
Henkin and Hybrid Logic⇤

Patrick Blackburn
Roskilde Universitet

Antonia Huertas
Universitat Oberta de Catalunya

Maŕıa Manzano
Universidad de Salamanca

Klaus Frovin Jørgensen
Roskilde Universitet

July 10, 2014

Abstract

Leon Henkin was not a modal logician, but there is a branch
of modal logic which has been deeply influenced by his work.
That branch is hybrid logic, a family of logics which extend
orthodox modal logic with special proposition symbols (called
nominals) that name worlds. This paper explains why Henkin’s
techniques are so important in hybrid logic. We do so by prov-
ing a completeness result for a hybrid type theory called HTT,
probably the strongest hybrid logic that has yet been explored.
Our completeness result builds on earlier work with a system
called BHTT, or basic hybrid type theory, and draws heavily
on Henkin’s work. We prove our Lindenbaum lemma using
a Henkin-inspired strategy, witnessing ⌃-prefixed expressions
with nominals. Our use of general interpretations and the con-
struction of the type hierarchy is (almost) pure Henkin. Fi-
nally, the generality of our completeness result is due to the
first-order perspective which lies at the heart of both Henkin’s
best known work and hybrid logic.

1 Introduction

Leon Henkin was not a modal logician, but there is a branch of modal logic that
has been deeply influenced by his work. That branch is hybrid logic, a family
of logics which extend orthodox modal logic with special proposition symbols
(called nominals) that name worlds. This paper explains why Henkin’s influence
on hybrid logic runs so deep, and we do so by proving a completeness result for
a hybrid type theory that we call HTT. But before diving into higher-order
logic, let’s informally introduce the two central ideas of basic hybrid logic.

⇤
Research partially funded by the Spanish Ministerio de Economı́a y Competitividad as

part of the project Logica Intensional Hibrida (Hybrid Intensional Logic), FFI2013-47126-P.

1

The first idea is to add special propositional symbols called nominals to an
orthodox modal language, and to insist that in every model, nominals are true
at precisely one world. Nominals name worlds by being true there and there
only. Consider this example:

¬⌃i.
Here i is a nominal (nominals are conventionally written i, j, and k). Suppose
we are working in a model in which the nominal i names the world w. Then
this expression will be true at w if and only if w is not accessible from itself via
R, the usual modal accessibility relation between worlds.

The second idea is to add modalities of the form @
i

, where i can be any
nominal. The intended semantics is written into the notation: a formula of the
form @

i

' is true at a world w if and only if ' is true at the world w0 named by
the nominal i. Note that a formula of the form @

i

' is either true at all worlds,
or false at all worlds: if ' is true at the world named by i, then @

i

' is true
at all worlds w; otherwise it is (everywhere) false. To put it another way, @

i

is a rigidifying operator. In any model, the world w where we evaluate @
i

'
is irrelevant: this expression always returns the truth value that ' has at the
world named i.

The basic propositional hybrid language has been intensively investigated. It
is decidable, indeed PSPACE-complete, just like orthodox propositional modal
logic (see [2]), and it extends the expressive power of orthodox propositional
modal logic (see [3] for a useful survey, and [9] for a detailed account). Most
relevantly for this paper, its completeness theory is well understood; simple and
general results covering many important classes of models are known (Chap-
ter 7.3 of [4], and [7], are good starting points, and [9] is close to definitive).
These results lift to first-order hybrid logic in full generality, and in [1] they
were lifted to higher-order logic with the completeness proof for BHTT, basic
hybrid type theory.

The BHTT system is an almost direct combination of Henkin-style type
theory with basic propositional hybrid logic. But the “almost” is important,
as in a higher-order setting it is natural to interpret @ as a rigidifier that can
be applied not merely to formulas, but to expressions of arbitrary type. That
is, suppose ↵

a

is an expression of type a. In BHTT, when we evaluate @
i

↵
a

at a world w, it rigidly returns the value of ↵
a

at the world named i. This
interpretation of @ is conceptually and technically appealing, and we use @ as
a general rigidifier in this paper too.

HTT, the higher-order logic we work with in this paper, is BHTT enriched
with the #binder. Consider again the expression ¬⌃i. When working with #we
are free to replace nominals with state variables (typically written s and t) and
to use # to bind the result. So we can form:

#s(¬⌃s).

So syntactically, # binds out nominals.1 But what is its semantic e↵ect?

1
Some authors bind nominals directly, forming expressions like #i(¬⌃i). There’s nothing

2

The #binder works locally: it binds state variables to the world of evaluation.
That is, when we evaluate an expression of the form #s' at a world w, the state
variable s is bound to w, and all occurrences of s within the scope of #s are
interpreted as names for w. Consider #s(¬⌃s) again. When we evaluate it at
w, s is bound to w, and this means that the s in ¬⌃s is to be interpreted as
a name for w. Hence ¬⌃s is true at w if and only if w is not accessible from
itself via R. So there is an important di↵erence between ¬⌃i and #s(¬⌃s). In
any model, the nominal i is a fixed name for a world, hence ¬⌃i only tests for
irreflexivity when evaluated at the unique world named i. But #s(¬⌃s) binds
the state variable s to the world of evaluation, hence it is an expression that
tests for irreflexivity at every world in a model.

Basic propositional hybrid logic enriched with # has also been intensively
investigated. It is undecidable (see [5]), and elegant model-theoretically (see [2]
and [9]). Moreover, its completeness theory is well understood, and we will
build on what is known in this paper.

We proceed as follows. In Section 2 we define the syntax and semantics
of HTT; we illustrate a common pattern of interaction between @ and # and
define substitution in detail. In Section 3 we axiomatize HTT over the class
of all models. We discuss three variant axiomatizations; thinking about their
di↵erences will help us see why (and where) Henkin’s techniques are important in
hybrid logic. In Section 4 we prove completeness, building on the earlier proof for
BHTT. As we shall see, the Lindenbaum construction for BHTT does not need
to be modified; # is handled automatically. In Section 5 we lift a general result
from propositional hybrid logic to HTT; we show we can add certain hybrid
theories as additional axioms and automatically gain completeness, and show
that these axioms are equivalent in expressive power to the bounded fragment
of first-order logic. In Section 6 we conclude by asking where Henkin’s influence
is most important in hybrid logic. We answer the question by looking more
closely at a key proof rule in one of our axiomatizations.

2 Syntax and semantics of HTT

In this section we introduce the syntax and (standard and general) semantics
for HTT. Our definitions are those given for BHTT in [1] extended with the
clauses for # and state variables (the nominal-like variables that #binds). After
our preliminary work, we discuss substitution and rigidity.

Syntax

Definition 1 (Syntax of HTT) Types: Let t and e be two fixed objects. We
define the set TYPES of types of HTT to be:

TYPES ::= t | e | ha, bi with a, b 2 TYPES and a 6= t.

wrong with this, but it seems neater to draw a syntactic distinction between state variables

(which are open to binding) and nominals (which are not).

3

Meaningful Expressions: The set ME
a

of meaningful expressions of
type a consists of the basic and complex expressions of type a we now define.

Basic Expressions: For each type a 6= t, we have a denumerably infinite
set CON

a

of non-logical constants c
n,a

, where n is a natural number. Con-
stants of type t are truth and falsity, that is, CON

t

= {>,?}, and we define
CON to be

S
a

CON
a

. For each type a 6= t, we have a denumerably infinite set
VAR

a

of variables v
n,a

, where n is a natural number, and we define VAR to
be

S
a

VAR
a

. Finally, for type t, we have a denumerably infinite set NOM of
nominals i

n

, and a denumerably infinite set SVAR of state variables s
n

, where
n is a natural number. We define HYB to be NOM [SVAR.

Summarizing, for each natural number n we have:

i
n

2 ME
t

| s
n

2 ME
t

| c
n,a

2 ME
a

| v
n,a

2 ME
a

with a 6= t.

Complex Expressions: These are generated as follows:

(�hb,ai�b) 2 ME
a

| (�u
b

↵
a

) 2 MEhb,ai | (@i

↵
a

) 2 ME
a

| (@
s

↵
a

) 2 ME
a

{(↵
a

= ↵0
a

), (¬'
t

), ('
t

^
t

), (8u
b

'
t

), (⇤'
t

), (#s'
t

)} ✓ ME
t

,

where ↵
a

,↵0
a

2 ME
a

, �
b

2 ME
b

, �hb,ai 2 MEhb,ai, u
b

2 VAR
b

, i 2 NOM,
s 2 SVAR and '

t

,
t

2 ME
t

. As this notation illustrates, we sometimes ex-
plicitly give the type of a meaningful expression (writing, for example, ↵

a

as we
just did) to emphasize that ↵ 2 ME

a

. The remaining booleans, the quantifier 9,
and the diamond ⌃, are defined in the familiar way. We routinely drop outer-
most brackets, and drop others when this will not result in ambiguity. Given a
set of expressions �, we define CON(�), NOM(�), VAR(�) and SVAR(�) to
be (respectively) the sets of constants, nominals, variables and state variables
occurring in expressions in �. We often call expressions of type t formulas.

For those unfamiliar with propositional or first-order hybrid logic, the fol-
lowing point should be stressed: nominals can occur in two distinct syntactic
positions, and state variables can occur in three. To give some simple exam-
ples, the following expressions are meaningful expressions of type t in which the
nominal i and the state variable s occur in formula position:

i s i _ ¬i ⇤(s! i)! (⇤s! ⇤i) ⌃⌃s! ⌃s.

