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a b s t r a c t 

A novel mechanism-based model - the Cancitis model - describing the interaction of blood cancer and 

the inflammatory system is proposed, analyzed and validated. The immune response is divided into two 

components, one where the elimination rate of malignant stem cells is independent of the level of the 

blood cancer and one where the elimination rate depends on the level of the blood cancer. A dimen- 

sional analysis shows that the full 6-dimensional system of nonlinear ordinary differential equations may 

be reduced to a 2-dimensional system - the reduced Cancitis model - using Fenichel theory. The original 

18 parameters appear in the reduced model in 8 groups of parameters. The reduced model is analyzed. 

Especially the steady states and their dependence on the exogenous inflammatory stimuli are analyzed. 

A semi-analytic investigation reveals the stability properties of the steady states. Finally, positivity of the 

system and the existence of an attracting trapping region in the positive octahedron guaranteeing global 

existence and uniqueness of solutions are proved. The possible topologies of the dynamical system are 

completely determined as having a Janus structure, where two qualitatively different topologies appear 

for different sets of parameters. To classify this Janus structure we propose a novel concept in blood can- 

cer - a reproduction ratio R . It determines the topological structure depending on whether it is larger 

or smaller than a threshold value. Furthermore, it follows that inflammation, affected by the exogenous 

inflammatory stimulation, may determine the onset and development of blood cancers. The body may 

manage initial blood cancer as long as the self-renewal rate is not too high, but fails to manage it if an 

inflammation appears. Thus, inflammation may trigger and drive blood cancers. Finally, the mathemat- 

ical analysis suggests novel treatment strategies and it is used to discuss the in silico effect of existing 

treatment, e.g. interferon- α or T-cell therapy, and the impact of malignant cells becoming resistant. 

© 2019 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Formation of blood cells, hematopoiesis, takes place in the bone

marrow by cell division of hematopoietic stem cells (HSCs). Mu-

tations of HSCs may lead to cancerous stem cells causing blood

cancers, which ultimatively suppress production of healthy blood

cells ( Chen et al., 2011; Dingli et al., 2007 ). The myeloproliferative

neoplasms (MPNs) are disorders emanating from the bone mar-

row and predominantly consist of chronic myelogeneous leukemia

(CML), essential thrombocythemia (ET), polycythemia vera (PV),

and primary myelofibrosis (PMF) ( Campbell and Green, 2006 ). De-

spite similarities, common theoretical considerations can be ap-

plied, since the diseases share clonal hematopoiesis as a hallmark
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nd are strongly influenced by - and coupled with - the inflamma-

ory response of the immune system ( Desterke et al., 2015 ). 

In this article we develop a model of the system underlying the

lood cancer diseases coupled to the inflammatory response sys-

em. The model presented in Andersen et al. (2017) is used as a

tarting point and only what is truly important for the purpose of

he model is included. 

Most cancers are developed somewhat similarly in the early

vascular phase before tumor size plays a role ( Wilkie, 2013;

odarz and Komarova, 2014 ). Thus, the present model may be

dapted for early cancer more generally despite it being devel-

ped specifically for blood cancers. Some blood cancers are cur-

ble, while others, such as MPNs, are more challenging ( Abdel-

ahab et al., 2010; Spivak, 2017 ). Thus, special attention will be

n MPNs although the risk of getting MPNs is relatively low. 

In Andersen et al. (2017) , a novel and mechanism-based model

f blood cancers coupled to the inflammatory response of the

https://doi.org/10.1016/j.jtbi.2019.01.001
http://www.ScienceDirect.com
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1 Named after the ancient Greek God Janus having two faces meaning that two 

different topologies exists. 
mmune system was proposed. The model is to our knowledge the

rst of its kind and furthermore generic in the sense that it de-

cribes blood cancer in general. Shortly after, Komarova et. al. pub-

ished a simplified approach to discuss the role of inflammation in

PNs ( Zhang et al., 2017 ). They included stem cell dynamics and

one marrow niche feedback, but describe the inflammation as a

xed parameter independent of the actual cancer development, i.e.

ndependent of the immune response to the cancer cells. This ap-

roach is somewhat similar to the 2-dimensional approach taken

n Flå et al. (2015) , where a simple model of stem cell dynamics

ncluding bone marrow niche feedback, but without including in-

ammation, was investigated. 

In Andersen et al. (2017) , T-cells were not explicitly considered,

ut in the present study we include the effect of these cells. Accu-

ulated evidence has indicated that the immune system may rec-

gnize and eliminate malignant cells ( Parish, 2003; Smyth et al.,

001 ) acting as a control mechanism for maintaining homeostasis.

his effect is called immune surveillance, a concept attributed to

homas and MacFarlane in the late 1950s although a similar idea

as promoted by Ehrlich already in 1909. Today it is refined into

he concept of immunoediting ( Ribatti, 2017 ). 

An early mathematical model describing interaction of tumor

ells and effector cells (killer cells) for BCL1 lymphoma was pre-

ented by Kuznetsov and Knott (2001) continuing the work from

uznetsov and Makalin (1994) and was based on a logistic growth

quation to describe the intrinsic dynamics. 

Several models of the role of inflammation in general cancer

rogression have since been studied. Most of these modeling at-

empts consider solid tumors and couples the T-cell and natural

iller (NK) cell dynamics to a logistic growth description of tumors.

he models in ( Arciero et al., 2004; Baker et al., 2013; Bangsgaard

t al., 2017; Bangsgaard and Ottesen, 2017; Borges et al., 2014;

osentino and Bates, 2012; De Pillis et al., 2005; Dunster et al.,

014; Hanson et al., 0 0 0 0; Herald, 2010; Katak, 2014; Kirschner

nd Panette, 1998; Moore and Li, 2004; Nanda et al., 2007; Nielsen,

 0 0 0; Nielsen et al., 2013; Pillis et al., 2006; Pillis and Radunskaya,

003; Saleem and Agrawal, 2012; Sarkar and Banerjee, 2005 ) are

implified models describing how solid cancers may stimulate the

-cell dynamics, while the cancer dynamics are decoupled from

he rest of the system, simply described as logistic growth or sim-

lar. The works by Kuznetsov and Knott (2001) , Zhang et al. (2017) ,

oore and Li (2004) and Nanda et al. (2007) and the excel-

ent books by Wodarz and Komarova (2014) and Komarova and

odarz (2014) point toward the direction taken in the present pa-

er. 

Clapp et al. (2015) consider a 5D model including active and

uiescent stem cells, progenitor cells, mature cells and one im-

une compartment to describe chronic myelogenous leukemia.

he active stem cell pool is based on the logistic growth equa-

ion omitting interactions with the normal hematopoietic cells.

ecently Besse et al. (2018) investigate a simplified version of

his model. Simultaneously Talkington A and Durrett (2018) com-

ared four models of acute lymphocytic leukemia, namely those

y Kuznetsov and Makalin (1994) , Kirschner and Panette (1998) ,

ong et al. (2014) , and Moore and Li (2004) . The purpose was

o study modified T-cells engineered to recognize CD19 surface

arker clinically, resulting in partial success in virtual treatment

f the disease. All four models predict a positive effect of the

reatment. Historically, a few important models addressing ty-

osine kinase inhibitors (TKI), e.g. imatinib, in treating chronic

yelogenous leukemia have appeared. Michor et al. (2005) ex-

lained incomplete eradication of CML under TKI treatment by

esistance. Komarova and Wodarz (2007) incorporated quiescent

tem cells and the development of resistance to treatment. Us-

ng an agent-based model, Roeder et al. (2006) describe com-

etition between leukemic stem cells and normal hematopoi-
tic stem cells and included the effect of TKIs on the competi-

ion. Long-term effect of the immune response was modeled by

im et al. (2008) by adding an unspecific immune component to

he model by Michor et al. (2005) . 

Recently, Brady et al. suggested an inflammatory model cou-

led to the autonomic regulation of the cardiovascular system for

ealthy subjects exposed to intravenous injection of lipopolysac-

haride (LPS) to stimulate an inflammatory response. Simultane-

usly, Bangsgaard and Ottesen (2017) suggested a detailed inflam-

atory response model coupled to the Hypothalamic–Pituitary–

drenal axis allowing an exogeneous stimuli. This so-called ITIS

odel contains eight time-dependent variables: Endotoxin, phago-

ytic cells, pro- and anti-inflammatory cytokines (a broad category

f signaling molecules consisting of small proteins): TNF- α, IL-10,

GF- β , CRH, ACTH and cortisol. The ITIS model is capable of re-

roducing available data and has served as an inspiration in the

resent work, but in a suitable simplified form. 

The outline of the paper is as follows. In Section 2 the model

s presented and in Section 2.1 it is expanded by explicitly in-

luding a description of the interaction with immune response ef-

ector cells such as T-cells. The model is put on a dimensionless

orm and based on a separation of time scales, a two-dimensional

odel - the reduced Cancitis model - is suggested in Section 3 .

he reduced Cancitis model is analyzed in Section 4 . Admissible

teady states are derived and in Section 4.1 their stability proper-

ies are examined depending on the external inflammatory stim-

li. A complete analysis of the topology of the dynamical system

s presented, showing a Janus topology 1 An attracting trapping re-

ion is constructed in Section 4.2 establishing global existence and

niqueness of solutions. A treatment plan by T-cell gene therapy

ppear in Section 4.3 along with a description of how the phase

lane varies with increasing external inflammatory stimuli. Special

ocus is on the role of the level of external inflammatory stimuli

nd its effect on existence and stability of healthy and unhealthy

teady states of the model. The various findings are discussed and

onclusions made in Section 5 . Finally, some cumbersome deriva-

ions related to the steady states are presented in Appendix A and

ppendix B . 

