. Such dispersion is a vitally important factor in all

communication and other transmission of information, since, for example it

determines the effective "channel capacity" in the fundamental Shannon

Formula:

C=Wln[1+(S/N)]

Let us consider a more general case in which CO = O and

f=§ mQA1+%m]

R

Then n

for low frequencies: Y -’ ( E Ck) ' D = CnZD

I1

for high frequencies: Y - E Ck/Tk = 2 ck = on

This latter corresponds to a pure diffusive transmitter which was

considered by William.Thomson, Lord KELVIN, in connection with SUBMARINE

CABLES.
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§B€§_Pi§§E§ZY§_?‘E§E%§P§E§

Consider the micro.

i._ elements ' R

Duals

:_, :a;__,, Oaea _

Qsei,s

C

Mi I 5

This geometry first arose in J. B. J. FOURIER'S analysis of transiau

heat conduction: TheorieqAnalytiqpeg§e Chaleur. The FOURIER mathematics

was exhaustively applied by KELVIN to the RC cable with singular consequemm

In our general TM parlance we now have:

.‘Z.t=R T

D

’ t t

microscopic counterpart of the distinction between restoring times and wave

periods of macrosystems.

In order to interpret these universal properties let us consider the

special case

G I

I t . = Zt ' Yt = V TD

4 T =-’ rt = otn Z0 = zt / rt = Rt/_ /TD

Note now that the characteristic impedance is an operator, no longer a

scalar while the time constant T = R C is an R~C parameter. This is the

-———~-——--- Relative Length E 1 ~—————

e Diffusive ex Diffusive

1

f1 Transmitter

\<-—--

Z1

T‘ ' -7 — D

Then: _.:.(.a.Z‘ .. ,-_-

. ....9.. I

L

T 2

f1... =

F1

Transmitter f

H:

N

( 1 —- X )--~>i %<—----( X ) -----

I

I

-0-0-0|-1-0

I

I

5 ‘

, E

_.; [-1

I

I

I

I

Le

A1

.. c1

--1 om om

fx @><§1[1>><_ L. O .1

--—

‘-

This gives L ex I Tcosh x -\/I

e1 J TD

X -.

ZXII p,cosh i

1

Infinite

O Impedance

E \

, 0

O O

n J
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Then for example at the "insulated" end (x = O)

eX<t> e,<1=> = 1F*"<1>> - e,<t>

Here as in all such diffusive systems, the transfer operator F(D) is a

monogtonge procieisgsg which bears to diffusion the corresponding relation that

Xibratorfy plriopcfevsses bear to wavelike transmission. This we shall treat next.

However, first we may interpret our result by factoring the "cosh"

function into its characteristic roots. This yields a representation as an

infinite set of tapered first order lags.

1»/ 2

RD) = 'aa's"1;7':'1s' = kfi, ['1""rl':;"<?s1 “here 5% = Kai-'1‘)2

v‘ 1 O 1 O u-In--I-w-Q1--u-nu-ans-0-o QQQ

" 1 + 0.56 TD 1 + 0.05 TD 1 + 0.02 TD

resulting in the responses:

STEP RESPONSE:

I

I

IMPULSE RESPONSE: f(t) '

____ "'£
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F. The Dynamics of Monotone Processes

§E§€9§E2§§9E

A large number of fluid, thermal, chemical and other industrial

and organic processes are characterized by a step response which is mono-

tonic non-decreasing in time as indicated.

RESPONSE

F<t> "i -

res s av

TI

ME

The corresponding frequency response, at least for most continuous processes

would have a non-increasing amplitude and non-decreasing phase lag with in-

creasing frequency as follows:

FREQUENCY

All linear systems giving rise to such response can be called

monotonelprocesses.

Monotone response is manifested through:

(a) Time delay or dead time.

(b) Dispersion or rise time.

In physical processes, time delay is usually associated with

propagation or transport phenomena as measured by the ratio of travel dis-

tance to propagation or transport velocity. The dispersion in any process

can ultimately be attributed to the law of increasing entropy, whereby the
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distributed resistances in any system cause an attenuation increasing with

frequency. Such scattering action is reduced by isolation and relaying

methods, but is always present to some degree.

Oscillatory processes, characterized by the presence of comple-

mentary energy storage elements, will have monotonic response whenever the

energy dissipated per cycle becomes sufficiently large compared to the energy

stored in each mode.