The following are also meaningful expressions of type t, but here we see the
nominal i and the state variable s also occurring in operator position, that is,
in expressions of form @

i

and @
s

respectively:

@
i

i @
i

s @
s

(i _ ¬i) @
i

(s! i)! (@
i

s! @
i

i) @
s

(⌃⌃s! ⌃s).

Finally, here are three examples in which state variables occurs in binding posi-
tion, that is, in patterns like #s and #t:

#s(¬⌃s) #s(⌃⌃s! ⌃s) #s⇤⇤ #t@
s

⌃t.

4

In these example, all occurrences of the state variables s and t — whether in
formula, operator or binder position — have been bound by the #binder. Now,
there are two other binders in our language, namely the familiar 8 and � binders
which bind ordinary variables, so before going further let us be precise about
the concepts of freedom and bondage for the three binders of HTT.

Definition 2 (Freedom and bondage) Given a meaningful expression ↵, the
set of free variables occurring in ↵

a

(notation FREE(↵)) is given by:

FREE(v) = {v} for v 2 VAR
FREE(⌧) = ? for ⌧ 2 CON [NOM [SVAR

FREE(↵ = �) = FREE(↵�) = FREE(↵ ^ �) = FREE(↵) [FREE(�)
FREE(¬↵) = FREE(⇤↵) = FREE(↵)

FREE(@i↵) = FREE(@s↵) = FREE(#s↵) = FREE(↵)
FREE(8u↵) = FREE(�u↵) = FREE(↵)\{u}.

Given a meaningful expression ↵, the set of free state variables occurring in
↵
a

(notation SFREE(↵)) is defined as follows:

SFREE(s) = {s} for s 2 SVAR
SFREE(⌧) = ? for ⌧ 2 CON [NOM [VAR

SFREE(↵ = �) = SFREE(↵�) = SFREE(↵ ^ �) = SFREE(↵) [SFREE(�)
SFREE(¬↵) = SFREE(⇤↵) = SFREE(↵)

SFREE(8u↵) = SFREE(�u↵) = SFREE(↵)
SFREE(@i↵) = SFREE(↵)
SFREE(@s↵) = SFREE(↵) [{s}
SFREE(#s↵) = SFREE(↵)\{s}.

If a variable v is free in a meaningful expression ↵, then it is bound in both
8v↵ and �v↵. Similarly, if a state variable s is free in a meaningful expression
↵, then it is bound in # s↵. A meaningful expression ↵

t

of type t is called
a sentence if and only if all the variables and state variables it contains are
bound, that is, if and only if FREE(↵

t

) [SFREE(↵
t

) = ?.

Summing up: variable binding and state variable binding are distinct. Or-
dinary variables can only be bound by 8 or �, whereas state variables can only
be bound by the # binder. Moreover, it should be clear (at least syntactically)
that state variables are essentially nominals open to #binding, so we could have
stated the syntactic clauses for nominals and state variables more compactly by
stipulating that for all h

n

2 HYB, h
n

2 ME
t

and @
h

↵
a

2 ME
a

.
Nominals and @

i

operators are the tools characteristic of basic hybrid logic,
and the BHTT system defined in [1] is built over them. The #binder takes us to a
richer hybrid logic, and the HTT of this paper di↵ers from BHTT precisely by its
addition. Nominals and expressions of the form @

i

↵
a

(where i is any nominal)
will play the central role in the completeness result for HTT: models will be built
Henkin-style out of equivalence classes of witness nominals, and expressions of
the form @

i

↵
a

will specify how information is to be distributed. Indeed, as

5

far as our fundamental completeness result is concerned, state variables and
the # binder play a rather passive role: HTT can be axiomatized by adding a
single axiom schema to the axiomatization of BHTT. The #binder will make its
presence felt when we strengthen our fundamental completeness result.

Semantics

Definition 3 (HTT models) A standard structure (or standard model)
for HTT is a pair M = hS,Fi such that

1. S = hhD
a

i
a2TYPES,W,Ri is a standard skeleton, where:

(a) hD
a

i
a2TYPES, the standard type hierarchy, is defined as follows:

D
t

= {T, F} is the set of truth values,
D

e

6= ? is the set of individuals,
Dha,bi = DD

a

b

is the set of all functions from D
a

into D
b

for a, b 2 TYPES, a 6= t.

(b) W 6= ? is the set of worlds.

(c) R ✓W ⇥W is the accessibility relation.

(d) The pair hW,Ri is called a frame, and when working with a given
model M we sometimes talk about its underlying frame.

2. The denotation function F assigns to each non-logical constant a func-
tion from W to elements of appropriate type, and assigns to each nominal
a function from W to the set of truth values. More precisely:

(a) For any constant c
n,a

we define F(c
n,a

) : W �! D
a

. Moreover,
(F(>))(w) = T and (F(?))(w) = F , for any world w 2W .

(b) F(i) : W �! {T, F} such that (F(i))(v) = T for a unique v 2 W . To
simplify notation, we sometimes write F(i) = {v} and say that v is the
denotation of i, or the world named by i.

Note that we are working with a constant domain semantics: we have a fixed
type hierarchy hD

a

i
a

2 TYPES, and F interprets all constants on this fixed
domain. Furthermore, recall that a central idea of propositional hybrid logic is
to use propositions as names. Because nominals are true at precisely one world
in any model, they can be thought of as naming that world by being true there
and there only. Our interpretation of nominals in type theory imports this basic
idea to the richer setting: the interpretational constraint ensures that nominals
act as world names.

We interpret ordinary variables and state variables via assignments:

Definition 4 An assignment g is a function with domain VAR [SVAR such
that for any variable v

n,a

we have g(v
n,a

) 2 D
a

, and for any state variable s we
have g(s) 2W .

An assignment g0 is a v-variant of g if and only if it coincides with g on all
values except, perhaps, on the value assigned to the variable v. We use g✓

v

to

6

denote the v-variant of g whose value for v 2 VAR
a

is ✓ 2 D
a

. Similarly, g0 is
an s-variant of g if and only if it coincides with g on all values except, perhaps,
on the value assigned to the state variable s. We use gw

s

to denote the s-variant
of g whose value for s is w 2W .

There are two things to note about this definition. First, it treats ordinary
variables in the manner familiar from Henkin’s work. Second, it treats state
variables as syntactic entities that name worlds. An ordinary nominal is true at
a unique world. An assignment maps a state variables to a unique world. State
variables are essentially nominals open to binding by the # binder.

Definition 5 (HTT interpretations) A standard interpretation is a pair
hM, gi, where M is a standard structure for HTT and g is a variable assign-
ment on M. Given a standard structure M = hhhD

a

i
a2TYPES,W,Ri,Fi and an

assignment g we recursively define, for any meaningful expression ↵, the stan-
dard interpretation of ↵ with respect to the model M and the assignment g, at
the world w, denoted by [[↵]]M,w,g, as follows:

1. [[⌧]]M,w,g = (F(⌧))(w), for ⌧ 2 CON [NOM

2. [[v
n,a

]]M,w,g = g(v
n,a

), for v
n,a

2 VAR
a

3. [[s]]M,w,g = T if g(s) = w and F if g(s) 6= w, for s 2 SVAR

4. [[�u
b

↵
a

]]M,w,g = f , where, for any ✓ 2 D
b

, f : D
b

�! D
a

is the function

defined by f(✓) = [[↵
a

]]M,w,g

✓

u

b

5. [[↵hb,ai�b]]
M,w,g = [[↵hb,ai]]

M,w,g([[�
b

]]M,w,g)

6. [[↵
a

= �
a

]]M,w,g = T i↵ [[↵]]M,w,g = [[�]]M,w,g

7. [[¬'
t

]]M,w,g = T i↵ [['
t

]]M,w,g = F

8. [['
t

^
t

]M,w,g = T i↵ [['
t

]]M,w,g = T and [[
t

]]M,w,g = T

9. [[8x
a

'
t

]]M,w,g = T i↵ for all ✓ 2 D
a

[[']]M,w,g

✓

x

a = T

10. [[⇤'
t

]]M,w,g = T i↵ for all v 2W such that hw, vi 2 R, [['
t

]]M,v,g = T

11. [[@
i

↵
a

]]M,w,g = [[↵
a

]]M,v,g where {v} = F(i).

12. [[@
s

↵
a

]]M,w,g = [[↵
a

]]M,v,g where v = g(s).

13. [[#s'
t

]]M,w,g = T i↵ [['
t

]]M,w,g

w

s = T

Some remarks on the clauses covering nominal and state variables. Consider
Clause 1 when ⌧ is a nominal. This covers occurrences of i in formula position,
and in such cases i should be true at precisely the world it denotes. Because
of the constraint on the interpretation of nominals, this is what Clause 1 gives
us. Next consider Clause 11, which covers occurrences of i in operator position.
We want @

i

↵ to be an expression (of the same type as ↵) that rigidly yields the
value of ↵ at the world named by i. Clause 11 gives us this.

Now for state variables. Clause 3 covers occurrences of s in formula position.
State variables are assigned a unique world, the world they name. As they are
expression of type t, they should be true at that world and at that world only,

7

which is what Clause 3 insists upon. Clause 12 deals with s in operator position,
and says that @

s

↵
a

is true at a world w if and only if ↵
a

is true at v, the world
named by s. This mirrors the clause for nominals in operator position, and
indeed we could collapse Clauses 11 and 12 together by stating that for all
h 2 HYB, [[@

h

↵
a

]]M,w,g is [[↵
a

]]M,v,g, where v is the world named by h.
But state variables were only introduced to support the #binder that distin-

guishes HTT from BHTT, so Clause 13 is the real novelty. This says that #s'
binds s to the world of evaluation, and that all occurrences of s in ' within its
scope are to be interpreted as names for this world. So to speak, #s creates a
temporary name s for the world of evaluation. Consider again the expression
s(¬⌃s) we discussed in the introduction. As we said there, # binds s to the
world of evaluation. The semantics just defined guarantees that if we evaluate
this expression at any world w in any model, it will be true precisely when w is
not accessible (via R) from itself.