. The model 

As in the previous model presented in Andersen et al. (2017) ,

ocus will be on ensembles of each cell type and not the individual

ells. Hence, the governing laws will be for the pools of cells, com-

only denoted compartments. The compartments encompass the

ealthy hematopoietic stem cells in the bone marrow, the healthy

ematopoietic mature cells in the blood, the malignant stem cells

n the bone marrow, the malignant mature cells in blood, the

ool of dead cells and the resulting debris not yet cleared, and a

ariable describing the immune system activity level, which cor-

elates with the associated cytokines related to the disease. In

hat follows we will denote healthy hematopoietic cells shortly

s hematopoietic cells in contrast to e.g. malignant cells. As we are

iming for an integrated mechanism-based model for blood can-

ers, competition between cell types is crucial. The function of the

mmune system to handle dead cells constitutes an effective f eed-

ack mechanism regulating the stem cell reproduction whereas the

pecific T-cell response fights the cancer cells. The aggregated im-

une response is known to correlate with the disease state of the

lood cancer. Mathematically the dynamics is described by non-

inear ordinary differential equations respecting conservation laws

s illustrated in Fig. 1 . 
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Fig. 1. The conceptual model corresponding to Eq. (1). Light gray boxes (symbolized x 0 , x 1 , y 0 , and y 1 for the hematopoietic stem cells (HSC), the hematopoietic mature 

cells (HMC), the leukemic stem cells (LSC), and the leukemic mature cells (LMC), respectively) illustrate the compartments of the basic model and the black arrows the rates 

of the flows between these compartments. Stem cells differentiating into progenitor cells reduce the amount of these with rates a x and a y and enter the corresponding 

mature cell-pools as these rates are multiplied by progenitor application factors ( A x and A y , respectively, and symbolized by �-symbols). All cells may undergo apoptosis 

and their death rates are indicated by black arrows labeled with a d index and the corresponding variable. A normal hematopoietic stem cell may mutate into a malignant 

stem cell with an effective probability r m indicated by a black arrow. The light blue compartment (symbolized a ) contains all dead cells and the light orange compartment 

(symbolized s ) the inflammatory level, i.e. the immune response. Blue arrows from these represent related rates of flow: e a is the second order elimination rate of debris, 

e s is the elimination rate of the inflammatory activity, and r s is the rate by which dead cells stimulate the inflammatory response. Red stipulated arrows (marked by ( s )) 

going from the inflammatory compartment represent effects of the cytokines (or neutrophils when eliminating dead cells) modulating the rates of the basic model. The 

green stipulated lines represent the bone marrow niche inhibition (depending on x 0 and y 0 , see text) modulating the self-renewal rates, r x and r y . (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Using symbols as in Fig. 1 and letting dot denote the time

derivative, the mathematical equations are, 

˙ x 0 = (r x φx (x 0 , y 0 ) s − d x 0 − a x ) x 0 − r m 

sx 0 (1a)

˙ x 1 = a x A x x 0 − d x 1 x 1 (1b)

˙ y 0 = (r y φy (x 0 , y 0 ) s − d y 0 − a y ) y 0 + r m 

sx 0 (1c)

˙ y 1 = a y A y y 0 − d y 1 y 1 (1d)

˙ a = d x 0 x 0 + d y 0 y 0 + d x 1 x 1 + d y 1 y 1 − e a as (1e)

˙ s = r s a − e s s + I (1f)

The time dependent variables x 0 , x 1 , y 0 , y 1 , a , and s denote

the amount of (healthy) hematopoietic stem cells (HSC), (healthy)

hematopoietic mature cells (HMC), malignant stem cells (LSC), ma-

lignant mature cells (LMC), dead cells, and the cytokine level,

an abstract quantity describing the activity level of the immune

system, respectively. Whenever cells undergo apoptosis, the de-

bris has to be engulfed by phagocytic cells, e.g. neutrophils and

macrophages, which are regulated by the release of a hierarchic

cascade of pro- and anti-inflammatory cytokines ( Dunster et al.,

2014; Herald, 2010; Kirschner and Panette, 1998 ). Following the

parsimonious principle, we let the dead cells ( a ) up-regulate the

amount of phagocytic cells ( s ) with rate constant r s , while they

are eliminated with a rate e s . In addition, endotoxins, smoking

and other environmental factors may add to the inflammatory re-

sponse; thus we add a term (characterized by the lightning sym-

bol in Fig. 1 ). Since MPNs develop on a time-scale of years and
nflammatory immune processes are on a time-scale of hours-days

 Bangsgaard et al., 2017; Cavaillon, 1994; Chow et al., 2005; Clodi

t al., 2008 ), we may assume a QSSA, implying that the ratio of

he amount of phagocytic cells and the cytokines are fixed. Thus,

he cytokine level is proportional to the phagocytic level and the

nflammatory compartment ( s ) represents both. 

The dynamics of the hematopoietic stem cells ( x 0 ) are governed

y the self-renewal rate r x , the death rate d x 0 , and the division into

rogenitor cells with rate a x . The inhibiting niche feedback in the

one marrow, represented by the function φx , controls cell division

n a healthy individual and allows for competition between healthy

nd cancerous stem cells when both are present (see below). Fur-

hermore, inflammation stimulates self-renewal and is assumed to

e proportional with the cytokine level. This reflects the fact that

n increase in hematopoietic cell death instigates the birth of extra

ells. Finally, the stem cells may mutate with a mutation rate r m 

,

hich is believed to increase with inflammation ( Andersen et al.,

017; Brianna M. Craver et al., 2018; Desterke et al., 2015; Hassel-

alch, 2012; 2014; Hasselbalch and Bjoern, 2015; Hermouet et al.,

015; Koschmieder et al., 2016; Voit, 2013; Wilkie, 2013; Wodarz

nd Komarova, 2014; Zhang et al., 2017 ). 

The dynamics of the malignant stem cells ( y 0 ) are governed

imilarly and we use the same symbols with an y -index instead of

n x -index to denote the corresponding rates. The only difference

s that mutation of hematopoietic stem cells add to the number of

alignant cells and is proportional to the number of hematopoi-

tic stem cells. In addition, we will later allow the death rate d y 0 
o be y 0 -dependent. 

If no mutations occur, stem cells divide either into two stem

ells of the same type as the mother cell, into two progenitor cells,

r divide into one of each. Progenitor cells differentiate further into
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ew and gradually more and more mature progenitor cells in a

umber of generations ( k ) to ultimately divide into fully matured

ells (i.e. cells which do not divide further). The progenitor cells

re not explicitly considered in the model. However, a stem cell di-

iding into two progenitor cells, so-called symmetric division, will

t the end give rise to A = 2 k mature cells, which we denote as the

ultiplication factor. Hence, the change in hematopoietic mature

ells per time becomes a x A x times the amount of hematopoietic

tem cells, where we denote A x the multiplication factor for the

ematopoietic cells, which in general is larger than 2 k . Simultane-

usly, hematopoietic mature cells undergo apoptosis with a con-

tant rate d x 1 . 

Again, the change in malignant mature cells per time is similar

o that of the hematopoietic mature cells, but with index y instead

f x . 

The change in the amount of dead cells per time is given by the

eath rates times the number of cells in the aforementioned com-

artments minus the clearing by the immune system. This clear-

ng is taken to be a second order equation in the number of dead

ells and the of amount of cytokines, representing the activity of

he immune system, eliminating the dead cells with an elimina-

ion rate e a . 

The stimulation of the immune system is proportional to the

mount of dead cells with rate r s whereas the elimination is taken

o be proportional to the amount of cytokines with rate e s . We

mphasize that the immune system is stimulated by an increased

umber of cancer cells by this feedback mechanism. In addition we

nclude the possibility of an exogene stimulation of the immune

ystem I ( t ), where we indicate that this stimulation may change

ver time t . This exogene stimulation may be taken as anything

rovoking the immune system, e.g. infections, smoking or pollu-

ion. In many mathematical considerations, we will take the in-

ammatory load I to be piecewise constant to allow for analytical

esults. 

Finally, the bone marrow niche feedback functions are in gen-

ral decreasing functions of the individual stem cell types. We

hoose 

x = φx (x 0 , y 0 ) = 

1 

1 + c xx x 0 + c xy y 0 
(2a) 

y = φy (x 0 , y 0 ) = 

1 

1 + c yx x 0 + c yy y 0 
, (2b) 

here c ij describes the inhibitory strength of the signaling bone

arrow niche feedback from cell type j onto cell type i . It is gener-

lly assumed that c yy ≤ c yx < c xy ≤ c xx , since leukemic cells are less

ensitive to inhibitive niche feedback than healthy hematopoietic

ells. Similar to Flå et al. (2015) , our investigations show no qual-

tative difference in observed model output when using various

unctional forms of the negative feedback. 

Motivated by the biology where numbers of cells and concen-

rations are required to be non-negative numbers, we will use the

erminology that a steady state is admissible if and only if all com-

onents are non-negative i.e. if and only if the steady state is in

he non-negative octahedron. We denote a steady state as appro-

riate if and only if it does not require a degenerated set of pa-

ameters, i.e. a set of parameters where an equality constrain is

mposed on the parameters whereas inequalities constrains are al-

owed. The reason is that such a set of parameters are not robust

o perturbations and thus biologically unlikely to exist. However,

on-appropriate steady states may still be of interest since they

ivide possible situations of interest like e.g. bifurcation points do. 

In most considerations, we take the mutation rate to be zero to

ase the analytical analysis. Hence, we start our system in a steady

tate related to none malignant cells and introduce a single ma-

ignant stem cell initially. Thus the initial condition will be that of
 (healthy) hematopoietic steady state except one malignant stem

ell is added to that state. 

The model stated in Eqs. (1) and (2) is presented in

 Andersen et al., 2017 ) and will be analyzed in detail else-

here. For later use it is sufficient to know that two admissi-

le hematopoietic steady states (defined as one having y 0 = 0 , but

 0 � = 0) may exist depending on the level of exogenous inflamma-

ory stimuli I , 

 H± = (x 0 H±, x 1 H±, y 0 H±, y 1 H±, a H±, s H±) , (3)

here x 0 H± = 

s H±−αx 

αx c xx 
, x 1 H± = 

a x A x 
d x 1 

x 0 H±, y 0 H± = 0 , y 1 H± = 0 , a H± =
e s s H±−I 

r s 
, and s H± = 

1 
2 

(
ζH 1 

±
√ 

ζ 2 
H 1 

− 4 ζH 2 

)
, with ζH 1 

= 

I 
e s 

+ 

ζH 2 
αx 

,

H 2 
= 

βx r s 
e a e s c xx 

, αx = 

a x + d x 0 
r x 

, and βx = a x A x + d x 0 . These steady state

oordinates will be used for turning the model into proper dimen-

ionless form. 