°PeratZ9E-21-’-P1‘§€§§9€T§

One finds recurrent need to define quantities which are definite

integrals with respect to a given monotone distribution function F(t).

Thus we may write the expectation of a function ]EZ(g), as

+ CD

Expectation: 1E (g) E f g - d_F(t)

— co

Thus one finds that the moments about the origin of a monotone

may be expressed compactly in the Stieltjes form by the relations:

k +001;

k-th moment: ak = E3 (t ) = if-t ' dF(t)

-no

The infinite set of such moments, of course, measures the dis-

zero

tribution properties of a monotone function; in particular, the

momen

t:

+ 00

ab =fd_F(t)

- Q)

measures the total area of the distribution. One conventionally normalizes

the distribution, if possible, such that ao is identically unity to give

Ft-O0) E O and F(G)) we shall henceforth assume this to be the case.

Ill

_-I

Q

The first moment:

oo

a1 =+_/got - dF(t)

yields the mean effective position or centroid of the distribution if ao = I.
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In the same way the second moment:

+~ G32

a2 =ft - dF(t)

-co

Measures the square posliftigon of the distribution, and so forth.

In addition, the (bilateral) lapllacie transfiorm ]F(s) of a mono~

nemlace f@.IanS.f9I2n1

-st + (D-st

F(s)zE(e )=fe -(D

while the corresponding Fourier transform, I: (oi), becomes Fourier trans~

form:

+ GO

1F‘<w> a IE1<s‘J“”> =f s"<1‘“‘°~ an)

-co

In general, for monotone functions, the above integral transform

functions all in the mathematical sense, and uniquely characterize

exist

the given function. It is readily understood that all physically realizable

dynamic monotone responses must satisfy the condition.

F(t) 2 o for t <0

since otherwise an effect would occur in the absence of cause, which is a

situation not normally encountered.

Moreover, certain relationships exist between the above transforms.

For example, if in the equation above, the exponential egst is expanded in

an infinite power series,

2

e-st-=1-st+—%-s2t---~= k

‘if M8

O

it

Vi‘

d"

and the result is integrated term-‘by-term, there results the series e>@ansi0I1

for the general monotone operator, namely:

G)

1F<s)=Z i"-‘égillitk

kc '
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Thus, the Laplace transform of any monotone distribution function is very

simply expressed as an alternating power series whose coefficients are

directly related to the moments about the origin of its original (or time)

distribution.

In the same way, we may also write the Fourier transform of the

distribution in terms of a power series which may be found simply by placing

s = jarin the expansion above to obtain:

k

][I.‘(w)=0§_Qal<.ST§_u2_

W

ll

O

If we separate this series into its real and imaginary parts, there results

8. 8.

Re,1F(w)=-ao -§-‘1?-w2+n-§iwh----

a a

..1m]F(w) -.=a1w -3%-w2+§%-w5 ..

which means that the real and imaginary components of the frequency response

of any monotone process are given by simple alternating power series ex-

pansions of even and odd powers, whose coefficients are directly proportional

to the corresponding moments of the step response. This fact offers one

possibility for determining the moments, and therefore the transient response

characteristics directly from observed frequency response data.
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§§E§§%2}_C9@PZE§EZ9E.9§_M2n2§°EeS

The operational sum of a sequence of monotone responses is itselfa

monotone response. Such a situation arises whenever two or more monotone

processes are placed in parallel as indicated.

This situation is expressed by the operational equation:

1E;<S>=11=; +11-1» +111; £11-1n<s>

'3

Therefore the moments, akp, of the resultant distribution are given by:

n

8kp=Ea'k1n

m=1

§§§Ea§2_§29§1E§PE9E_9§Q¥2E9§9E§§

The operational product of a sequence of monotone responses

is itself a monotone response. Such a situation occurs whenever two or

more monotone processes are put in tandem or cascade as indicated.
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This circumstance is represented by the operational equation:

]Fc<s>=F-F....P="fi"IF‘m<>

1 2 n m=I

The logarithms of the Fm, will, however, add, in the form

n

log F = Z log Fm

c

m=1

The transmission operator, log F , corresponding to any monotone IF, can

also be eimanded in a power series of the form

§"Ms

Elan

log F=

where the coefficients ck are called (by statisticians) the cumulants

or Lsemi-_in_vari,ants of the distribution F(t) .