Let’s look at a second example, which illustrates a common theme: #binding
a state variable occurring in an @ operator under its scope. Let Woman be an
expression of type he, ti which picks out the women in each possible world, and
let Potus be an expression of type e which picks out the President of the United
States in each possible world. Suppose that an American voter murmurs: The
President of the United Sates might be a woman. We’ll consider three readings
of this sentence. The first is that the voter is thinking about a possible world
in which Barack Obama is a woman:

#s⌃(Woman(@
s

Potus)).

This expression is correctly typed: Potus is of type e, hence so is @
s

Potus, hence
Woman can be applied to it yielding the type t expression Woman(@

s

Potus).
Prefixing this with # s⌃ yields the above sentence. This expresses the first
reading of the utterance: s is bound to the utterance world, which means that
the embedded expression @

s

Potus must be evaluated at the utterance world too,
yielding the value Obama. So the voter is musing about what it might be like
in a possible world in which Obama is a woman.

On the other hand, maybe our voter simply meant this:

⌃(Woman Potus).

That is, perhaps our voter merely meant that there was some possible world
in which the president in that world (whoever she may be) is a woman. Well,
perhaps. Indeed if our voter had lived in (say) 1950, this reading may have been
all that the voter considered possible.

But it is also possible (indeed, nowadays more likely) that our voter is mus-
ing about the growing number of powerful American woman politicians, and
means that: The President of the United Sates might be a women existing in
the utterance world. We can express this by:

#s⌃((@
s

Woman) Potus).

8

This is also correctly typed: Woman is of type he, ti, hence so is @
s

Woman, and
so this can be applied to the type e expression Potus. This yields an expression of
type t, and, as before, prefixing #s⌃ gives us a sentence. But note the di↵erence:
the bound state variable s forces Woman to be evaluated at the utterance world,
hence the sentence is true if and only if there is an individual in some possible
world who is president there, and a woman in the utterance world.

This example illustrates an important point: @ and # are a powerful team.
The @ operator is a rigidifying operators for all types: it universalizes a local
value. The # binder enables us to force evaluation of state variable at the
current world: it is a localizing binder. And when, as in the Potus example,
an occurrence of # s is used to ‘store’ a value for s which is later ‘retrieved’
by occurrences of @

s

under its scope, we are able to shift the evaluation of
embedded expressions to the world named s, and hence to draw interesting
distinctions.

General semantics

The standard semantics for higher-order logic is strong: if we define validity as
truth in all standard structures, then the set of validities cannot be axiomatized.
In 1950 Henkin proposed a weaker notion of interpretation for higher-order
logic (see Henkin [13, 14]). As he showed, defining validity with respect to
general interpretations lowers the logical complexity of validity (as there are
more generalized structures than standard ones, it becomes easier to falsify a
formula, so there are fewer validities) and this new notion of validity can be
axiomatized in a natural way. We follow Henkin’s approach and prove our
completeness results with respect to general interpretations.

Definition 6 (HTT skeletons and structures) A type hierarchy is a fam-
ily hD

a

i
a2TYPES of sets defined recursively as follows:

D
e

6= ?
D

t

= {T, F}
Dha,bi ✓ DD

a

b

for a, b 2 TYPES, a 6= t.

A skeleton S = hhD
a

i
a2TYPES,W,Ri is a triple satisfying all the conditions

of a standard skeleton except that hD
a

i
a2TYPES is a (not necessarily standard)

type hierarchy. A structure (or model) is a pair M = hS,Fi where S is a
skeleton and F is a denotation function.

This definition encapsulates the idea that we don’t need all the functions
from D

a

to D
b

to interpret expressions of type ha, bi. However we do need
enough functions to interpret all the expressions of our language, which moti-
vates the following:

Definition 7 (General interpretation) A general interpretation is a pair
hM, gi where M is a structure, g a variable assignment, and for any meaningful
expression in ME

a

, its interpretation (as given by Definition 5) is in D
a

.

9

That is, from now on, given a (not necessarily standard) model M, an
assignment g, and an expression ↵, we will interpret ↵ on M using the clauses
given in Definition 5.

We can now define consequence and validity. Note that these definitions
really do generalize the standard ones, for every standard interpretation is a
generalized interpretation (but not conversely).

Definition 8 (Consequence and validity) Let � [{'} ✓ ME
t

and M be a
structure. We define consequence and validity as follows:

Consequence: We say that ' is a consequence of �, written � |= ', if and only
if for all general interpretations hM, gi and all w 2 W , if [[�]]M,w,g = T
for all � 2 � then [[']]M,w,g = T .

Validity: We say that ' is valid, written |= ', if and only if ' is a consequence
of the empty set (that is ? |= ').

A useful way of thinking about generalized interpretation is as a mecha-
nism that reduces higher-order logic to first-order logic, or (perhaps better)
as a mechanism that picks out the higher-order validities that are essentially
first-order from the rich space of standard higher-order validities; for useful dis-
cussions, see [16] and [15]. We mention this because we are going to use Henkin’s
method of constants to prove a completeness result, Theorem 33, that covers a
wide range of frame classes. From an orthodox modal perspective, this result is
atypically general. But when viewed from the first-order perspective that un-
derpins Henkin’s work, its generality is natural, for as we shall see in Section 5,
the hybrid machinery used in this paper is essentially first-order. Indeed the
pure nominal-free sentential fragment we shall discuss there is essentially hybrid
notation for the bounded fragment of the first-order language of frames.

Substitution and rigidity

To conclude this section, some syntactic lemmas concerning substitution and
rigidity. Our first lemma is Lemma 9 from [1] extended to cover state variables.
It is proved by induction on the structure of terms, and we leave it to the reader.
The inductive steps for � and 8 can be found in [1].

Lemma 9 (Agreement for variables and state variables) Let g and h be
assignments that agree on the values assigned to the free variables and state
variables of ↵; that is, f and g agree on the values they assign to all the elements
of FREE(↵

a

) [SFREE(↵
a

). Let hM, gi and hM, hi be general interpretations.
Then for any world w we have that [[↵

a

]]M,w,g = [[↵
a

]]M,w,h.

We now define substitution. We first deal with substitution for state vari-
ables. This is simpler than ordinary variable substitution, as the only expres-
sions substitutable for a free state variable are nominals and state variables,
that is, elements h of HYB. Any such h is a basic expression, and as neither
nominals nor state variables can be bound by � or 8, we do not have to worry

10

about accidental binding from these sources. So we need merely specify how any
h 2 HYB should be substituted into formula, operator, and binding positions.

Definition 10 (State variable substitution) Let h 2 HYB. We define, for
all ↵

a

2 ME
a

, the substitution of h for a state variable s in ↵
a

, written
↵
a

(h
s

), as follows:

1. ⌧(h
s

) := ⌧ for ⌧ 2 CON [VAR [NOM

2. s0(h
s

) :=

⇢
h if s0 = s
s0 if s0 6= s

3. (�u
p

�
b

)(h
s

) := �u
p

(�
b

(h
s

))

4. (�hb,ai�b)(
h

s

) := �hb,ai(
h

s

)�
b

(h
s

) | (�
b

= �
b

)(h
s

) := �
b

(h
s

) = �
b

(h
s

)

5. (¬')(h
s

) := ¬('(h
s

)) | (' ^)(h
s

) := '(h
s

) ^ (h
s

)

6. (8u
p

�
b

)(h
s

) := 8u
p

(�
b

(h
s

))

7. (⇤)(h
s

) := ⇤((h
s

))

8. (@
i

�
b

)(h
s

) := @
i

(�
b

(h
s

))

9. (@
s

0�
b

)(h
s

) :=

⇢
@

h

(�
b

(h
s

)) if s0 = s
@

s

0(�
b

(h
s

)) if s0 6= s

10. (#s0�
b

)(h
s

) :=

8
<

:

#s0�
b

if s 62 SFREE(#s0�
b

)
#s0�

b

if s 2 SFREE(#s0�
b

) and h = s0

#s0(�
b

(h
s

)) if s 2 SFREE(#s0�
b

) and h 6= s0

With state variable substitution (h
s

) at our disposal, we can define ordinary
variable substitution (�c

v

c

), the substitution of a (possibly complex) expression
�
c

for a free variable of type c. As �
c

may be complex, accidental binding is an
issue. However it is a well understood issue. The following definition is (for the
most part) standard: it uses the usual type-theoretic definitions that prevent
accidental binding of ordinary variables by � and 8. Only the # clause requires
comment. As we know, we can freely substitute ordinary variables under the
scope of the # binder; accidental binding of ordinary variables in �

c

by # is
impossible. But �

c

may contain free occurrences of the state variable s, and we
must prevent #s from accidentally binding these. But this is easily done: we
need merely make use of state variable substitution (h

s

) as just defined.