.1. Model extension: Including the T-cell response 

Whenever cells die, the debris have to be engulfed by phago-

ytic cells, e.g. neutrophils and macrophages and a hierarchic cas-

ade of pro- and anti-inflammatory cytokines are released. Apop-

osis is mediated by the immune system and is included in the

ancitis model. The immune response may be split into two parts

amely the innate immune response and the adaptive immune re-

ponse ( McComb et al., 2013 ). The innate immune response pro-

ides an immediately but non-specific response. The innate re-

ponse consists of granulocytes, dendrites, macrophages and nat-

ral killer cells. 

The adaptive immune response is activated by the innate im-

une response. Thus a delay is introduced from exposure to max-

mal response and this delay may be up to 7 days ( McComb et al.,

013 ). The adaptive immune response includes B-cells and T-cells

lso denoted lymphocytes. We include naive T-cells and effector

-cells, since these have an important role in inhibiting the devel-

pment of cancer ( Murphy and Travers, 2012 ). Effector T-cells are

esponsible for a direct defense, where they induce death to the

alignant cells. Naive T-cells are activated by antigen presenting

ells (APC). A QSSA suggests itself, since we are interested in the

ime-scale of years and the time-scale of the adaptive immune re-

ponse is of order of days. 

The presence of foreign antigens in the body may be sensed

y the naive T-cells ( T n ). This will start a cascade of up-regulating

ells and molecules in the immune system, among these effector

-cells ( T e ), e.g CD8 + T-cells, and NK-cells. These specifically attack

nd destroy the identified foreign cells (necrosis). The process from

dentification to attack happens on a time-scale of a week, how-

ver, the effector cells have memories to recognize the identified

ells afterwards. This process is known as immune surveillance. 

Inspired by Moore and Li (2004) and Nanda et al. (2007) , we let

he naive T-cells identify the cancer cells (we let temporarily y de-

ote the number of such, which in our case will be y 0 or y 1 ). These

-cells are transformed into effector cells proportional to the prod-

ct of the number of naive T-cells and cancer cells with rate, k n .

aive T-cells may produce αn effector cells per transforming naive

-cell. A linear elimination of naive T-cells appear simultaneously

ith rate ηk n . The naive T-cells are produced at a constant rate p n ,

hereas effector cells are eliminated proportional to T e with rate

e . Thus, 

˙ 
 n = p n − k n T n (y + η) (4)

nd 

˙ 
 e = αn k n T n y − γe T e . (5)

he pool of effector cells ( T e ) eliminate the cancer cells as a second

rder reaction with rate γ y . Letting ’growth’ denote the aforemen-

ioned dynamics of cancer cells without explicitly including the
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T-cells, i.e. the right hand side of Eq. (1c) or (1d) , the governing

equation of malignant cells become 

˙ y = growth − γy T e y. (6)

The fast T-cell response compared to the slow timescale of MPNs

development justify a QSSA, thus 

T e ≈ αn p n 

γe 

y 

y + η
(7)

and 

˙ y = growth − γy αn p n 

γe 

y 2 

η + y 
≈ growth − ˜ d y y 

2 , (8)

with 

˜ d y = 

γy αn p n 
γe η

and where the approximation holds if y �η.

Hence, using the approximation in Eq. (8) the death rate d y in the

’growth’ part may be substituted by 

d y → 

ˆ d y + 

˜ d y 
η y 

η + y 
≈ ˆ d y + 

˜ d y · y (9)

for y �η where ˆ d y = d y . Thus, the constant mortality rate is

changed by adding a death rate which is linear in y . In fact, this

may be considered as a general approximation of a possible y -

dependent death rate by its first order Taylor expansion. We em-

phasize that this expression is desirable, since it is still simple, but

includes an important effect for non-vanishing values of y . A rea-

sonable choice is to take ˆ d y = d y 0 and 

˜ d y ∼ 10 −6 day −1 as default

values. These estimates are based on requiring the two elimina-

tion terms to be of the same order and equal to that for normal

hematopoietic stem cells, which is approximately 0.002 cell per

day ( Andersen et al., 2017; Dingli and Michor, 2006 ). 

Hence, the leukemic model in Eq. (1) still holds with d y 0 sub-

stituted by ˆ d y + 

˜ d y ·y 0 where we assume that the most impor-

0 0 

Fig. 2. Left: Typical development in stem cells (top left) and mature cells (bottom left). 

the malignant cells (stipulated red curves) are few in number. The total number of cells is

mechanisms, it approximately starts a slowly increasing exponential growth (at t = 0 ). At a

cells begin to show a visible decline. Finally, the competition between the cell types res

decline in the amount of normal hematopoietic cells and ultimately their extinction. The d

burden (7%, 33% and 67% corresponding to ET, PV and PMF, respectively, shown as blue 

cells. The full green curve illustrates the continuous model prediction. Default parameter 

olour in this figure legend, the reader is referred to the web version of this article.) 
ant effect is on the stem cell compartment, which drives the can-

er development. The previous analytical results obtained are cor-

upted by the extension allowing the death rate to be y 0 depen-

ent. We therefore seek a suitable model reduction (obtained in

q. (10)) allowing a more thorough analysis. 

.2. Model validation 

In the stable hematopoietic steady state, the numbers of stem

ells and mature cells are taken to be approximately 10 4 and

 · 10 10 , respectively, which are compromises between reported val-

es ( Dingli and Michor, 2006; Gentry and Jackson, 2013; Haeno

t al., 20 09a; 20 09b; Stiehl et al., 2015; 2016 ). In the final stage

f full blown cancer, the number of hematopoietic cells is vanish-

ng and the cancer cells will approach a stable steady state with a

igher amount of cells than in the healthy steady state. The abso-

ute values are more uncertain but we have aimed for 10 5 cancer

tem cells and 10 13 mature cancer cells as reported in Dingli and

ichor (2006) . In clinical practice JAK2V617 allele burden and the

otal cell count in the blood are usually measured. Whereas the

otal cell count is x 1 + y 1 , the JAK2V617 allele burden is taken as
y 1 

x 1 + y 1 . 
The JAK2V617 allele burden has been reported to have median

alues of 7% (95% CI 2–15% and range 1–39%), 33% (95% CI 20–40%

nd range 1–92%), and 67% (95% CI 52–95% and range 37–99%) in

T, PV and PMF patients, respectively ( Larsen et al., 2007 ). 

The model is calibrated to resample this dynamic in the

AK2V617F allele burden, which gives predictions, t ET , t PV , and t PMF 

or when ET, PV and PMF appear, respectively. For illustrations of

ell counts and allele burden see Fig. 2 Cytokines as IL-1 β , IL-1RA,

L-2R, IL-6, IL-8, IL-10, and IL-12 are considered to be specific in-

icators of the inflammatory level during MPN, whereas C-reactive
Healthy hematopoietic cells (full green curves) dominate in the early phase where 

 also shown (dotted black curves). When a stem cell mutates and escapes repairing 

 certain stage, the malignant cells become dominant and the healthy hematopoietic 

ults in a takeover by the malignant cells, leading to an approximately exponential 

evelopment is closely followed by the mature cells. Right: The corresponding allele 

columns) defined as the ratio of MPN mature cells to the total number of mature 

values from Tables 1 and 2 have been used. (For interpretation of the references to 
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Fig. 3. Model validation. Cytokines from upper left to lower right; IL-1 β , IL-1RA, IL-2R, IL-6, IL-8, IL-10, IL-12 as well as the plasma concentration of C-reactive protein (CRP) 

are approximatively linearly correlated with the inflammatory level s , whereas lactic dehydrogenase (LDH) is linearly correlated with and compared to the total amount of 

dying cells per time D = d x 0 x 0 + d x 1 x 1 + d y 0 y 0 + d y 1 y 1 . On each subplot data are shown (red dots encircled by black) at predicted times for ET, PV and PMF (left to right), 

estimated from the allele burden in Fig. 2 . On each subplot, model predictions are shown (full green curve). Default parameter values from Tables 1 and 2 have been used. 

(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 1 

Default parameter values ( r m = 0 ) from Andersen et al. (2017) . 

Parameter Value Unit Parameter Value Unit 

r x 8 . 7 · 10 −4 day −1 r y 1 . 3 · 10 −3 day −1 

a x 1 . 1 · 10 −5 day −1 a y 1 . 1 · 10 −5 day −1 

A x 4.7 · 10 13 – A y 4.7 · 10 13 –

d x 0 2 · 10 −3 day −1 d y 0 2 · 10 −3 day −1 

d x 1 129 day −1 d y 1 129 day −1 

c xx 5 . 6 · 10 −5 – c yx 5 . 2 · 10 −5 –

c xy 5 . 4 · 10 −5 – c yy 5 . 0 · 10 −5 –

e s 2 day −1 r s 3 · 10 −4 day −1 

e a 2 · 10 9 day −1 I 7 day −1 

Table 2 

Default dimensionless parameter values ( r m = 0 ). 

Parameter Value Parameter Value 

R 1.49 J (baseline) 0.76 

D 0 1.00 D 1 0.10 

C x 0.93 C y 1.08 

B x 0.06 B y 0.07 
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rotein (CRP) is a general inflammation biomarker. All these have

een shown to correlate with MPN states ET, PV and PMF. ( Tefferi

t al., 2011; Vaidya et al., 2012 ) Thus we assume linear correlations

etween each of these and the inflammatory level s . In addition,

DH values, which express the total rate of dying cells per time

 D = d x 0 x 0 + d x 1 x 1 + d y 0 y 0 + d y 1 y 1 ) were demonstrated to be corre-

ated to the MPN states ET, PV and PMF ( Larsen et al., 2007 ). 