Thus, for any cascade of n monotones, the cumulants are additive

in the form

n

c

I

The moments ak and corresponding cumulants ck are related by the

identity:

S

kc: ngckm

)1:

k-I

_ k-I

ak _ Ck + mg]: <m-I) cmak-m

Since ck has the dimensions of ak and therefore tk, it is conven-

ient and significant to define the following set of constants-

Attenuation 8

Mean De lay Tm

Dispersion Time T

Skew Time T

Excess Time T

S

8.

8

‘-

_-I-b

-—

~_

-_

-_-.

-_

lnc

o

°1

(C <5)‘/3

(C31/1».
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In terms of these new constants any monotone process may be

characterized by the transform:

1 22 33 1 ht it

8-Tms+2TSs as +-é-E-Tes ---

I

Gil

I-5

F(s) = e

In terms of the frequency response, this expansion demonstrates tna

the amplitude depends only on the even powers of uo and the phase only on

the odd powers since

Gain

log = 8--35 TS2w2 +-5,‘;-reuwh -

Phase

[IF = -Tmw + -A-Taw3—

Thus, the description of a monotone process is unique only if an

infinite set of parameters is specified. However, any monotone may be

approximated with increasing accuracy by matching an increasing number of

the cumulants of the actual process by their counterparts in a model. *

One may also profitably introduce into dynamic context, the conven-

tional statistical dimensionless coefficients:

Coefficient of Variance Iu, e Ts/Tm

Coefficient of Skew Q e T843/TS3

I» 1+

Coefficient of Excess I3 2 T /T

8 S
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XVII. Energy Modula_t_io_n and qgqipliifiiqcqation

A. General Three-Port Elements

The causal relationships between the three inputs and the

three outputs of a general three-port element are of the form:

Y1<r> =\I/a [X1110 X2(t) X3(t>1

YEW =\I/b [X100 X203) X3001

Y3<t) =\I’C [X1110 X2<t) X3<t>1

which would be diagrammed as follows:

-1.

: Y2

ii:

R;

L__T_

5

For behavior the \I/ A's reduce to ® 's while for

static ,

linearized dynamic response the \I/ ‘s partition in the form:

Y = IF - x + IF - X + IF‘ ~x

1 11 1 12 2 13 3

Y2= F21-X1+ F22-X2+ IP23-X3

Y3= F31-x1+ F32-x2+ F33 -X3

which is the particularization for 3-ports of the linear relation:

§?=1i -X
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B. Generalized Power Modulators as Three-Port Elements

Perhaps the most significant single developent of the twentieth

century has been the sharpening of the concepts and practice concerned with

the modulation and amplification of power and signals. The primitive

elements required for all such transformations involve significant energy

transfer at a minimum.of three ports. Thus the three-port element serves

as the prototype generalized modulator.

We are here concerned with modulators in all media (i.e., electricm

fluid, mechanical, thermal, and so forth), but it is important to emphasize

that for a three-port to be considered as a true power modulator it will

generally have the bond pattern indicated:

Medium B

M di M6 di

e um Me um

A D A

\¥___Smm ___J/

Medium

While it is often possible to have Medium B E Medium.A, one would not usually

consider three-ports involving three different media as true modulators.

Some typical species and realizations are indicated in the morphological

matrix of Table I.

Thus the normal power flow for a modulator would appear as follows:

LO POWER

CONTROL

Moreover, it is very convenient to have a canonical ordering of the ports

as follows:

1--’MDD--2

I

3
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SPECIES OF MODULATORS

A Morphological Matrix of Certain Realizations

Principal‘

Modulating Medium B

CONVECTOR

Medium. *' if for c

A- Fluid Electrical Mechanical Thermal

lPneumatic Electrically VALNES

or

Fluid Hydraulic Operated OF

Operated Valves ALL

Valves MED TYPES

VACUUM TUBES WITCHES Bimetal

TRANSISTORS" RELAYS Switches

Electrica A Saturable SUPER-

Reactors I CONDUCTIVE

RELAXS

‘Modulated Magnetic CLUTCHES

Mechanica FLUID Clutch I DIFFERENTIAS

COUPLING Variable

Speed

Drives

BISURFACE

Thermal MODULATED
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purposes to take the fluid val e gate

valve as the most represent ti

C

for which under normal

1 -""*'2 with the inequalities

steady conditions the flow of power would.b

P12 P2>> P3

Two very broad classes

These may be considered as follows:

I

of modulators exist according to whether

the above weak inequality becomes a weak equality or strong inequalit

WEAK EQUALITY

v 1 T"

A srnons INEQUALITY

sea

]P’1>1P’2

L,

STRUCTURAL or PARAMETRIC

MODULATORS

Modulate by

TRANSFORMER ACTION

HIGH EFFICIENCY

DISSIPATIVE or THROTTLING

MODULATORS

Modulate by

commnrrno H”--a 1> d

LOW EFFICIENCY

\

\

r

\

Prototype Example:

NEEDLE VALVE

Henceforth we shall

HHH

find it

ve as a

a ve type.

Generalized Amplifiers

Any modulator can be used as

Prototype Example:

GATE VALVE

\

\

<_ S

i F

convenient for visualization

prototype modulator and th

\\l

an applifier by the elementary
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transposition of configuration indicated:

/

1 ' 2

r"""/"‘\

Hi P3 _____»_. MOD ....;,..EMe<i]p>

-_ _ 1

$151?’ ' 1'

ROTATING <5/' r__L3_‘

about ' L0 P

the f>§ E

13-Axis

1g=3 '___ uA\ 2'22

PRODUCES: { Q)/'1“ ’$__'_,_1

,>v}'r"r";I'h;,,5’»"'n

\ 0

/ Source

This is readily seen in terms of the gate valve:

1-—--—-—MOID——-2 1'---AM:P----2'

|3 .1

1 —--;—.-.1-: 2 --—— 2

—+ E711? -—-> 1' 2';-';-__-E _"'>

:_: ..._\_.‘“ <—> ~\|||/

\\l|

F/’|||

$3 |I ll‘

11 Ill

FLUID mrsssr

Surply

3'!

The (MOD) and the %lifier can thus be con-

modulator

sidered as perturbations of the same primitive device, merely resulting

from interchange of supply and control ports.

Frequently an amplifier is viewed as an active (i.e., non-
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reciprocal) two-port in the fashion:

AM

\\f--—--Amplifier

III

__Cf__ T T ,_ .1

I’ 5-3"-" I “I

'-"+-- O g or ---%- AM@-L--

I D I

I I I I I

I ES I I ES I

u___J L___J

Where "ES -" represents an energy source,

Thus a cascade or chain of amplifiers in any medium could be

represented by the bond diagram:

where-—-—4TP———— represents any two-port coupling system.

Similarly the use of EITORT FEEDBACK or FLOW FEEDBACK around

any amplifier can be indicated as follows, using ————¥T%—--for the two-

port feedback elements:

EFFORT FEEDBACK

(Voltage, Force, Pressure, etc.)

I—§§_I

IOIIQQUOQIOIOQIQQQ

F1OW'FEEDBACK

(Current, Motion, Flow, etc.)

,_Q[-—lAF1E——_(1 ~

These cases will be discussed further below.

G
e
n
e
ra

te
d
 o

n
 2

0
1

4
-0

2
-1

1
 1

3
:1

5
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
6

4
8

7
4

9
2

1
P
u
b
lic

 D
o
m

a
in

  
/ 

 h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p

d



Part XVII 2.T5l CLASS NOTES 293

D. The Trinode as a Three-Port Element

The following relations are true for any three-port:

fq f1=\I/1(e1,e2,e3) 1

1 2

TRI f2 = q?2(e1, e2, e3) ... II

f3 = \I/3(e_|, e2, e3) III

But frequently in addition there exist additional constraints upon the

effort and flow variables.

For example, if all ports connect the same medium, it is

reasonable to expect that the continuity equation will hold for the

three flows, namely, for positive inward flows:

f1 + f2 + f3 E O ... IV

Moreover, any three-port which depends only upon relative or differential

efforts will obey the condition for any constant effort, E:

N? ((e1 + E), (e2 + E), (e3 + E)) = NP (e1, e2, e3) ... V

for all three flow functionals.

Such a three-port we shall find useful to recognize and denote

as a trinode. Particularly noteworthy are the particular instances of

vacuum triodes and transistors.