Definition 11 (Variable substitution) For all ↵
a

2 ME
a

, the substitution
of �

c

for a variable v
c

in ↵
a

, written ↵
a

(�c

v

c

), is defined as follows:

1. ⌧(�c

v

c

) := ⌧ for ⌧ 2 CON [NOM [SVAR

11

2. v
a

(�c

v

c

) :=

⇢
�
c

if v
a

= v
c

v
a

if v
a

6= v
c

3. (�u
p

�
b

)(�c

v

c

) :=

8
>>>><

>>>>:

�u
p

�
b

if v
c

62 FREE(�u
p

�
b

)
�u

p

(�
b

(�c

v

c

)) if v
c

2 FREE(�u
p

�
b

),
u
p

62 FREE(�
c

)
(�x

p

(�
b

x

p

u

p

))(�c

v

c

) if v
c

2 FREE(�u
p

�
b

),

u
p

2 FREE(�
c

), x
p

new

4. (�hb,ai�b)(
�

c

v

c

) := �hb,ai(
�

c

v

c

)�
b

(�c

v

c

) | (�
b

= �
b

)(�c

v

c

) := �
b

(�c

v

c

) = �
b

(�c

v

c

)

5. (¬')(�c

v

c

) := ¬('(�c

v

c

)) | (' ^)(�c

v

c

) := '(�c

v

c

) ^ (�c

v

c

)

6. (8u
p

)(�c

v

c

) :=

8
>>>><

>>>>:

8u
p

 if v
c

62 FREE(8u
p

)
8u

p

((�c

v

c

)) if v
c

2 FREE(8u
p

),
u
p

62 FREE(�
c

)
(8x

p

(x

p

u

p

))(�c

v

c

) if v
c

2 FREE(8u
p

),

u
p

2 FREE(�
c

), x
p

new

7. (⇤)(�c

v

c

) := ⇤((�c

v

c

))

8. (@
i

�
b

)(�c

v

c

) := @
i

(�
b

(�c

v

c

)).

9. (@
s

�
b

)(�c

v

c

) := @
s

(�
b

(�c

v

c

)).

10. (#s)(�c

v

c

) :=

8
>>>><

>>>>:

#s if v
c

62 FREE(#s)
#s (�c

v

c

) if v
c

2 FREE(#s),
s 62 SFREE(�

c

)
(# t(t

s

))(�c

v

c

) if v
c

2 FREE(#s),
s 2 SFREE(�

c

), t new

We now define rigid expressions. These are expressions that have the
same value at all worlds. They play an important role in our axiomatization,
and equivalence classes of rigid expressions are the Lego bricks of the Henkin-
style type hierarchy construction we use in the completeness proof.

The following definition is Definition 11 of [1] extended to cover state vari-
ables in both formula and operator position.

Definition 12 (Rigid expressions) The set RIGIDS, consisting of rigid mean-
ingful expressions, is defined as follows:

RIGIDS ::= ? |> | h |v
a

|@
h

✓
a

|�v
b

↵
a

|�hb,ai�b |↵b

= �
b

|¬'
t

|'
t

^
t

|8v
a

'
t

,

where h 2 HYB, ✓
a

2 ME
a

and ↵
a

, �
b

, �hb,ai, 't

,
t

2 RIGIDS. We say that
↵ 2 RIGIDS

a

if ↵ is rigid and of type a, that is, if ↵ 2 RIGIDS \ME
a

.

Unsurprisingly, # is conspicuous by its absence, for # does not rigidify. As
a simple example, consider the sentence #s(⌃s). In any model containing both
reflexive and irreflexive worlds, this sentence is true at all the reflexive worlds
and false at the rest.

12

Lemma 13 Let hM, gi be a general interpretation. Then for any � 2 RIGIDS,
we have that [[�]]M,w,g = [[�]]M,v,g for all w, v 2W .

Proof By induction on the construction of rigid expressions. The steps for
�v

b

↵
a

and 8v
a

' can be found the proof of Lemma 12 in [1]. a
Rigid expressions behave straightforwardly with respect to substitution:

Lemma 14 (Rigid substitution) Let hM, gi be a general interpretation. Then
for all worlds w, all ↵

a

2 ME
a

, all h 2 HYB and all state variables s:

[[↵
a

(
h

s
)]]M,w,g = [[↵

a

]]M,w,g

h

s

where h is an abbreviation for [[h]]M,w,g, that is, it is the world named by h.
Furthermore, for all worlds w, all ↵

a

2 ME
a

, all meaningful expressions �
c

of type c, and all variables v
c

2 VAR
c

:

[[↵
a

(
�
c

v
c

)]]M,w,g = [[↵
a

]]M,w,g

�

c

v

c

where �
c

is an abbreviation for [[�
c

]]M,w,g.

Proof By induction on the construction of expressions. Use Lemma 9. a

3 Axiomatizing HTT

We shall now axiomatize HTT by adding a single axiom schema to the BHTT
axiomatization of [1]. We call this axiomatization K1. At the end of this section
we note two more axiomatizations, K2 and K3.2 The di↵erences between these
systems are unimportant as far as our technical results are concerned, but at
the end of the paper we will discuss what K2 tells us about Henkin’s influence
in hybrid logic.

Axioms

As axioms we take all HTT instances of propositional tautologies together with
all HTT instances of the following schemas; we use h and h0 as metavariables
over elements of HYB:

1. Distributivity schemas:

(a) ⇤-distributivity: ` ⇤('!)! (⇤'! ⇤).
(b) @-distributivity: ` @

h

('!)! (@
h

'! @
h

).

(c) 8-distributivity: ` 8x
b

('!)! (8x
b

'! 8x
b

).

2
In modal logic, the basic proof system is usually called K in honor of Saul Kripke. The

three axiomatizations considered here are alternative ways of providing a basic proof system

for HTT.

13

2. Quantifier schemas:

(a) 8-elimination: For �
b

rigid, ` 8x
b

'! '(�b

x

b

).

(b) Vacuous: ` '! 8y
a

', where y
a

does not occur free in '.

3. Equality schemas:

(a) Reflexivity: ` ↵
a

= ↵
a

.
(b) Substitution: For ↵

a

, �
a

rigid, ` ↵
a

= �
a

! (�
c

(↵a

v

a

) = �
c

(�a

v

a

)).

4. Functional schemas:

(a) Extensionality: ` 8v
b

(�hb,aivb = �hb,aivb)! �hb,ai = �hb,ai, where v
b

does not occur free in �hb,ai or �hb,ai.

(b) �-conversion: For rigid �
b

, ` (�x
b

↵
a

)�
b

= ↵
a

(�b

x

b

).

(c) ⌘-conversion: ` (�x
b

�hb,aixb

) = �hb,ai, where x
b

is not free in �hb,ai.

5. Basic hybrid schemas:

(a) Selfdual: ` @
h

'$ ¬@
h

¬'.
(b) Intro: ` h! ('$ @

h

').
(c) Back: ` ⌃@

h

'! @
h

'.
(d) Ref: ` @

h

h.
(e) Agree: ` @

h

0@
h

↵
a

= @
h

↵
a

.

6. Domain schema:

(a) Hybrid Barcan: ` 8x
b

@
h

'$ @
h

8x
b

'.

7. Basic hybrid type theory schemas:

(a) Equality-at-named-worlds: ` @
h

(�
b

= �
b

) = (@
h

�
b

= @
h

�
b

).
(b) Rigid function application: ` @

h

(�hb,ai�b) = (@
h

�hb,ai)(@h

�
b

).
(c) Rigids are rigid: If ↵

a

is rigid then ` @
h

↵
a

= ↵
a

.

8. Downarrow schema:

(a) DA: ` @
i

(#s'$ '(i
s

)).

The first seven groups of schemas are those used in [1] to axiomatize BHTT.
In the present paper, these schemas range over HTT expressions (not merely
BHTT expressions) and operators of the form @

i

and @
j

have been replaced by
operators of the form @

h

and @
h

0 to reflect the addition of state variables, but
otherwise the systems are identical. Moreover, with the exception of the Basic
hybrid type theory schemas, which were introduced in [1], these schemas
are familiar from either higher-order logic or hybrid logic.

Now, to move from BHTT to HTT, we need only add the DA schema.
Readers familiar with hybrid logic will recognize this as a standard schema
used to prove completeness when # is added to basic (propositional or first-
order) hybrid logic. The DA schema spells out the locality of #with admirable
precision: when we are working at a world named i, we are free (reading the
$ in the left to right direction) to eliminate # by substituting i for bound
occurrences of s, or (reading it in the right to left direction) to use # s to
bind out occurrences of i. Because this schema captures the local semantics
of # so cleanly, the completeness proof for BHTT needs only relatively minor
modifications to extend it to HTT.

14

Rules of proof

1. Modus Ponens: If ` ' and ` '! , then ` .
2. Generalizations:

(a) Gen⇤: If ` ', then ` ⇤'.
(b) Gen@: If ` ', then ` @

h

'.

(c) Gen8: If ` ', then ` 8x
a

'.

3. Rigid replacement: If ` ', then ` '0, where '0 is obtained from ' by:

(a) Uniformly replacing expressions h 2 HYB by expressions h0 2 HYB.

(b) Uniformly replacing variables of type a by rigid expressions of type a.

4. Name: If ` @
h

' and h does not occur in ', then ` '.
5. Bounded Generalization: If ` @

h

⌃j ! @
j

' and j 6= h and j does not
occur in ', then ` @

h

⇤'.
These are standard rules from hybrid and classical logic. The restriction in

the rigid replacement rule (that only nominals and state variables can replace
nominals and state variables) reflects the fact that nominals and state variables
are names for worlds, and replacement must respect this. The additional re-
striction (that variables can only be freely replaced by rigid terms) reflects the
fact that assignment functions interpret variables rigidly, and replacement must
respect this too. We’ll discuss Name and Bounded Generalization shortly
when we consider alternative axiomatizations.