The model outputs are compared to the data in Fig. 3 . using

he estimated instances t ET , t PV , and t PMF for ET, PV and PMF, re-

pectively. The model predictions are in a remarkable accordance

ith the data. 
. The reduced Cancitis model 

The extended model is brought into dimensionless form by

caling the variables of the model. A time scale separation argu-

ent is used to obtain a reduced model, corresponding to setting

he time derivative of x 1 , y 1 , a , and s to zero. The four dependent

ariables may then be solved in terms of x 0 and y 0 . As this ap-

roach is well known and straightforward, the derivation is shown

n Appendix A . Analyzing the resulting Eqs. (10) in terms of the

caled hematopoeitic stem cells, X 0 , and the scaled cancerous stem

ells, Y 0 , is the focus of the rest of the paper. 

 0 
′ = 

( 

J + 

√ 

J 2 + 2 B x X 0 + 2 B y Y 0 

1 + X 0 + C y Y 0 
− 1 

) 

X 0 (10a) 

 0 
′ = 

( 

R 

J + 

√ 

J 2 + 2 B x X 0 + 2 B y Y 0 

1 + C x X 0 + Y 0 
− D 0 − D 1 Y 0 

) 

Y 0 (10b) 

here J = 

I 
2 e s 

r x 
d x 0 + a x 

, R = 

r y 
r x 

, D 0 = 

ˆ d y 0 + a y 
d x 0 + a x 

, D 1 = 

˜ d y 0 
c yy 

1 
d x 0 + a x 

, C x = 

c yx 

c xx 
,

 y = 

c xy 

c yy 
, 2 B x = b x 0 + b x 1 ≈ b x 1 = 

a x A x 
c xx 

r s 
e s e a 

r x 
d x 0 + a x 

∼ 10 −1 , and 2 B y =
 y 0 + b y 1 ≈ b y 1 = 

a y A y 
c yy 

r s 
e s e a 

r x 
d x 0 + a x 

∼ 10 −1 . Notice, the ratio between

 x and B y is the ratio between the rate by which the corresponding

ature cells are produced normalized by their self-inhibitory fac-

or (carrying capacity). The default dimensionless parameter values

re listed in Table 2 . Note, the reduced model involves 8 parame-

ers where D 1 describe the strength of the Y 0 dependent elimina-

ion term in dimensionless form. The numerator in Eq. (10) corre-

ponds to the scaled cytokine level and the denominators express

he stem cell niche interactions allowing for different competitive

dvantages of hematopoietic and cancerous cells. The death rate of

ematopoietic stem cells has been normalized to 1, whereas a dif-

erent rate is allowed for cancer stem cells ( D ) as well as an extra
0 
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Fig. 4. Comparison of the reduced model (stipulated curves) and the full model (full curves) for dimensionless values D 1 = 0 . 1 , 0 . 5 , 1 , 5 . Green curves show hematopoietic 

stem cell counts and red curves show malignant stem cell counts versus time in years. All quantities are in dimensional variables. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

degradation term ( D 1 Y 0 ) corresponding to the T-cell response. We

emphasize the local existence and uniqueness of solutions in the

non-negative octahedron. Subsequently, we will focus on the im-

pact of the dimensionless inflammatory stimuli J . 

Fig. 4 illustrates that the reduced Cancitis model agrees excel-

lently with the full model for various values of D 1 . As seen, an

increase in the Y 0 -dependent death rate, corresponding to how

aggressively the effector cells eliminate the malignant stem cells,

conjures a bearable co-existing state. Higher values of D 1 yields

a lower burden of malignant cells. This is in accordance with the

concept of immune surveillance (as illustrated in Fig. 4 for D 1 = 5 ),

( Ribatti, 2017 ). If resistance appears, i.e. the malignant cells be-

come immune to the effector cells, it agrees with the concept of

immunoediting ( Ribatti, 2017 ); In the first phase, malignant cells

are killed (not pictured in Fig. 4 ), in the second phase, a pseudo-

equilibrium between immune and malignant cells appears (as for

D 1 = 5 in Fig. 4 ), and finally the third phase - the escape phase

- develops, where the co-existing pseudo-steady state disappears

due to an absence of a sufficient immune response. In the escape

phase, the disease ultimately gives symptoms and it may become

clinically detected (as for D 1 = 0 . 1 in Fig. 4 ). The absence of a

sufficient immune response is believed to be caused by a down-

regulation or loss of an expression of malignant antigens, an up-

regulated resistance of malignant cells, an increased expression of

pro-survival genes, or the development of an immunosuppressive

malignant cell microenvironment. ( Ribatti, 2017 ). 

4. Analysis and results 

We study the effect of the dimensionless inflammatory load J

on the possible steady states and their stability for the reduced

Cancitis model in Eq. (10). Thus, we start by investigating the exis-

tence of steady states. By definition 

• A trivial steady state is defined as having X 0 = Y 0 = 0 . 
• A (purely) hematopoietic steady state is defined as having Y 0 =

0 , but X 0 > 0. 
• A (purely) leukemic steady state is defined as having X 0 = 0 ,

but Y 0 > 0. 
• A co-existing steady state is defined as having X 0 > 0 and Y 0 > 0.

Note, non-negativity of X 0 and Y 0 implies non-negativity of the

derived variables X 1 , Y 1 , A , and S + given by Eq. (A.9). Straight for-

ward, but tedious computations (see Appendix B ) give analytical

results for the steady states, which are summarized as, 
• An admissible trivial steady state always exists, 

F 0 = (0 , 0) . (11)

• Admissible hematopoietic steady states , F H = (X 0 H , 0) are solu-

tions to 

J + 

√ 

J 2 + 2 B x X 0 H 

1 + X 0 H 

− 1 = 0 , (12)

with X 0 H > 0. For certain combinations of parameter values two

solutions may exist, 

X 0 H± = J + B x − 1 ±
√ 

( J + B x − 1 ) 
2 + 2 J − 1 . (13)

For F H ± to be admissible all components have to be real and

non-negative and X 0 have to be positive. This gives rise to some

restrictions given as inequalities in the level of exogenous in-

flammatory stimuli. 
• For B x < 

1 
2 no admissible hematopoitic steady state exists

for J ≤ 1 
2 . A bifurcation happens at J = 

1 
2 such that for J > 

1 
2 

a unique, admissible hematopoetic steady state, X 0 H+ , exists

with X 0 H+ (J) → 0 for J → 

1 
2 and X 0 H+ (J) being an increasing

function. 

Note, both the existence and the value of X 0 H+ only depends on

the two parameters J and B x . Remarkably, increasing the dimen-

sionless rate B x ≈ r s 
c xx e s e a 

, by which the normal cells stimulate

the dead cell pool, leads to an increase in the amount of normal

cells X 0 H+ at the hematopoietic steady state value. 
• Admissible purely leukemic steady states , F L = (0 , Y 0 L ) , are the

solutions of 

R 

J + 

√ 

J 2 + 2 B y Y 0 L 

1 + Y 0 L 
− D 0 − D 1 Y 0 = 0 , (14)

with Y 0 L > 0. 
• For J > 

1 
2 

D 0 
R a unique, admissible leukemic steady state ex-

ists. Then Y 0 L ( J ) is increasing in J . 

• For B y < 

1 
2 

D 0 
R 

(
D 0 
R + 

D 1 
R 

)
, and J < 

1 
2 

D 0 
R no leukemic steady

states exist. 

• For default parameter values, B y < 

1 
2 

D 0 
R 

(
D 0 
R + 

D 1 
R 

)
and in-

creasing inflammatory stimuli passing the critical value

J crit = 

1 
2 

D 0 
R , a leukemic steady state is created. This happens

as Y 0 ( J ) increases from 0 with increasing J . 

Note, both the existence and the value of a leukemic steady

state only depends on the four parameters J, 
D 0 , 

D 1 , and B y . 
R R 
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J J L (2 , 1) λL 2 
• Co-existing steady states , F C = (X 0 C , Y 0 C ) , may exist, being the

solutions of 

J + 

√ 

J 2 + 2 B x X 0 C + 2 B y Y 0 C = 1 + X 0 C + C y Y 0 C (15)

and 

J + 

√ 

J 2 + 2 B x X 0 C + 2 B y Y 0 C = (1 + C x X 0 C + Y 0 C ) 
(

D 0 

R 

+ 

D 1 

R 

Y 0 C 

)
, 

(16) 

where X 0 C > 0 and Y 0 C > 0. X 0 C can be computed directly, if Y 0 C 
is known, 

X 0 C = 

( 1 + Y 0 C ) 
(

D 0 
R 

+ 

D 1 
R 

Y 0 C 
)

− C y Y 0 C 

1 − C x 
(

D 0 
R 

+ 

D 1 
R 

Y 0 C 
) . (17) 

Candidates for Y 0 C are solutions to a fourth order polynomial

with intricate expressions for the coefficients not easily investi-

gated analytically. The co-existing steady state is not created by

a bifurcation through (0,0) as no solution to (15) and (16) ex-

ists for ( X 0 C , Y 0 C ) approaching this point. Instead the co-existing

steady state bifurcates from either the hematopoietic or the

leukemic steady state, depending on the stability properties of

these. 

.1. Stability considerations 

In this section, we examine the stability properties of the var-

ous admissible steady states of the reduced model. The stability

f the steady states are equivalent to the stability of the linearized

quations near the steady state, if the steady state is hyperbolic,

.e. if no eigenvalue of the matrix of the linearized system has real

art equal to zero. The Jacobian, J , of Eq. (10) is computed analyt-

cally at most of the steady states, see below. Thus, for these steady

tates, the eigenvalues of the linearized system are easily obtained

nalytically and otherwise numerically. If all eigenvalues have neg-

tive real part, the steady state is stable and attracts neighbouring

olutions, while if at least one eigenvalue has positive real part, the

teady state is unstable. For the trivial steady state, the leukemic

teady state and the hematopoietic steady state, J is calculated

nalytically and becomes triangular, thus the eigenvalues can be

irectly read off from the diagonal. 