If the trinode be linear, we could write a linear admittance

matrix in the form:

f=Y-e

Ll Y11§Y12§Y13 fl

___:_-_,___

f Y Ir :Y e

-2 , ._€l1_€?§.-€§ . .2

I :

I £3 Y31IY32IY32 83
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But the continuity condition (IV) further requires that the sum of each

column vanish:

§§'Y . = o

1 13

while the datum relativity condition (V) requires that each row sum vanish

%:Yij = 0

These results were first pointed out by SHEKEL and mean that ii

we consider each of the constraints upon the general three-port matrix, we

would find the following:

Three:-2<>I’@ i; 9 Elemecnficsc

useless C°P§iP@iFX, c c c c c o 3,

_;_;£$g;BQlatiV;tX;; cg I' can _

A§TIVE,Trinodel,,,,_ # Elements

1 Lease Reccciprrvcciwc c 1_ L d c do d is

FA$$IYE_Trin@dsc *7 .cc3 El¢m?P?§

UNIFORM Trinode (flowf§ct.) 1 Element

Thus it is clear then that the principal difference between, on the one

hand, a linear active trinode, with internal energy sources, and, on the

other hand, passive elements, lies in the failure of the former element

to satisfy the reciprocity conditions.

?£?E9§€_é@£%i€%9€§

The practical significance of the active or nonreciprocal trinode

modulating element lies in its value as an amplifier or relay. This will

generally be of the two-port form:

____.AM ____

or: -—--:>§>-———
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which may be realized from any active trinode by inserting the trinode into

the junction structure:

AM

1 -——-TRI--—-1

| : O i l

This is, of course, merely a generalization of the ordinary electric circuit

configuration:

} {C

we may then derive the various configurational permutations in an entirely

systematic way as shown below.

T§?E9§?_§TTii§§§¥ §9E§§%E€E§i€E§

The admittance matrix for a generalized linear trinode would have

the form:

a b c

ea eb ' 1 “ 1

f f Y 3 Y * Y

8‘ / b ;..__s1.2 §___s2-..

1 1

T“ Y=js.;m;1..

-___ t _ _ _ _ . __-

8 i

Yca 3 Ycb E Ycc

e f I

c c
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If we consider Port-a as the low power input, there exist three

amplifier configurations all of the general form:

LO:EI ,,?ip, ,<:) (I) e2 ,

Input ‘ "ff "1 ”“i' TRI ~I f ' Output

1 2

IOI

Ce

O

Hi IF”

The effort e is common to both sides of the amplifier

O

( ---—-->>-——--— ). The permutations are as indicated:

§9I.£”3.1‘2E:§ §9‘.{“.9913:I.2 §°‘E.I‘£1913:°

Port x : c a a

Port y ,2 b c b

Port z z a b c

All three of the two-port amplifier configurations may now be

determined from the general results:

case are as follows:

CONFIGURATION:

STRUCTURE:

Y :

M z

I

I

I

I

O

I

0

I

Q

Two-Port YXX { Yxy

ADMITTANCE : Yxy E Y------}-.Y--

Matrix yx } yy

Determinant 2 A E Y Y - Y Y

IQ’ XX W XIV W

Two-Port 1 Y }

TRANSMISSION: pyfl E

Matrix Xy yx

Gsseeze . ¢°mm@n~b

b i

CW ' aw

a i b

I‘ 1 -1", ‘P g -f22iY2P- . I Ysaiyss

Y ' """"" "

;_ bc{Ibb__' L Yca}Ycc_

1

Ybc _Ac'bE

1

Us

U‘

~<.:

J

--J-_-- --ml--I:-l-———

CC‘

UQQQOOQQ

tnnquuncnnn

I-<1

TY

J

cc§1

q-I

I-urlnrhn bin-hill

:;_ -22

Y Z5xy

C8. __A8.C§Y8.8. J

no-sofa

UO&c‘nQlOOOnQcQu‘n‘

8

Y

xx

The corresponding matrices and matrices for each particular

-1

;_n-3-n

Yt

aL_ ab;aa_;

Common-c

a@b

C

T‘ Y :Y “I

+»-_esi_eP_

¢__ Ybagxbb __~

T Ebb} 1 E

I13 TY '"
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The_?fis9ss-é§siEEss2§_9€_s_Ys2sfs_?fi9§s

(Neglecting Interelectrode Capacitance)

This commonly used trinode element has the following standard

symbol and linear admittance:

PLATE s P 1:

P -fl" ii.—*_;' * f _ _ _ _ .__,, _ _ _ _ __.i,

I I I

0 , 0 0 ,

GRID > ' '