Definition 15 A proof of ' is a finite sequence ↵1, . . . ,↵n

of expressions such
that ↵

n

:= ' and for every 1 i n � 1, either ↵
i

is an axiom, or ↵
i

is
obtained from previous expressions in the sequence using the rules of proof. We
write ` ' whenever we have such a sequence and say that ' is a HTT-theorem.

Definition 16 If � [{'} is a set of meaningful expressions of type t, a proof
of ' from � is a proof of ` �1 ^ . . . ^ �

n

! ' where {�1, . . . , �n} ✓ �. A
meaningful expression ' of type t is provable from a set of expressions �,
written � ` ', if and only if there is a proof of ' from �. We call � inconsistent
if and only if for all formulas ', � ` '. Otherwise � is consistent.

Theorem 17 (Soundness) For all ' 2 ME
t

, we have ` ' implies |= '.

Proof Straightforward but tedious. a
That was K1, simply the BHTT axiomatization enriched with theDA schema.

But more should be said about the Name and Bounded generalization rules.
Neither is an orthodox modal rule of proof. However both draw on familiar ideas
from classical logic, indeed both rules can be viewed as (axiomatic simulations
of) natural deduction rules. Consider Name. This can be read as saying:

If ' can be proved to hold at an arbitrary world h not mentioned in
', then we can (so to speak) discharge the @

h

and prove '.

15

And Bounded generalization can be read similarly:

If ' can be proved to hold at some arbitrary successor world j of h,
which is not mentioned in ', then we can (so to speak) discharge the
@

h

⌃j assumption and prove that ' occurs at all successors of h.

Natural deduction systems for hybrid logic have been intensively studied (for a
monograph-length treatment, see [8]) and the ideas just sketched are central to
many such proof systems.

And this leads us to K2. This is the axiomatization obtained by discarding
Bounded generalization and replacing it with the Paste rule:

` @
i

⌃j ^@
j

'! ✓

` @
i

⌃'! ✓
.

That is, we replace one non-orthodox rule by another (note: we retain Name).
The Paste rule is interesting for two reasons. Firstly, as we shall see when we
discuss the Lindenbaum construction, this is the rule that most directly licenses
the use of Henkin-style witness nominals. Secondly, as we shall discuss at the
end of the paper, Paste is essentially a lightly disguised tableau rule. But let’s
defer further discussion of the second option and turn to the third.

We obtain K3 when we discard both Name and Paste and replace them
with the following axioms and rules:

Gen#: if ` ' then `#s'.
Name# : `#s(s! ')! ', where s does not occur in '
Bounded Generalization# : ` @

i

⇤ #s@
i

⌃s
This approach (due to Balder ten Cate) is elegant. The new rule is orthodox;
indeed, it mirrors our other Gen rules. And the two new axioms show that
when we have # in our language, the proof-theoretic e↵ect of the Name and
Bounded generalization rules can be captured by axioms.3

4 Completeness

We now prove the completeness of our axiomatization(s). The involves only
minor modifications of the completeness proof for BHTT. We sketch what is
required, highlighting issues involving the # binder.

3
These three approaches have a common evolutionary history. The earliest was the Paste

plus Name combination found in K2. This was introduced in [7] in the setting of proposi-

tional tense logic with # and used to prove analogs of this paper’s Theorems 29 and 33. The

Bounded generalization plus Name combination used in K1 was designed to provide a

natural deduction style counterpart to the tableau style Paste rule. Balder ten Cate then

showed how this combination could be refined (when # is in the language) with the rules and

axioms used in K3. For detailed explorations of the Bounded generalization plus Name
option, and their simplifications with # see [6] and [9]. Another non-orthodox hybrid proof

rule (one which is useful even if we don’t have @ in our language) is the COV rule of [11].

16

The Lindenbaum construction

As with any Henkin proof, we shall build our model out of the expressions
contained in a maximal consistent set of formulas, that is, out of the items
in some � ✓ ME

t

. Moreover, we are going to build the maximal consistent
sets we require using a Henkin-style strategy. That means that each 9-formula
will be witnessed by a constant of appropriate type, and we will build the
functional hierarchy out of equivalence classes of these elements; this part of
our proof follows Henkin’s recipe almost to the letter. But working Henkin-
style in hybrid logic also means that we are going to use our hybrid machinery
to imitate Henkin’s strategy in the modal part of the language: each ⌃-formula
will be witnessed by a nominal, and the worlds will be built out of equivalence
classes of witness nominals. This motivates the following definition:

Definition 18 Let ⌃ be a set of meaningful expressions.

1. ⌃ is named i↵ one of its elements is a nominal.

2. ⌃ is ⌃-saturated i↵ for all expressions @
i

⌃' 2 ⌃ there is a witness nomi-
nal; that is, a nominal j 2 NOM such that @

i

⌃j 2 ⌃ and @
j

' 2 ⌃.

3. ⌃ is 9-saturated i↵ for all expressions @
i

9x
a

' 2 ⌃ there is a witness
constant; that is, a constant c

a

2 CON
a

such that @
i

'(@i

c

a

x

a

) 2 ⌃.

So far so good — but what about the # binder? If 9 requires witness con-
stants, does not the # binder, like ⌃, require witness nominals? Don’t we also
need our maximal consistent sets to be #-saturated? The answer is: yes, we do,
but this is given to us automatically, courtesy of the DA schema.

Lemma 19 Let � be maximal consistent, and let i be any nominal such that
i 2 �. Then we have that @

i

#s' 2 � i↵ @
i

'(i
s

) 2 �.

Proof Recall that DA is ` @
i

(#s'$ '(i
s

)). Hence if @
i

#s' 2 �, then by the
left-to-right direction we have that ` @

i

'(i
s

) 2 �. Conversely, if ` @
i

'(i
s

) 2 �,
then by the right-to-left direction we have that @

i

#s' 2 �. a
The #operator, though expressively powerful, is deductively straightforward

because of its locality. Unlike 9 and ⌃ which need new witness constants and
nominals, we can specify in advance the witnesses that # needs, and DA does
this. It tells us that, at a world named i, we are free to use i as a # witness,
and furthermore, that we can also use # to bind out i. Because of this, the
Lindenbaum construction for HTT is identical to the construction for BHTT, as
we don’t need to modify the construction to cope with the # binder.

Lemma 20 (Lindenbaum) Let ⌃ be a consistent set of formulas. Then ⌃
can be extended to a maximal consistent set ⌃! that is named, ⌃-saturated and
9-saturated.

17

Proof Let {i
n

}
n2!

be an enumeration of a countably infinite set of new nom-
inals, {c

n,a

}
n2!

an enumeration of a countably infinite set of new constants of
type a, and {'

n

}
n2!

an enumeration of the formulas of the extended language.
We will build {⌃n}

n2!

, a family of subsets of ME
t

, by induction:

• ⌃0 = ⌃ [{i0}.
• Assume that ⌃n has already been built. To define ⌃n+1 we distinguish
four cases:

1. ⌃n+1 = ⌃n, if ⌃n [{'
n

} is inconsistent.

2. ⌃n+1 = ⌃n[{'
n

}, if ⌃n[{'
n

} is consistent and '
n

is not of the form
@

i

⌃ or @
i

9x
a

 .

3. ⌃n+1 = ⌃n [{'
n

,@
i

⌃i
m

,@
i

m

 }, if ⌃n [{'
n

} is consistent, '
n

has
the form @

i

⌃ , and i
m

is the first nominal not in ⌃n or '
n

.

4. ⌃n+1 = ⌃n [{'
n

,@
i

@

i

c

m,a

x

a

}, if ⌃n [{'
n

} is consistent, '
n

has the
form @

i

9x
a

 , and c
m,a

is the first constant of type a not in ⌃n or '
n

.

Now, let ⌃! =
S

n2!

⌃n. Then ⌃! is named, ⌃-saturated, 9-saturated, and
maximal consistent. The proof is the same as that given in [1]. We use Name
to prove the consistency of ⌃0. We use Paste to show the consistency of Case 3;
this rule gives us exactly what is required. Paste is a primitive rule in K2 and
a derived rule in both K1 and K3.

Case 4 introduces a small (but significant) deviation from Henkin’s recipe for
the quantifiers. We don’t simply witness the 9 quantifier with a new constant
c
m,a

, rather we use the rigidified constant @
i

c
m,a

, where i names the world
where the existential formula is to be evaluated. Note that @

i

c
m,a

, like c
m,a

, is
of type a. The change does not e↵ect consistency, and the proof is essentially
the standard one; see [1] for details. a

Building Hybrid Henkin Structures

We come to the core construction. Recall that a structure M is a pair of the
form hS,Fi, where S = hhD

a

i
a2TYPES,W,Ri and F a denotation function. So

we have two tasks. The first is to define the type hierarchy hD
a

i
a2TYPES, the

second is to define hW,Ri and F. Let’s deal with the first task.

Definition 21 Let � be a named, ⌃-saturated and 9-saturated maximal con-
sistent set. Then:

• For all ↵
a

, �
a

2 RIGIDS
a

: ↵
a

⇡� �
a

i↵ ↵
a

= �
a

2 �, for every a 2
TYPES� {t}. The rigidity equivalence class of ↵

a

, notation [↵
a

]�, is
the set {�

a

| ↵
a

⇡� �
a

}.
• For ', 2 ME

t

: ' ⇡� i↵ ' = 2 �.The truth equivalence class of
', notation [']�, is the set { | ' ⇡� }.