In this section, we focus on cases that may be investigated an-

lytically and in accordance with the default parameters we there-

ore assume, 

 x < 

1 

2 

, and B y < 

1 

2 

D 0 

R 

(
D 0 

R 

+ 

D 1 

R 

)
, (18)

hich were also used in the previous section for clear statements

n existence of a hematopoietic and a leukemic steady state, re-

pectively. In the following, we investigate the stability of the

teady states. 

First, consider the trivial steady state . At F 0 the Jacobian for the

rivial steady states becomes, 

 0 = 2 

[
J − 1 

2 
0 

0 R 

(
J − D 0 

2 R 

) ]
. (19a) 

ith eigenvalues λ1 = J − 1 
2 and λ2 = J − D 0 

2 R . Evidently, the two

igenvalues are negative if and only if J < min { 1 2 , 
D 0 
2 R } . Compared

o the previous section this implies that the trivial steady state is

table only if there are no leukemic or hematopoietic steady states.

Secondly, consider the hematopoietic steady state and the cor-

esponding Jacobian, J H , with the form 

 H = 

[
λH1 J H (1 , 2) 

0 λH2 

]
, (20a) 
here 

 H (1 , 2) = X 0 H+ 
B y ( 1 + X 0 H+ ) − C y 

√ 

J 2 + 2 B x X 0 H+ 
(

J + 

√ 

J 2 + 2 B x X 0 H+ 
)

√ 

J 2 + 2 B x X 0 H+ ( 1 + X 0 H+ ) 
2 

. 

(21) 

The Jacobian is an upper triangular matrix with vanishing entry

2,1), i.e. J H (2 , 1) = 0 , and the eigenvalues are given by the diago-

al entries. The first eigenvalue λH1 = J H (1 , 1) has corresponding

igenvector pointing along the X 0 - axis. The expression of λH 1 can

e formulated 

H1 = 

X 0 H+ 

( 1 + X 0 H+ ) 
√ 

J 2 + 2 B x X 0 H+ 

(
−
√ 

( J + B x − 1 ) 
2 + 2 J − 1 

)
. 

(22) 

Whenever the hematopoietic steady state is admissible, X 0 H+ >
 corresponding to J > 

1 
2 , the eigenvalue is negative, λH 1 < 0. Thus,

f the dynamics is restricted to the X 0 -axis then X 0 H+ is stable. This

s a desirable property of the model as it illustrates that homeosta-

is is maintained prior to a mutation providing a malignant stem

ell. 

The other eigenvalue is 

H2 = R 

(
1 + X 0 H+ 

1 + C x X 0 H+ 
− D 0 

R 

)
. (23) 

s X 0 H+ does neither depend on C x nor 
D 0 
R a direct inspection of

q. (23) yields that increasing C x or 
D 0 
R has a stabilizing effect. 

Since X 0 H+ increases from 0, as J increases from 

1 
2 , the

ematopoietic steady state bifurcating from the trivial steady state

s stable if 
D 0 
R > 1 and unstable if 

D 0 
R < 1 for J in a neighborhood of

nd larger than 

1 
2 . Note, if C x ≥ 1 then 

1+ X 0 H+ 
1+ C x X 0 H+ 

≤ 1 . Hence, if 
D 0 
R >

 and C x ≥ 1, which corresponds to the malignant cells are inhib-

ted more than the hematopoietic cells by the niche feedback, then

he hematopoietic steady state is stable for arbitrarily large X 0 H+ .
or C x < 

R 
D 0 

< 1 , the stable hematopoietic steady state will turn un-

table for sufficiently large J , since λH 2 approaches C −1 
x − D 0 

R > 0 as

 0 H+ increases unboundedly with J . Rewriting λH2 = 0 by use of

q. (12) one arrives at the criterion 

 

J + 

√ 

J 2 + 2 B x X 0 + 2 B y Y 0 

1 + C x X 0 + Y 0 
− D 0 − D 1 Y 0 = 0 (24)

t Y 0 = 0 corresponding to the coexisting steady state being ex-

ended to the Y 0 axis (see expression (16) ). This means that the

ematopoietic steady state changes stability when it crosses a

ranch of the co-existing steady state on the X 0 -axis and is un-

table for large values of X 0 H+ corresponding to large values of J .

he criterion λH2 = 0 is easily solved for a critical X 0 H+ -value, X c ,

 c = 

D 0 
R 

− 1 

1 − D 0 
R 

C x 
. (25) 

s X 0 H+ is an invertible function of J , Eq. (25) may be expressed as

 threshold value of J , 

 c = 

X 

2 
c + 2(1 − B x ) X c + 1 

2(1 + X c ) 
. (26) 

Thirdly, consider the purely leukemic steady state , and the cor-

esponding Jacobian, J L , 

 L = 

[
λL 1 0 

]
, (27a) 
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Fig. 5. Phase plane diagram for the hematopoietic cells ( X 0 ) and the leukemic cells ( Y 0 ). The cases corresponding to analytical results of the trivial, hematopoietic and 

leukemic steady states and their stability are shown. J increases from top row to bottom row illustrating the sequence of bifurcations for increasing J in the two cases D 0 
R 

> 1 

and D 0 
R 

< 1 . Full circles are stable steady states, open circles are unstable steady states. The black dotted line is the boundary of the analytical trapping region, the red curve 

is nullcline of ˙ Y 0 , and the green stipulated curve is the nullcline of ˙ X 0 . In the left column the hematopoietic steady state is stable independently of the presence of a leukemic 

steady state whereas in the right column, the leukemic steady state is stable. We emphasize that the trapping region generally depends on D 0 and J as well as R, B x , B y , C x , 

and C y . On some subplots the dotted black line lies outside the visible rage. (For interpretation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 
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J L (2 , 1) = RY 0 L 

B x ( 1 + Y 0 L ) − C x 
√ 

J 2 + 2 B y Y 0 L 

(
J + 

√ 

J 2 + 2 B y Y 0 L 

)
√ 

J 2 + 2 B y Y 0 L ( 1 + Y 0 L ) 
2 

. 

(28)

The Jacobian is a lower triangular matrix. Since entry (1,2) vanish,

J L (1 , 2) = 0 , the Y 0 -axis is the eigenvector direction for the eigen-

value λ2 = J L (2 , 2) evaluated at the leukemic steady state. Using

the restrictions on B y from inequality (18) we get 

λL 2 = Y 0 L 

( 

RB y √ 

J 2 + 2 B y Y 0 L ( 1 + Y 0 L ) 
− R 

J + 

√ 

J 2 + 2 B y Y 0 L 

( 1 + Y 0 L ) 
2 

− D 1 

) 

≤ −D 1 Y 
2 

0 L , (29)

so the leukemic steady state is stable along the direction of the

Y 0 -axis. The other eigenvalue is 

λL 1 = 

(
D 0 

R 

+ 

D 1 

R 

Y 0 L 

)
1 + Y 0 L 

1 + C y Y 0 L 
− 1 . (30)

As Y 0 L increases from 0 as J increases from 

1 
2 

D 0 
R , then λL 1 < 0

if 
D 0 
R < 1 and λL 1 > 0 if 

D 0 
R > 1 , for J values near 1 

2 
D 0 
R . Increas-

ing C y has a stabilizing effect by decreasing λL 1 . Contrary to the

hematopoietic case, an initial negative λL 1 will inevitably become

positive for increasing J , after which Y 0 L increases unboundedly

causing the first term in Eq. (30) to become larger than one.
he analytical results for existence and stability of the trivial,

ematopoietic and leukemic steady states are summarised in Fig. 5 .

Lastly, consider the co-existing steady state . The admissible co-

xisting steady states are calculated numerically as a function of

 and so is the Jacobian and its eigenvalues using the parameter

alues in Table 2 for the remaining parameters when nothing else

s specified. The results are summarized in Fig. 8 and admissible

o-existing steady states are stable for J > 3.636 approximately. The

odel implies that the ratio between R and the cell death rate

 0 is important. If the ratio between D 0 and R is less than one,

he leukemic steady state is stable when created and occurs be-

ore the unstable hematopoietic steady state occurs for J increasing

ntil the co-existing steady state may take over the stability and

ifurcate from the leukemic steady state. This is not to say that

n increase in the inflammatory load cures the in silico patient or

hat it reduces the impact of the disease. Instead the co-existing

teady state level of the malignant cells saturates approximately

t the level as the level of malignant cells at the full leukemic

teady state at the bifurcation point. Thus the tumor burden is

ot decreased, but is only prevented from increasing significantly.

ee Figs. 6 and 8 . This model based hypothesis may seem a little

ounter-intuitive and deserves clinical testing. Conversely, if the ra-

io between D 0 and R is larger than one, the hematopoietic steady

tate is born stable and occurs before the unstable leukemic steady

tate occurs for J increasing until the co-existing steady state may

ake over the stability of - and bifurcate from - the hematopoi-

tic steady state, see Fig. 7 . Hence we emphasize that the dynam-
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Fig. 6. Illustration of the dynamics in a ( X 0 , Y 0 )-phase plane. Each row corresponds to D 1 = 0 . 1 , 1 , 10 , respectively, whereas each column corresponds to J = 0 . 60 , 0 . 76 , 0 . 90 , 

respectively. Red curves are Y 0 null clines (includes the X 0 -axis) and blue stipulated curves are X 0 null clines (includes the Y 0 -axis). Open circles represent unstable steady 

states whereas full circles represent stable steady states. The black circle is the trivial steady state, the green circle the hematopoietic steady state, the red the purely 

leukemic steady state, and cyan the co-existing steady state. The attracting trapping region is indicated on each palette by the coordinate axis and a black dotted line, which 

increases with J but has slope -1 (the black dotted line may fall outside the visible range on some subplots). The flows are indicated by the normalized slope field with 

arrows. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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cs of the system is rather different depending on whether the ra-

io between D 0 and R is less than or greater than one. Thus in-

reasing the ratio D 0 to R or increasing the ratio of D 1 to R , as

llustrated in Fig. 7 , represent very appealing candidates for treat-

ent. Eq. (B.11) is equivalent to Eq. (B.18) with X 0 = 0 , thus the

eukemic steady state and the co-existing steady state equals for

 0 = 0 . By the implicit function theorem it follows that for Y 0 ≥ Y 0 L 
he derivative of X 0 = X 0 (Y 0 ) with respect to Y 0 is positive corre-

ponding to an increasing steady state trajectory in J . 