T ________ __? ________ __i...M.,\..-..i

g = L 2 _ 1

Y sm , sp (am + sp) ;

I S ‘

‘ _;_,__" ,_‘ ' tr Jr!‘-v-<"v‘v---E

CATHODE I gm 1 P . gm gPI

1 _________ ___= ________ __? __________ __I

where gp = I/rp = Plate Conductance

gm =;igP = Grid - Plate Transconductance

?ff_?fi&9§f-éssiEEss2s_2€_s-€Es2Ei2s_T£essi§E92

(Neglecting all but first order effects)

This commonly used element has the following symbol and approx-

imate admittance:

in

e c b

muting councron "—~e—Y--1: ; c =7---~ ------ --

, f*I- : 0 I: -Q‘;

e C 1 E ‘ 1

q __________ __' _______ __i . . . . . . . . . . . ..

Y = It I A +

b as, E so ii as, so

non ---------- ~-

: f 1

§(o - I)si 5 -so ; (1 -<1)s1+sO

1 I ‘

L - _ _ _ _ - _ _ . ....’ _ _ _ _ _ _ _ _ _ ._'_ _ _ _ _ _ _ _ _ _ _ __

where(1= G (D) = Current Amplification Factor

gi = Input Conductance ~ gb

go = Output Conductance ~ gc ~ O

nuo-oucnun-Q-0-0:!-0 -0-0-0-coon-cacao-Q]

Q

I'd

W

(D

Q

O

U‘
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E“22-1_%2Eé-.Y2Ez-21Z-?H9:€9:"&§

A useful measure of the "activeness" or activity of a non-

reciprocal two-port derives from the determinant of the governing trans-

mission matrix. From the previous results we have:

A=YX‘.Y/YYX

If the element or system is reciprocal

--

‘-

Y _ Y

XV YX

and A E1

Since, physically, Yxy measures dfx/ dey and Xyx = dfyf 0 ex, an amplifier

with near-infinite power gain would have

A--<>

This is true for the idealized triodes and transistors usually considered.

Then if we measure the activity of a two-port system as the unity

complement of the absolute value of the determinant we have, using the

Hebrew letter aleph: v W p p

Activity & IA]
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---0

E Cascading and Feedback of Amplifiers

DynsmiCS_9€_é@E%iii?€_e§§_99EE€9%-E%§s§§E§

If we connect across an amplifier ( ——§>:>—— ) another two-

port element, using either O or 1 junctions (indicated by J), we arrive

m;the comonly encountered feedback scheme:

e—--u--1

- $>I> - Q

Flow-Flow Feedback

(ssuwr-ssuwr)

v=r, +Yr,

YIFEIII

indicated).

FE

_____1 . :>:> . Q.____

Effort-Flow Feedback

(SERIES-SHUNT)

i—i=1sL_,+11-11,

r-- FE --1

J--;>;> ——-J --

The two-port "-——— FE ——— " indicates the subsystem of particular feedback

elements employed. The four particularizations of the energy junction

situation may be denoted as follows (with typical electrical usage also

[———- FE --1

____.Q . :>:> . 1 ____

Flow-Effort Feedback

(SHUNT-SERIES)

¢5== ¢5,,'* TEIE

FE

._['.;>'.'1 .__

Effort-Effort Feedback

(SERIES-SERIES)

2K‘: 2Za_ + ZZ f

The Dvnssiss-2€-éss%i€1e£-9Bsis§

Consider a chain of amplifiers with the reticulation:

1---Ac---1 = [———-AM-———-CN-——-1 = 1

I1

Where [ ———-CN ———-] is the interstage coupling network. If the elements are

____.As.___.]
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all linear, each stage may be represented in the form:

[ —-AS —-] = I —-AM- I - [-— CN- 1

1f*§-iI5%. - A§e_i]_3e . Ac NBC

C-g £1-t-D5_ — Ca, Elljai

We might take the vacuum tube common-cathode reactively coupled

amplifier as an example. Here the single stage, ——-AS —— , is given by:

}T=-‘RC

-._-_-_-AM_-_—- 0

The voltage amplification ratio for a chain of "n" such

Z

I

it

b

Ilfffiféif‘

O

amplifiers is therefore:

where K = ;L/(2 + f)

E“) n n n

-5-Sm = <1/AK) = <-K) <%-_’{-1-f-5-,5—>

k = (1 + f)/(2 + r)

f = rp/p.R

Q11

2 +

O

I

L___L___4

l—"""'_"'1

Q “—‘

s 5+

Hit?