When � is clear from context we will usually write ⇡ instead of ⇡�, and [↵]
instead of [↵]�. It is straightforward to check that both rigidity equivalence and
truth equivalence are equivalence relations.

18

This leads to the key result: all the equivalence classes needed when building
the type hierarchy can be represented by rigidified constants.

Theorem 22 (Rigid Representatives) Let � be a maximal consistent set
which is named, ⌃-saturated and 9-saturated.

1. Let h 2 HYB and ↵ 2 ME
t

. Then [↵] = [@
h

?] or [↵] = [@
h

>].
2. Let h 2 HYB and ↵

a

2 RIGIDS
a

, such that a 6= t. Then there is a constant
c
a

2 CON such that [↵
a

] = [@
h

c
a

].

Proof The proof is by induction on type structure. We give the proof for type
t expressions, as state variables are of type t. The case for type e expressions
and the inductive step can be found in [1].

Let h 2 HYB and ↵ 2 ME
t

. Assume that ↵ 2 �. But ↵ ! (↵ = >) 2 �,
by propositional logic. Thus ↵ = > 2 �, and ↵ = @

h

> 2 �, by Axiom 7c and
maximal consistency. Hence [↵] = [@

h

>]. On the other hand, if we assume that
↵ 62 �, both ¬↵ and ¬↵! (↵ = ?) 2 �, and similar reasoning lets us conclude
that [↵] = [@

h

?]. A remark: since for any h 2 HYB we have that ` @
h

? = ?
and ` @

h

> = >, by Axiom 7c [@
h

?] = [?] and [@
h

>] = [>]. So the choice of
h is irrelevant; there are only two truth equivalence classes. a

Theorem 23 (Hierarchy Theorem) Given a maximal consistent set �, which
is named, ⌃-saturated and 9-saturated, there is a family of domains hD

a

i
a2TYPES

and a function � such that:

1. � is a bijection from BB (Building Blocks) to
S

a2TYPES

D
a

, where

BB =
[

a2TYPES\{t}

{[↵
a

] | ↵
a

2 RIGIDS
a

} [{['] | ' 2 ME
t

}.

2. D
t

= {�([']) | ' 2 ME
t

} and D
a

= {�([↵
a

]) | ↵
a

2 RIGIDS
a

} for a 6= t.

Proof The proof is essentially Henkin’s; we refer the reader to [1] for full
details. However we will give the case for type t expressions as we want to be
explicit about how state variables are handled. We define D

t

to be the two
elements set D

t

= {[@
j

?], [@
j

>]}, and for every ' 2 ME
t

we define:

�([']) =

⇢
[@

j

>] i↵ ' 2 �
[@

j

?] i↵ ¬' 2 �,

where the nominal j is arbitrary. It is immediate by the first part of the Rigid
Representatives Theorem that � is well-defined, one-to-one, and onto. Note
that the definition of � covers state variables, as they are of type t. We will
need to use the definition of �([s]) when we prove Theorem 27. a

Now for the second task, defining hW,Ri and F. We first define an equiva-
lence relation over elements of HYB.

19

Definition 24 Let � be a maximal consistent set. For h, h0 2 HYB, we shall
define h ⇡N h0 to hold if and only if @

h

h0 2 �. Clearly, if h ⇡N h0 holds, it
means that h and h0 name the same world, and it is easy to show that ⇡N is
an equivalence relation on HYB. For any h 2 HYB, we shall define [h]N to be
{h0 2 HYB : h ⇡N h0}.

Definition 25 (Hybrid Henkin Structures) Let � be a maximal consistent
set which is named, ⌃-saturated and 9-saturated. The hybrid Henkin struc-
ture M = hS,Fi over � is made up of:

1. The skeleton S = hhD
a

i
a2TYPES,W,Ri, defined by:

(a) hD
a

i
a2TYPES, as given by the Hierarchy Theorem,

(b) W = {[i]N | i is a nominal},
(c) R = {h[i]N , [j]N i | @

i

⌃j 2 �}.
2. F is a function with domain NOM [CON, defined by:

(a) For c
n,a

2 CON, F(c
n,a

) is a function from W to D
a

, such that
F(c

n,a

)([i]N) = �([@
i

c
n,a

]).

(b) For i 2 NOM, F(i) is a function from W to D
t

= {[@
i

>], [@
i

?]}, such
that (F(i))([j]N) = [@

i

>] i↵ i 2 [j]N .

We need to check that hybrid Henkin structures are indeed well-defined
structures, but this is straightforward. Further details can be found in [1].

General Interpretation and Completeness

One last detail remains: defining our variable assignment. The following defini-
tion extends the definition in [1] to cover state variables. We remind the reader
that � is the bijection defined in the proof of the Hierarchy Theorem, and that
for any state variable s, [s]N is the equivalence class of elements of HYB that
name the same world as s.

Definition 26 The hybrid Henkin assignment on M is the function g de-
fined as follows. For every v

a

2 VAR
a

we have:

g(v
a

) = �([v
a

]),

and for every state variable s 2 SVAR we have:

g(s) = [s]N .

Theorem 27 Let M be a hybrid Henkin structure and g its hybrid Henkin
assignment. For all meaningful expressions �

b

and for all i 2 NOM we have:

[[�
b

]]M,[i]N ,g = �([@
i

�
b

]).

20

Proof By induction on the formation of meaningful expressions. A proof
covering most steps is given in [1]. Here we give the steps for state variables in
formula position and the # binder.

So suppose that �
b

is a state variable s. We want to show, for any nominal
i, that [[s]]M,[i]N ,g = �([@

i

s]). Now, in the hybrid Henkin structure T =
[@

j

>] and F = [@
j

?], where j is an arbitrary nominal. So by the semantic
definition for state variables in formula position, the fact that g(s) = [s]N , and
Definition 24 we have that:

[[s]]M,[i]N ,g =

⇢
[@

j

>] i↵ g(s) = [i]N i↵ [s]N = [i]N i↵ @
i

s 2 �
[@

j

?] i↵ g(s) 6= [i]N i↵ [s]N 6= [i]N i↵ @
i

s 62 �

This immediately gives us the equivalence we require, for from the definition of
� given in the proof of the Hierarchy Theorem and maximal consistency:

�([@
i

s]) =

⇢
[@

j

>] i↵ @
i

s 2 �
[@

j

?] i↵ ¬@
i

s 2 � i↵ @
i

s 62 �

This establishes the case for state variables in formula position.

So suppose �
b

is #s'. We now show that [[#s']]M,[i]N ,g = �([@
i

#s']).
Predictably, this is where we use the DA schema:

[[#s']]M,[i]N ,g = [[']]M,[i]N ,g

[i]N

s Semantic definition

= [['(i
s

)]]M,[i]N ,g Lemma 14
= �([@

i

('(i
s

))]) Inductive hypothesis
= �([@

i

#s']) DA

The only other novel case is for expressions of the form @
s

', and this is straight-
forward by the induction hypothesis. a

Corollary 28 A pair hM, gi where M is a hybrid Henkin structure and g is
its Henkin assignment is a general interpretation.

Proof The induction underlying the proof of the previous theorem shows that
every expression has an interpretation in the appropriate domain of the hierar-
chy, and this is precisely what we require of general interpretations. a

Theorem 29 (Henkin theorem) Every consistent set of meaningful expres-
sions of type t has a general interpretation satisfying it.

Proof Let � be a consistent set of meaningful expressions of type t. By the
Lindenbaum lemma there is a maximal consistent extension � of � which is
named, ⌃-saturated and 9-saturated. Because � is named, there is a nominal k
in �. By Theorem 27 and Corollary 28 there is a general interpretation hM, gi
such that, for all �

t

2 ME
t

we have that:

[[�
t

]]M,[k]N ,g = �([@
k

�
t

]).

21

Let ' 2 �. Hence @
k

' 2 �. But this means that �([@
k

']) = [@
k

>]. Hence

[[']]M,[k]N ,g = [@
k

>]. That is, ' is true in this model at the world [k]N . a

Theorem 30 (Completeness) For all � ✓ ME
t

and ' 2 ME
t

, the following
holds: � |= ' implies � ` '

Proof Standard. a

5 The bounded fragment

When logicians talk about completeness for first-order logic, they typically talk
about the completeness theorem, singular, the result first proved by Gödel in
his 1929 PhD thesis, and proved in the now standard fashion by Henkin in his
celebrated 1949 paper [12]. Modal logicians, on the other hand, typically talk
of completeness theorems, plural. Even readers with only passing acquaintance
with modal logic may well have heard of modal logics boasting such names as
K, T, S4, S5, S4.3 and many many more. Why this di↵erence in perspective?

The reasons are partly historical. Modal logic began as a largely syntactic
attempt to pin down such concepts as strict implication, necessity and possi-
bility, and many systems were considered. Although algebraic methods were
sometimes used, it was not until the introduction of possible world semantics
in the late 1950s, by pioneers such as Kripke, Hintikka, Kanger, that light was
shed on this proliferation of logics. For example, it became clear — indeed, easy
to see — that S4 is the set of formulas valid on pre-ordered frames hW,Ri, that
is, frames where R is reflexive and transitive. Modal completeness results of
the early 1960s typically attempted to show that particular axioms of interest
had simple semantic characterizations. There were successful attempts to prove
more general completeness results, the best known being Sahlqvist’s theorem,
but such results tended to be complex. And in the early 1970s, incompleteness
results were proved in the (seemingly simple) setting of propositional modal
logic. All in all, thinking in terms of logics is probably the most natural way of
coping with this complex landscape of results and partial results.