The possible topologies are summarized in Figs. 6 and 7 . The

orresponding bifurcation diagram are depicted in Fig. 8 . Continu-

us animations for varying J for different fixed values of D 0 and D 1 

ay be found at http://dirac.ruc.dk/cancitis/ together with an ani-

ated bifurcation diagram (see Section 4.3 for further discussions).

e refer to the topology of the dynamical system as Janus topol-

gy, since it has two faces, i.e. two different topologies for different

et of parameters. 

.2. Existence af an attracting trapping region for the reduced 

ancitis model 

A trapping region is a compact set with the property that or-

its starting in the trapping region cannot escape the region. An

ttracting trapping region is a trapping region which is attracting,

.e. orbits starting outside the trapping region will enter the trap-

ing region (in finite time). An attracting trapping region is a suit-

ble feature for a biological system, since it guaranties some basic
ell-behavior of the system such as boundedness of solutions and

lobal existence in time ( Robinson, 1999 ). 

An attracting trapping region exists in the non-negative octa-

edron for the reduced Cancitis model in Eq. (10) (will be shown

elow). As a consequence the steady states lies in this trapping re-

ion. 

For some parameter values, X ′ 0 < 0 and Y ′ 0 < 0 for any X 0 and

 0 . The idea is to show that X ′ 0 < 0 and Y ′ 0 < 0 , for large X 0 + Y 0 for

ll parameter values. 

Let 

 = max { J, 
√ 

2 B x , 
√ 

2 B y } and L = min { 1 , C x , C y } . (31)

hus, J 2 , 2 B x , 2 B y < K 

2 and 1, C x , C y > L , which implies 

J + 

√ 

J 2 + 2 B x X 0 + 2 B y Y 0 

1 + X 0 + C y Y 0 
− 1 < 

K 

L 

1 + 

√ 

1 + X 0 + Y 0 

1 + X 0 + Y 0 
− 1 , (32) 

nd 

R 

J + 

√ 

J 2 + 2 B x X 0 + 2 B y Y 0 

1 + C x X 0 + Y 0 
− D 0 − D 1 Y 0 

< R 

K 

L 

1 + 

√ 

1 + X 0 + Y 0 

1 + X 0 + Y 0 
− D 0 (33) 

onsider therefore (for α > 0) 

1 + 

√ 

1 + X 0 + Y 0 

1 + X 0 + Y 0 
− 1 , (34) 

http://dirac.ruc.dk/cancitis/
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Fig. 7. Illustration of the dynamics in the ( X 0 , Y 0 ) phase plane. Each row corresponds to D 0 = 1 , 1 . 52 , 1 . 8 , respectively, whereas each column corresponds to J = 

0 . 60 , 0 . 76 , 0 . 90 , respectively. R is set to its default value 1.49. Red curves are Y 0 nullclines (and include the X 0 -axis) and green stipulated curves are X 0 nullclines (and 

include the Y 0 -axis). Open circles represent unstable steady states whereas full circles represent stable steady states. The black circle is the trivial steady state, the green cir- 

cle the hematopoietic steady state, the red circle the purely leukemic steady state, and the cyan circle the co-existing steady state. The attracting trapping region is indicated 

on each palette (surrounded by the coordinate axis and a black dotted line, which may fall outside the visible rage). The trapping region decreases with D 0 and increases 

with J , but has slope -1. The flows are indicated by the normalized slope field with arrows. (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 
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and introduce 

z = 

√ 

1 + X 0 + Y 0 . (35)

As X 0 and Y 0 are non negative, the minimal, allowed value of z is

1. Expression (34) is negative if and only if 

z 2 − αz − α > 0 . (36)

For any α > 0 there is exactly one positive solution to z 2 − αz −
α = 0 , being 1 

2 

(
α + 

√ 

α2 + 4 α
)

. Any larger z value fulfills (36) and

since z ≥ 1 is required we get 

z crit = max 

{ 

1 

2 

(
α + 

√ 

α2 + 4 α
)
, 1 

} 

. (37)

Solving for X 0 + Y 0 this implies that the bound M is 

M = z 2 crit − 1 , (38)

i.e. for X 0 + Y 0 > M are X ′ 0 < 0 and Y ′ 0 < 0 . Note that we may chose

α = 

max { 1 , R 
D 0 

} · max { J, √ 

2 B x , 
√ 

2 B y } 
min { 1 , C x , C y } . (39)

Thus, M ≥ 0 and the triangle defined by the X 0 -axis, the Y 0 -axis

and the line X 0 + Y 0 = M thus define an attractive trapping region

for Eq. (10). We emphasize that M generally depends on D 0 and J

as well as R, B x , B y , C x , and C y . 
.3. Phase plane analysis and treatments 

In the present work, we mainly focus on analyzing the impact

f the inflammatory stimuli J , modifying the T-cell independent

eath rate D 0 , and modifying the T-cell response represented by D 1 

ather than a complete analysis of real treatments. However, sev-

ral treatment scenarios are possible, e.g. T-cell therapy. Interferon-

treatment among other things stimulates the immune system,

hereby the effect of the effector T-cells become strengthened. 

The reduced model has been investigated numerically for var-

ous choices of parameters. The default parameters, as given in

able 2 , have been used when nothing else is stated. 

First consider the default case 
D 0 
R < 1 as illustrated in

ig. 6 showing the phase plane for various J and D 1 . A trivial steady

tate F 0 is found to always exist, and, for sufficiently low inflamma-

ory stimuli J , it is stable. For J greater than 

D 0 
2 R , a purely leukemic

teady state F L becomes admissible and the leukemic cells increase

n numbers with increasing J . For choices of J where only F L and

 0 are admissible, the leukemic steady state is found to be stable,

hereas the trivial state is unstable. It is worth emphasizing that

he purely leukemic steady states in general only depend on the

our clusters of parameters 
D 0 
R , 

D 1 
R , 

JR 
D 1 

, B y , and J . 

For J greater than 

1 
2 , an unstable hematopoietic steady state,

 H+ , becomes admissible. In absence of mutations, i.e. no malig-

ant cells present, the hematopoietic steady state appears stable.

eing a saddle point with stable manifold along the X 0 -axis and

he unstable manifold having a nonvanishing Y 0 -component, a per-
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Fig. 8. Left column shows the bifurcation diagrams for the case D 0 
R 

> 1 and the right column shows the corresponding for D 0 
R 

< 1 (the default case). The bifurcation diagrams 

showing the appearance and stability of the admissible steady states depending on the bifurcation parameter J . The top panel shows X 0 , the middle panel shows Y 0 , and the 

lower panel shows the J -trajectory of the admissible steady states in a ( X 0 , Y 0 ) phase plane having the range on the axis as in the other figures above. Green curves are the 

hematopoietic steady states, red curves are the purely leukemic steady states, and cyan curves are the co-existing steady states. At the origin a trivial steady state always 

exists. It is stable for some values of J and unstable for others thus it is not shown on the figure. Dotted curves mean that the corresponding steady state is unstable, while 

full curves indicate that the corresponding steady state is stable. For the left column J ∈ [0; 4], while for the right column J ∈ [0; 10]. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 
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h  
urbation with malignant cells may cause the state to be repelling

way from the hematopoietic steady state. As was shown analyt-

cally, F H+ only depends on the two parameters J and B x and for

xed B x , X 0 H+ increases with J . 

As shown in Fig. 6 , an admissible co-existence steady state, F C 
ay exist, which is dependent on both J and D 1 . While it has

een found to exist for sufficiently high J , regardless of realis-

ic values of D 1 , the existence of F C does require very large val-

es of J for D 1 ≤ 0.1. For default parameter values (e.g. D 1 = 0 . 1 ),

he co-existing steady state occurs for J larger than J c given by

q. (26) . The co-existing steady state is stable and bifurcates from

he leukemic steady state which loses its stability and becomes

nstable. For increasing J, F C moves away from F L with increas-

ng X 0 . For D 1 around 1 or greater, the co-existence steady state

ight represent a possible preferable situation to the full-blown

eukemic state F L . For large choices of D 1 , such as D 1 = 10 shown

n Fig. 6 , F C is in close proximity of F H+ for most realistic choices of

 , leading to a co-existence steady state, which can be interpreted
s having a small number of leukemic cells, which are held back

rom increasing due to a strong T-cell response. In the case where

he co-existence steady state exists, it is found numerically to be

table, while the leukemic steady state F L becomes unstable when-

ver the co-existing steady state becomes admissible. Thus, for any

ituation where a co-existence steady state is admissible, the sys-

em will move towards this state. 

Increasing B y , D 0 or D 1 and decreasing R cause the leukemic

teady state to appear at higher values of J while increasing B x 
auses the hematopoietic steady state to occur for lower values

f J . Thus, the model identifies important parameters for potential

rotection to prevent a leukemic outbreak. 