I

R

+ TD

I

i;_%§_:JEE% +.§2§c._ + B. c +.?P

fzt l_t_?P _-zeB;J§£l-t_?Pl_--1e

I 0

O

‘T

-L
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@<>sf2Eéfs_9f-92sfeEi9sei_é12i>%§-.€ief§

A very useful and significant system configuration results when-

ever an ultrahigh gain, low-pass, inverting amplifier is employed with

additional input and feedback elements, according to the scheme:

._____._.1E_.._._

IIFETI

O-—-—FA—-—-O-—-—--

(X) (Y)

where: FA : Feedback Amplifier

FE : Additional Feedback Elements

IE : Input Elements

The admittance matrices of (-- FE --) and (-- FA ) ll add,

since they are coupled "flow-to-flow.

I I

Y 5 v = §’“'

FA ' ; FE yr; yy

i

YXX §YXy

' ' Y =Y + Y = y" 5%?

amp FA FE yx } yy

I

From this follows the transmission

Mamp

H

II 3

»3<:I

IO

I

I

nor-Oco§nc0-0

O

X3’

Then, given any two-port (—~— IE -—), with the matrix:

M 1

= [:Z§1-,I@§.i.]

(Ci }]Di

matrix, assuming G -~ (D
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the overall system.matrix can be determined as

M: Mi ]MI31np

"A\=1Hn O O l

: _____?‘___1 _ _ _ _ _ _ _ _ _ _ _ _ _ ___ \

t.Cii]11)i 'YXy O _§

I

I

I Li???‘

-0-000-0}-out-on-I

I f_**-|

I

I

I

I

no-ovnincowo

-.1

\

T“

= I IT.1.@2‘fn_ I

l - Y O

L. Ci Ky '

-_.

The overall voltage transfer ratio is then, simply

E2/E1=1/IBZLYXY = - zxy/]EBi

If we take the very simple configuration:

Zf

[-—i---1

" *e1 O see F%.———O ————

Z.

1

then the resulting transfer ratio is

I E2/E1 = " Zr/Z1

This structure, developed about twenty years ago in connection

with gun directors and fire control apparatus, is the primitive element

underlying the contemporary electronic analog computing machine or

"electronic differential analyzer". The amplifiers Q——»EA-——) developed

for such use are referred to as d.c. computing amplifiers or operational

amplifiers.i Standardized input and feedback circuits permit the realizatmfl

of scaling, summing, integrating, and other operations, as indicated in HR

voluminous literature on modern electronic analog computers.
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U) ABBOTT, W. R.: Analysis of Four-Terminal Networks Containing Vacuum

Tubes, Misc. Paper A6-20h, AIEE (September, 19b6).

(2) EEEEBSON, L. C.: Equivalent Circuits of Linear Active Four-Terminal

Networks, The Bell Systems Technical Journal, Vol. XXVII, No. A

pp. 593-622 (October, 1955).

(3) BROWN, J. S. and BENNETT, F. D.: The Application of.Matrices to

Vacuum~Tube Circuits, Proc. IRE, Vol. 36, pp. Bhh-852 (19A8)

HQ EPSTEIN, H.: Solution of Transients in Active Four-Terminal Networks,

J. Franklin Institute, V61. 251, pp. 607-616 (1951)

G) HSU On Transformations of Linear Active Networks with Applications

ltra-High Frequencies, Proc. IRE, Vol. A1, pp. 59-67 (1953)

\l

@331

(1-0

:00

The five papers above were principally responsible for the introduc-

tion of 2-port matrix techniques to the design of vacuum-tube and

transistor circuits.

M» MIDDLEBROOK, E. D.: An Introduction to Junction Enaneiete; Theory (1957)

(7) SHEA, R. F., Editor: Transistor Circuit Engineering (1957)

<8) ----------------- --= rprincpipiss or ?E‘3j@;n_S,i,s1;9,r cpiprpcmptpsi (1953)

These three books amply testify to the value of linear and nonlinear

2-port concepts in the design and applications of solid state amplifiers.

(9) WEBER, Ernst: Linear Transient Analysis, Vol. II (1956)

An excellent summary of much of the material in the above sources.
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