In first-order logic, thanks to the strength and simplicity of the completeness
theorem, the situation is more straightforward. Instead of thinking in terms of
di↵erent first-order logics, we tend to think in terms of theories. For example,
if we want to work with partial orders (that is, antisymmetric pre-orders) we
would form the theory consisting of the following sentences:

8xRxx 8x8y(Rxy ^Ryx! x = y) 8x8y8z(Rxy ^Ryz ! Rxz).

The first-order completeness theorem guarantees that the consequences of these
sentences are precisely the first-order formulas valid on partial orders. Of course,
we can, and often do, talk of “the first-order logic of partial orders”. Nonetheless,
the simplicity and generality of the completeness theorem makes it natural to
think in terms of theories, in a way that is uncommon in modal logic.

22

As its name suggests, hybrid logic lives somewhere in the middle. We shall
now prove a completeness result which covers many useful hybrid theories of
frame structure. The results discussed below are all standard in (propositional
and first-order) hybrid logic; the point of our discussion is to show how straight-
forwardly they lift to HTT. Indeed, stronger results are known in the hybrid lit-
erature, and many of them lift with similar ease to HTT. But we have selected
the result below because it is simple and elegant and showcases the locality of
the # binder, a recurrent theme in this paper.

Let’s start with an example. Suppose we are working with HTT but wish to
work with partially ordered frames. Then we simply form the following theory:

#s(⌃s) #s⇤(⌃s! s) #s⇤⇤ # t@
s

⌃t.
These sentences pin down reflexivity, antisymmetry, and transitivity respec-
tively. Note that the transitivity sentence makes use of the store and retrieve
interplay between # and @. This sentence says: starting from a point which we
have temporally labelled s, if we label t any point that is modally accessible
from s in two steps (the ⇤⇤), then at s we can modally access t in one step (the
⌃t). It is not di�cult to see that this formula will be true at all the worlds in
an HTT model if and only if the frame of the model is transitive. That is, this
hybrid sentence defines transitivity.

Another example. If we want to work with models whose frames are strict
partial orders (that is, irreflexive, asymmetric and transitive) we could work
with the following sentential theory:

#s(⌃¬s) #s(⇤¬⌃s) #s⇤⇤ # t@
s

⌃t.
Again these expressions define the conditions we are interested in. And this

leads to the first question that will occupy us: if we add such sentences as extra
axioms, do we automatically have completeness? Is the completeness result we
have proved for HTT like the completeness theorem for first-order logic, in that
it supports thinking in terms of theories rather than logics? It is, but to prove
this we must first be precise about the axioms we intend to use.

As axioms we allow pure nominal-free sentences. The “pure” means
that they contain no constants; “nominal free” and “sentences” are self explana-
tory. To put it another way, we generate pure nominal-free expressions as
follows. As basic expressions, we only have state variables, and complex expres-
sions can only have the following form:

¬' | ' ^ | ⇤' | @
s

' |#s'.

This is a small fragment of HTT, containing only expressions of type t. But it
is also a well-studied fragment of propositional hybrid logic. Don’t be fooled
by its apparent simplicity: this fragment is undecidable (see [2]) and capable of
defining many important frame classes. The axioms we will work with are the
sentences of this fragment. The above examples are all sentences of this kind
(we define the additional booleans and ⌃ in the usual way).

23

Most of the information in a model M = hhhD
a

i
a2TYPES,W,Ri,Fi and an

assignment g is irrelevant for pure nominal-free expressions. Indeed, all that
is relevant is the frame hW,Ri and the assignment that g makes to the state
variables. Thus for expressions ' in this fragment, we are simply looking at
interpretations at some world w 2W with respect to an assignment g:

[[']]hW,Ri,w,g.

This leads us to frame validity. We say that a pure nominal-free expression
is valid on a frame hW,Ri if and only if for all w 2 W , and all assignments g,
we have that [[']]hW,Ri,w,g = T . We write [[']]hW,Ri when ' is valid on hW,Ri.

And now for completeness. We want to use pure nominal-free sentences as
additional axioms in HTT. And we want to prove a completeness result that
tells us: if we add as extra axioms (for example) the hybrid theory of strict
partial orders given above, then for any consistent set of type t expressions we
can always build a verifying model over a strictly partially ordered frame. How
can we do so? As we have seen, Theorem 29 will indeed give us a model for
consistent sets of expressions, and if we have added extra axioms the hybrid
Henkin structure will make them all true too. But that is not enough: we
need to show that the axioms are valid on the underlying frame. But for pure
nominal-free sentences this is easy.

Lemma 31 Let ' be a pure nominal-free sentence, let hW,Ri be a frame, and
let g be a fixed but arbitrary assignment on hW,Ri. Suppose that for all w 2W
we have [[']]hW,Ri,w,g = T . Then [[']]hW,Ri, that is, ' is valid on hW,Ri.

Proof Suppose that for some assignment g, and all worlds w 2W we have that
[[']]hW,Ri,w,g = T . But ' is a sentence so the choice of assignment is irrelevant.
That is, at any w 2 W , for any assignment g0 we have that [[']]hW,Ri,w,g

0
= T .

So ' is valid on hW,Ri as claimed. a

Definition 32 Let ' be a pure nominal-free sentence. Then Fr(') is the class
of frames hW,Ri such that [[']]hW,Ri. That is, Fr(') is the class of all frames
that validate '. A sentential theory Th is a set of pure nominal-free sentences;
note that all such sets are countable. Then Fr(Th) is the class of frames hW,Ri
such that for all ' 2 Th, hW,Ri belongs to Fr('). That is, Fr(Th) is the class
of frames that validate all sentences in the theory Th.

By a pure nominal-free sentential extension of our axiomatization(s),
we mean the addition as extra axioms of all the pure nominal-free sentences in
such a theory Th. A set of type t expressions � is Th-consistent if and only it
is consistent in this enriched system.

Theorem 33 (Extended Henkin theorem) Let Th be a set of pure nominal-
free sentences. Every Th-consistent set � of meaningful expressions of type t has
a general interpretation hM, gi that satisfies it, such that the frame hW,Ri un-
derlying M belongs to Fr(Th).

24

Proof For the first claim, we proceed as in the proof of Theorem 29. Let �
be a Th-consistent set of meaningful expressions of type t. We use our Linden-
baum construction to obtain a maximal consistent extension � of � which is
⌃-saturated, 9-saturated, and named by some nominal k. By Theorem 27 and
Corollary 28 there is a general interpretation hM, gi such that, for all �

t

2 ME
t

the following holds:

[[�
t

]]M,[k]N ,g = �([@
k

�
t

]).

As we saw, this shows that all expressions in � (and hence �) are true in this
general interpretation at the world [k]N . Note that this includes all the sentences
in Th, for as � is Th-consistent, every sentence in Th will be added to � at some
stage of the Lindenbaum construction.

But for the second part of theorem, we need to show that all axioms in
Th are valid on the frame underlying M, not merely that they are true. We
do so as follows. Let ' 2 Th. As ' is an axiom, then for all nominals i, by
@-generalization we have that ` @

i

'. So by maximal consistency, all these
expressions belong to �. But every world in the hybrid Henkin structure is an
equivalence class of nominals. So (here we use the displayed equality again) at

every world [i]N we have that [[']]M,[i]N ,g = T . But ' is a pure nominal-free
sentence, so by Lemma 31 it is valid on hW,Ri. But ' was an arbitrary element
of Th, so all sentences in Th are valid on hW,Ri. Hence hW,Ri is in Fr(Th),
which is what we wanted to prove. a

What frame classes are covered by this result? Here’s a syntactic answer.
At the start of this section we gave the three axioms characteristic of partial
orders in a first-order language of frames. It was a simple first-order language:
a two-place relation R plus the equality symbol. Here we define the bounded
fragment of this first-order frame language. We we will use s, t and so on — that
is, the symbols we typically use for state variables — as first-order variables.
We generate its bounded fragment as follows:

Rst | s = t | ¬' | ' ^ | 9t(Rst ^ '),where s 6= t.

Now, all pure nominal-free expressions translate into the bounded fragment:

ST
s

(t) = (s = t) for all state variables t
ST

s

(¬') = ¬ST
s

(')
ST

s

(' ^) = ST
s

(') ^ ST
s

(')
ST

s

(⌃') = 9t(Rst ^ ST
t

('))
ST

s

(@
t

') = ST
t

(')
ST

s

(#t') = (ST
s

('))(s
t

)

In the translation clause for #we have used (s
t

) to indicate the substitution of
the (first-order) variable s for free occurrences of the (first-order) variable t.
This translation uses the relevant clauses of the standard translation, which
is widely used in orthodox modal logic and hybrid logic; see [4] or [3] for more
detailed accounts. Note that ST

s

translates every pure nominal-free sentence

25

into a bounded formula with s as its sole free variable. It follows by induction
that for all sentences ', frames hW,Ri and w 2W that:

[[']]hW,Ri,w i↵ hW,Ri |= ST
s

(')[s w].

Here hW,Ri |= ST
s

(')[s w] means first-order satisfaction, with the unique
free variable s in ST

s

(') being assigned w as value. Note that we have written
[[']]hW,Ri,w rather that [[']]hW,Ri,w,g because, as ' is a sentence, the choice of
variable assignment is irrelevant. Summing up: all pure nominal-free sentences
define frame conditions expressible in the bounded fragment with one free vari-
able s. Hence a pure nominal-free sentence ' is valid on a frame hW,Ri if and
only if hW,Ri |= 8s', where |= indicates first-order truth in hW,Ri. So every
frame condition expressible by a pure nominal-free sentence can be expressed
by a bounded sentence.