Next, consider the case 
D 0 
R > 1 in contrast to the default case.

hase plane portraits are shown in Fig. 7 for various J and D 0 . The

ituation is analogous to the default case except the order in which

he hematopoietic steady state and the leukemic steady state oc-

ur are interchanged along with their stability properties. Thus the

ematopoietic steady state bifurcates from the trivial steady state



102 J.T. Ottesen, R.K. Pedersen and Z. Sajid et al. / Journal of Theoretical Biology 465 (2019) 90–108 

Fig. 9. An in silico treatment of a virtual patient having ( D 1 , J ) = (1,0.9). The treat- 

ment combines gene therapy, by increasing D 1 to 10, and an anti-inflammatory 

treatment, by lowering J from 0.9 to 0.76. Hereby the virtual patient is moved from 

a co-existing steady state (upper cyan dot) with high malignant cell counts, ( X 0 , 

Y 0 ) = (0.27,0.55) corresponding to ( D 1 , J ) = (1,0.9), toward a co-existing steady state 

(lower cyan dot) with low malignant cell count and normalized hematopoietic cell 

count, ( X 0 , Y 0 ) = (0.51,0.05) corresponding to ( D 1 , J ) = (10,0.76). This treatment path 

(stipulated black curve) do not follow the displayed slope field. Thereafter treat- 

ment is put on pause and the virtual patient follows the flow back toward the orig- 

inal co-existing steady state (full black curve), ( X 0 , Y 0 ) = (0.27,0.55). Full red lines 

show the Y 0 nullcline and the stipulated green lines show the X 0 nullcline. The 

open circles illustrate the unstable steady states (black for the trivial, red for the 

leukemic, and green for the normal hematopoietic steady state). The black dotted 

lines bound the region, which represents the total leukocyte count considered to be 

normal. Above the upper boundary the risk of thrombosis is considered high and 

below the lower boundary the immune system is considered to be dysfunctional. 

(For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Effects of resistance of malignant stem cells to T-cell elimination. The dot- 

ted lines show the cancer development toward the co-existing steady state in ab- 

sence of resistance whereas the full lines show the development when resistance 

develops. Green curves represent the hematopoietic stem cell counts ( X 0 ) and the 

red curves represent the malignant stem cell counts ( Y 0 ). Parameters are as for 

Fig. 4 but with D 1 = 10 . Black dotted line shows the inhibiting factor 1 
1+ U 8 over 

time, reducing the population death due to resistance. All quantities are shown in 

dimensionless units except time which is in years. See Section 5 for further discus- 

sion. (For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.) 
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and takes over the stability for increasing J shown in the second

and third row of Fig. 7 . For larger J -values, the leukemic steady

state bifurcates from the trivial one as an unstable steady state and

it remains unstable for larger J . For even larger values of J , the co-

existing steady state bifurcates from the hematopoietic steady state

and it takes over the stability leaving the hematopoietic steady

state unstable. For increasing J , it slowly moves away from the

hematopoietic steady state. Compared to the default case, 
D 0 
R < 1 ,

this is not necessarily lethal, since X 0 C stays relatively close to X 0 H 

and Y 0 C � Y 0 L . 

Returning to the case 
D 0 
R < 1 , a scenario of an in silico treat-

ment of a virtual patient having ( D 1 , J ) = (1,0.9) is illustrated in

Fig. 9 . The treatment combines a strengthened T-cell effect (in-

terferon or T-cell therapy) by increasing D 1 to 10 and an anti-

inflammatory treatment, which lowers J from 0.9 to 0.76. Thus,

the virtual patient is moved from a co-existing steady state with

high malignant cell counts, ( X 0 , Y 0 ) = (0.27,0.55) towards a co-

existing steady state with low malignant cell counts and normal-

ized hematopoietic cell counts, ( X 0 , Y 0 ) = (0.51,0.05). This treat-

ment path (stipulated curve) does not follow the displayed slope

field shown, corresponding to ( D 1 , J ) = (1,0.9). It takes approxi-

mately 5 years for the treatment to lower Y 0 to 15%, but almost

20 years to increase X to near normal amount. The total cell
0 
ount ( X 0 + Y 0 ) is fairly well controlled during this treatment pro-

ess, which is essential to prevent high risk of thrombosis. There-

fter treatment is put on pause and the virtual patient follows

he flow back toward the original co-existing steady state, ( X 0 ,

 0 ) = (0.27,0.55). It takes about 20 years for Y 0 to pass 0.5 cor-

esponding to 10% below the original amount. The time interval

f treatment and relapse are both quite large and it is likely that

he malignant cells develop resistance during such time span. On

he other hand, these time scales are comparable to clinical expe-

iences. 

To explicitly include resistance in the model, we assume that

he exposure, 

 = 

∫ t 

0 

Y 0 (t ) dt , (40)

f malignant stem cells drives the development of resistance. Fur-

hermore, we assume that resistance inhibits the Y 0 -dependent

eath rate D 1 by a decreasing Hill-function in the exposure, as it is

ssociated with a reduced T-cell elimination of the malignant cells.

hus, the death rate, D 1 , in Eq. (10b) is substituted by, 

D 1 

1 + U 

8 
. (41)

e note that, as exposure increases, the effective death rate in

q. (41) decreases, leading to an increase in Y 0 , which further in-

reases exposure and so on. Initially, the development will be like

hat seen for the co-existing steady state (as shown in Fig. 4 for

 1 = 5 ), but as the exposure increases, resistance develops and the

ynamic starts to deviate from that without resistance. Thus, af-

er approaching the co-existing steady state for a while the cancer

evelopment begins to increase approximately as an exponential-

unction (for the second time) before finally reaching the satura-

ion level, corresponding to full blown cancer, as seen in Fig. 10 .

eanwhile, the hematopoietic cells show a reciprocal develop-

ent. Overall, the co-existing stable steady state is approached

n the first phase of the development, while resistance devel-

ps. When resistance becomes influential, around year 30, the co-

xisting steady state disappears and in the next phase the full

lown cancer develops. Thus, the developed resistance destroys the
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ffect of the therapy over time. We have chosen the Hill power to

e 8 in Eq. (41) . Choosing it larger does not change the numerical

utput significantly and choosing it smaller makes the dormancy

tate, i.e. the temporary plateau between year 25 and 40 in Fig. 10 ,

horter and resistance will start a bit earlier. For U = 1 , expres-

ion (41) takes the saturation value 1 
2 D 1 . This half saturation value

orresponds approximately to year 42 at Fig. 10 . 

A specific finding deserves to be emphasized: A dimensionless

tem cell reproduction ratio R exists, which determines how ro-

ust the hematopoietic condition may be and how disastrously

 potential blood cancer disease will develop. This is similar to

he concept of a reproduction number in epidemiology describing

henever an epidemic outbreak may occur. In our case, the repro-

uction ratio consists of a combination of six physiological param-

ters from the dimensional form of the full model. Inspired by the

ifferent topologies discussed above, we define the reproduction

atio as the inverse of 
D 0 
R , 

R = 

(
D 0 

R 

)−1 

= 

(
r y 

ˆ d y 0 + a y 

)
(

r x 

d x 0 + a x 

) (42) 

hus for, R > 1 we have a more serious situation than for R < 1 ,

howing that if the reproduction ratio exceeds the threshold, R 0 =
 it is more disastrous than if it is below R 0 . Physiologically, the

eproduction ratio R tells us that the situation is worse if malig-

ant stem cells have a better fitness than the hematopoietic stem

ells. The intuitive interpretation in most bio-medical literature at-

ributes the main cause for cancer development to the frequency

f stem cell division. Our fitness concept, the ratio between the

elf-renewal rate and the sum of the death rate and the prolifer-

tion rate, is far more nuanced, but is in agreement with the lit-

rature and thus confirming our results. To force the model from

 regime of highly disastrously development into a regime of less

isastrously development we may simply focus on how to ma-

ipulate the reproduction ratio, R , for the specific system under

onsideration to become less than the threshold value of R . The

hreshold concept depends on six parameters, which offer inde-

endent manipulation possibilities. Alternatively, one may consider

he fitness of hematopoietic cells as a given fitness threshold value

or a specific system. Thus the development of a given mutation is

etermined by the fitness value of that mutation compared to that

f the hematopoietic cells. 

In addition to the primary reproduction ratio R , a secondary

eproduction number, S, important for the dynamics of the system

s it appears in most analytical expressions (see Appendix B ), is, 

S = 

(
D 1 

R 

)−1 

= 

(
r y c yy 

y 0 

)
(

r x 

d x 0 + a x 

) . (43) 

This secondary reproduction number, S, describes the T-cell

ependent fitness of the malignant stem cells relative to the

fore defined fitness of the hematopoietic stem cells, whereas

he primary reproduction ratio, R , compares the T-cell indepen-

ent fitness of malignant stem cells to that of hematopoietic stem

ells. 

Increasing the inflammatory stimuli J accelerates and drives the

lood cancer in general. Vice versa, the blood cancer itself induces

n inflammatory response, and thus the coupled system introduces

 negative spiral with respect to the disease development. For fur-

her details on this see ( Andersen et al., 2017 ). 
. Discussion and conclusion 

A novel mechanism-based model - the Cancitis model - describ-

ng the interaction of blood cancer and the inflammatory system is

roposed. The immune response is divided into two components,

ne where the elimination rate of malignant stem cells is indepen-

ent of the size of the cancer ( Y 0 -independent death rate) and one

here the elimination rate depends on the size of the cancer ( Y 0 -

ependent death rate). The model confirms that inflammation may

ccelerate and drive a cancer beyond the fact that the presence of

 cancer induces an inflammatory response. A dimensional analysis

hows that the full 6-dimensional system of nonlinear ordinary dif-

erential equation may be reduced to a 2-dimensional system - the

educed Cancitis model. In terms of Fenichel theory this is known

s the reduced model or the slow manifold approximation. This is

 very good approximation and is appropriate for MPNs in partic-

lar, since these diseases develop slowly. The original parameters

ppear in the reduced model in clusters, showing the important

rouping of parameters. The reduced model allows for a highly an-

lytical investigation of steady states and their dependence espe-

ially on the inflammatory stimuli J , the Y 0 -independent death rate

 D 0 ) and the Y 0 -dependent death rate ( D 1 ). A semi-analytic inves-

igation reveals the stability properties of the steady states. Finally,

e prove positivity of the system and the existence of an attract-

ng trapping region in the positive octahedron guaranteeing global

xistence and uniqueness of solutions. For the reduced Cancitis

odel, the possible topologies are completely described as having

 Janus structure, where two qualitatively different topologies ap-

ear for different sets of parameters given by R . In the important

ork by Stiehl and Marciniak-Czochra (2012) , a model without im-

une interaction is presented. The authors discuss a fraction simi-

ar to R given in Eq. (42) and shows that it is important for the dy-

amics of the system. However, this model involved explicitly the

ierarchy of progenitor cells, whereby a lot of unknown parame-

ers are introduced, thus their results appear as a more qualitative

nalysis involving all these parameters. The relative simplicity of

ur model, due to the parsimonious principle and the model re-

uction, make it possible to state sharp criteria involving R , which

long with another threshold S given in Eq. (43) deliver a complete

opological analysis of the possible dynamics. 