And the converse also holds, for we can translate the bounded fragment into
the pure nominal-free expression as follows:

HT(s = t) = @
s

t
HT(Rst) = @

s

⌃t
HT(¬') = ¬HT(')

HT(' ^) = HT(') ^ HT()
HT(9t(Rst ^ ')) = @

s

⌃# t(HT('))
Again we can show by induction that for every frame hW,Ri, if we translate

a bounded first-order formula ✓ with s as its only free variable, then

hW,Ri |= ✓[s w] i↵ [[#sHT (✓)]]hW,Ri,w.

Taken together, these two results show that if we restrict attention to bounded
formulas containing at most one free variable, pure nominal-free sentences are
a hybrid notation for capturing bounded frame conditions.

The bounded fragment is interesting because it is a local fragment of first-
logic: it only lets us quantify over accessible entities. Feferman was the first to
consider bounded fragments (see [10]); he did so in set theory, using 2 rather
than R as his accessibility predicate. The link between bounded fragments
and hybrid logic was first explored in [2]; more can be said, here we have only
noted the bare essentials. For a start, there are elegant semantic characteri-
zations: roughly speaking, pure nominal-free sentences allow us to talk about
frame classes that are both closed under and reflect point generated subframes.
Moreover, Theorem 33 can be extended to allow free state variables (or nom-
inals) in the axioms. But for further discussion we refer the reader to [9], the
authoritative source. Here we shall return to Henkin.

We remarked that Henkin’s work fits well with hybrid logic because of the
first-order perspective which underlies his best known work. In this section we
have been explicit about the first-order character of our hybrid technology. As
we have previously remarked, Theorem 33 is atypical in its generality, at least
when viewed from orthodox modal logic. But there is no puzzle here: it is the
first-order character of key hybrid tools that makes such results possible, and it
is the use of Henkin models which makes them easy to prove.

26

6 It’s Henkin, all the way down

In this paper we proved a general completeness theorem for a hybrid type theory
called HTT, probably the strongest hybrid logic that has yet been explored. The
result built upon earlier work on a system called BHTT, which only used the
basic hybrid tools of nominals and the @ operator. The # binder is the tool
that di↵erentiates HTT from the earlier system, and it is # that allows us to
capture the bounded fragment. The influence of Henkin’s work throughout this
paper should be obvious. For a start, we used Henkins’s methods of constants
to allow ⌃-prefixed expressions to be witnessed by nominals. Secondly, our
used of general interpretations and the construction of the type hierarchy in
the completeness proof is (pretty much) one hundred percent Henkin. Thirdly,
the first-order nature of pure nominal-free sentences allowed us to extend our
K-style completeness result(s) to cover a wide class of hybrid theories, and the
proof of the Theorem 33 was straightforward because we were working with a
hybrid Henkin structure: as each world is named in such structures, it was easy
to verify the validity of the additional axioms.

But to close this paper we want to claim that the most profound impact of
Henkin’s work on hybrid logic occurs neither at the level of type theory, nor
even at the level of first-order hybrid logic, but at the level of propositional
hybrid logic, and indeed, right down at the level of basic hybrid logic, where the
only hybrid tools at our disposal are @ and nominals. To put it another way: a
recurring theme in the development of hybrid completeness has been that richer
languages hitch a free ride on the underlying basic hybrid logic. This is certainly
the case for first-order hybrid logic, and the completeness results for HTT and
BHTT repeat this pattern.

Let’s look closer. Consider first the role of @. For a start, it drives much of
the model construction process. Because it lets us rigidify arbitrary type, it lets
us state rigidity restrictions on axioms, prove the Rigid Representatives Theo-
rem, and specify an appropriate world for every formula in a suitably saturated
maximal consistent set of sentences (these points are made in more detail in [1]
where BHTT was proved complete). Moreover, we have seen that two of our
axiomatizations, K1 and K2 pretty much reduce # to a spectator role as far as
axiomatics is concerned. The crucial DA schema is a local schema: it tells us
how to deal with #at a named world, but we rely on @ to distribute this schema
to all named worlds, and the logic of @ is captured in basic hybrid logic. The
K3 axiomatization eliminates the non-orthodox basic rules and shows how #can
play a more active role in the axiomatization. But here too we rely on @ to
insist that DA holds at all named worlds.

And this mention of non-orthodox rules brings us to the heart of our claim.
Such rules are not non-orthodox in any interesting sense. Our earlier remarks on
the link between the Name and Bounded Generalization rules and natural
deduction hinted at this, but to close this paper we turn to the K2 axiomatiza-
tion, which uses the basic hybrid logic rule Paste. The following remarks draw
on and elaborate the discussion on pages 445-447 of [4].

27

Here is the Paste rule:

` @
i

⌃j ^@
j

'! ✓

` @
i

⌃'! ✓
.

As we saw in the proof of our Lindenbaum lemma, this directly licenses the
use of witness nominals. And if we read this rule from bottom-to-top we see
that it boils down to the following tableau rule:

@
i

⌃'
@

i

⌃j, j new
@

j

'

That is: if in the course of a tableaux proof we encounter @
i

⌃' we are
free to decompose this into the near-atomic formula @

i

⌃j (where j is new)
and the simpler @

j

'. This directly embodies the idea of Henkin-style nominal
witnessing, and in one form or another is the basis for most tableau systems for
hybrid logic. Deductively, at least, what makes hybrid logic better behaved that
orthodox modal logic is the possibility of eliminating ⌃ in this way. Tableau rules
for the other connectives are easy to define, dealing with ⌃ is the tricky part.
This is the rule that opens to door to usable (non-axiomatic) proof procedures.

But why should we call this rule orthodox? The answer takes us back (yet
again) to first-logic and the world of Henkin. Consider the following table.
This uses the Standard Translation (recall Section 5) to show the content of
the tableau rule, viewed from the perspective of the first-order frame language
(enriched with a first-order constant i for every nominal i):

Hybrid Logic First-Order Frame Language

@
i

⌃' 9s(Ris ^ ST
s

('))

@
i

⌃j
@

j

'

Rij ^ ST
j

(')
Rij
ST

j

(')

The translation of the tableaux rule is a fragment of a first-order tableaux proof.
Moreover, it makes clear that (from a first-order perspective) all that is going
on is a skolemisation (that is, a witnessing) of the existential quantifier, followed
by a conjunction reduction. First-order orthodoxy reigns.

Ultimately, this is why Henkin’s work is so important to hybrid logic. Dia-
mond witnessing is the central idea that has driven the development of hybrid
deduction and completeness theory. But in hybrid logic, Henkin’s use of wit-
nesses is put to work in a simple, decidable propositional language, namely basic
hybrid logic. This gives stability and generality to completeness results for basic
hybrid logic, and enables them to support completeness in richer hybrid systems
(for example, hybrid logics containing the #binder) and combinations of hybrid
logic with first-order logic and type theory. Hybrid logic? It’s a suggestive
name. But it could without exaggeration be called: Henkin-style modal logic.

28

Acknowledgements

The authors are grateful to the Spanish Ministerio de Economı́a y Competi-
tividad for funding the project Logica Intensional Hibrida (Hybrid Intensional
Logic), FFI2013-47126-P, hosted by the Universidad de Salamanca.

References

[1] Carlos Areces, Patrick Blackburn, Antonia Huertas, and Maŕıa Manzano.
Completeness in hybrid type theory. Journal of Philosophical Logic, 43:209–
238, 2014.

[2] Carlos Areces, Patrick Blackburn, and Maarten Marx. Hybrid logics: Char-
acterization, interpolation and complexity. Journal of Symbolic Logic, pages
977–1010, 2001.

[3] Carlos Areces and Balder ten Cate. Hybrid logic. In Handbook of Modal
Logic, pages 821–868. Elsevier, 2007.

[4] Patrick Blackburn, Maarten De Rijke, and Yde Venema. Modal Logic,
volume 53. Cambridge University Press, 2002.

[5] Patrick Blackburn and Jerry Seligman. Hybrid languages. Journal of Logic,
Language and Information, 4(3):251–272, 1995.

[6] Patrick Blackburn and Balder ten Cate. Pure extensions, proof rules, and
hybrid axiomatics. Studia Logica, 84:277–322, 2006.

[7] Patrick Blackburn and Miroslava Tzakova. Hybrid languages and temporal
logic. Logic Journal of the IGPL, 7(1):27–54, 1999.

[8] Torben Braüner. Hybrid logic and its proof-theory, volume 37. Springer,
2010.

[9] Balder ten Cate. Model theory for extended modal languages. PhD thesis,
University of Amsterdam, 2005. ILLC Dissertation Series DS-2005-01.

[10] Solomon Feferman. Persistent and invariant formulas for outer extensions.
Compositio Mathematica, 20:29–52, 1968.

[11] George Gargov and Valentin Goranko. Modal logic with names. Journal
of Philosophical Logic, 22:607–636, 1993.

[12] Leon Henkin. The completeness of the first-order functional calculus. The
Journal of Symbolic Logic, 14(3):159–166, 1949.

[13] Leon Henkin. Completeness in the theory of types. The Journal of Symbolic
Logic, 15(2):81–91, 1950.

[14] Leon Henkin. The discovery of my completeness proofs. The Bulletin of
Symbolic Logic, 2(2):127–158, 1996.

[15] Maŕıa Manzano. Extensions of First Order Logic. Cambridge University
Press, 1996.

[16] Johan Van Benthem and Kees Doets. Higher-order logic. In Handbook of
philosophical logic, pages 275–329. Springer, 1983.

29