For the default parameters, a trivial steady state F 0 always exist.

tarting by no stimulation J of the inflammatory system, only the

rivial steady state is stable. Increasing J will turn this trivial steady

tate into an unstable steady state while a leukemic steady state

ppears. If J is increased further, an unstable hematopoietic steady

tate occurs. In absence of mutations, i.e. no malignant cells, the

ematopoietic steady state is stable. Being a saddle point, a per-

urbation of the hematopoietic steady state with malignant cells

ay cause the state to be repelling away from the hematopoietic

teady state. At the bifurcation, the purely leukemic steady state

akes over the stability turning the trivial steady state into an un-

table state. Both the hematopoietic steady state and the leukemic

teady state start at the trivial steady state and move away from

t with increasing values of J . A co-existing steady state bifurcates

rom the leukemic one for even higher values of J and simultane-

usly the leukemic steady state loses its stability. For increasing

alues of J , the co-existing steady state moves towards higher X 0 -

alues and with only a minor increase in Y 0 . Increasing D 1 also de-

reases Y 0 , thus representing an attractive disease condition com-

ared to full blown blood cancer. 

We emphasize that the choice of default parameter values for

 x and C y make the highest order coefficient in Eq. (B.23) , given in

xpression (B.24) , relatively small, since C x C y ≈ 1. As a consequence,

ot only the roots of Eq. (B.23) , but also the number of real roots

ecome sensitive to these parameter values. Thus some caution is

eeded; A considerable change in parameters may not only change
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e  
the stability properties, but also the number of possible co-existing

steady states. The outbreak of blood cancer in general is commonly

considered to occur when the ratio of the self-renewal rates, R , ex-

ceeds a threshold value, frequently taken to be one. However, the

model implies that the ratio between R and the cell death rates D 0 

and D 1 should rather be considered. In fact, the analysis motivates

the definition of a primary and a secondary reproduction ratio, R
and S, respectively, crucially for topology of the dynamics of the

system. If R is larger than one, the leukemic steady state appears

first and the hematopoietic steady state later for increasing J . The

leukemic steady state is stable until the co-existing steady state

may take over. If instead, R is less than one, the hematopoietic

steady state appears first and the leukemic steady state later with

respect to increasing J . Thus the hematopoietic steady state is sta-

ble until the co-existing steady state takes over while the leukemic

steady state remains unstable. Inflammation is presumably another

important quantity for the onset and development of blood can-

cer, greatly influenced by the inflammatory stimulation J ( Andersen

et al., 2017; Brianna M. Craver et al., 2018; Desterke et al., 2015;

Hasselbalch, 2012; 2014; Hasselbalch and Bjoern, 2015; Hermouet

et al., 2015; Koschmieder et al., 2016; Wodarz and Komarova,

2014; Zhang et al., 2017 ). This suggests that the body may manage

initial leukemia as long as the self-renewal rate is not too high,

but fails to manage it if an inflammation appears. These findings

suggest combining treatment with anti-inflammatory treatment.

Thus inflammation may trigger and drive blood cancers including

MPNs. 

It is interesting that decreasing the inflammatory stimuli for

R > 1 may not be a good first step in treatment of such patients.

Instead D 1 should be increased first and subsequently the inflam-

matory stimuli may be reduced. However, for R < 1 the inflam-

matory stimuli may be reduced simultaneously with increasing

D 0 . 

We note that, increasing the inflammatory stimuli ( I ) increases

J = 

I 
2 e s s 

= I (r x /e s ) 
d x 0 + a x = 

I 
e s 

r x 
d x 0 + a x . An increase in the rate r x increases

the amount of hematopoietic stem cells, which quickly increases

the amount of mature hematopoietic cells, thus leading to an in-

direct increase in the amount of dead cells (for unchanged val-

ues of d x 0 and a x ). An increase in the amount of dead cells stim-

ulates the inflammation, whereas e s eliminates the debris of the

dead cells. Thus increasing the fraction r x / e s eventually increases

the inflammation. This may suggest that drugs helping the inflam-

matory response in eliminating the debris more effectively may

decrease J . However, the denominator d x 0 + a x denotes the rate at

which hematopoietic stem cells are reduced, due to apoptosis and

proliferation into progenitor cells. Hence, an increase in either d x 0 
or a x will decrease J . The reason why is that a decrease in x 0 in

the long term leads to a decrease in x 1 and thus a decrease in

the amount of dead cells, a , whereby the inflammatory response

become less stimulated. Hence, treatment affecting the stem cells

by increasing the natural death rate d x 0 may decrease the inflam-

matory response and thereby help reduce the cancer. In combina-

tion, the competition between self-renewal rate r x and the elimi-

nation of hematopoietic stem cells d x 0 + a x is reflected in the ratio
r x 

d x 0 + a x . Likewise, the competition between the inflammatory load

I and the elimination rate of debris by the immune response e s 
is reflected in the ratio I 

e s 
. Thus increasing these ratios increase J .

This is surprising, since intuitively one would guess that treatment

should primarily affect the malignant stem cells and leave the nor-

mal hematopoietic stem cell as unaffected as possible. Of course,

affecting the amount of normal hematopoietic stem cells has other

impacts apart from just affecting J , due to the direct competition

between the cell types. Increased J also affect the self-renewal rate

for the malignant stem cells. Since the stem cell self-renewal is

proportional to J in both cases, the malignant cells benefit most,

due to an expected higher baseline self-renewal rate of the ma-
ignant stem cells r y than for the normal hematopoietic stem cells

 x . 

The specific inclusion of the T-cells in the immune response

as its roots in gene therapy and interferon- α treatment. In gene

herapy a patients own T-cells are modified outside the body and

e-injected to fight the cancer. As shown, it is in principle a very

ffective instrument, but in practice it has limited function, since

ancer cells almost always develop resistance, by modifying the

ecognizable surface receptors used by the naive T-cells to iden-

ify the cancer cells. Without being recognized by naive T-cells, the

ffector cells will not attack the cancer cells making this defence

eak. Interestingly, even if resistance did not occur, the model pre-

icts that T-cell therapy does not cure the patient, but only keeps

he cancer in an iron grip at the co-existing steady state secur-

ng limited growth of cancer for a while. When resistance occurs

he grip loosens and a fatal growth begins despite continued T-cell

herapy as illustrated on Fig. 10 . The fact is that increasing D 1 by a

-cell therapy may turn a full blown leukemic (stable) steady state

nto a co-existing (stable) steady state or even for high dose ther-

py into a healthy (stable) hematopoietic steady state temporarily

s illustrated in Fig. 7 . It takes some years (e.g. 5 years) as illus-

rated in Fig. 9 . However, without changing the parameters per-

anently (e.g. D 1 ) the cancer recurs either because the cancerous

tem cells are not completely eradicated or as soon as a new mu-

ation (surviving repair mechanisms) appears. For a supplementary

iscussion reaching the same conclusion see ( Michor et al., 2006 ).

owever, for the case of all cancerous stem cells to be completely

liminated 20 years of treatment may be needed. In fact, due to

he detection limit, one can never be sure that the cancer is com-

letely eradicated. A detection limit of 1% of 10 10 mature cells (or

0 4 stem cells) corresponds to 10 8 mature cells (or 100 stem cells).

hus, to guarantee an eradication the malignant stem cells requires

 detection limit lower than 0.01%. However, T-cell therapy may be

uitable in combination with other treatment. 

In the groundbreaking work by Kuznetsov and Knott (2001) and

uznetsov and Makalin (1994) , the intrinsic dynamics of the cells

hemselves was not considered, but was simply taken as logistic

rowths independent of the other cell types. In contrast to this,

e describe the common dynamics of all cell types based on the

nderlying biological mechanisms. We include the effect of can-

erous cells on normal cells and vice versa, their interaction with

he dead cells, the dead cells interaction with the immune system,

he interaction of the immune system with the replication of (liv-

ng) cells, and specifically the interaction between cancerous cells

nd the adaptive immune system, mediated by T-cells and other

iller cells. In this way the presented model deviates from the

eneral models in ( Arciero et al., 2004; Baker et al., 2013; Borges

t al., 2014; Cosentino and Bates, 2012; De Pillis et al., 2005; Dun-

ter et al., 2014; Hanson et al., 0 0 0 0; Herald, 2010; Katak, 2014;

irschner and Panette, 1998; Moore and Li, 2004; Nanda et al.,

0 07; Nielsen, 0 0 0 0; Nielsen et al., 2013; Pillis et al., 2006; Pil-

is and Radunskaya, 2003; Saleem and Agrawal, 2012; Sarkar and

anerjee, 2005 ). Thus co-existing states are explicitly shown to

e possible as it is shown how such states depends on the im-

ortant parameters, i.e. inflammatory load and the two relevant

eath rates. It is shown that in case resistance is considered, this

o-existing state is merely a dormancy state and ultimately de-

elops into the full blown cancer state. It is interesting that our

echanism-based multi-cell model confirms previous conclusion

hat immunotherapy does not completely eradicate malignant cells

redicted by Kuznetsov and Knott (2001) . This is an important sub-

ect as pointed out by Dingli and Michor (2006) . 

Besides having a strengthening effect on the effector cells,

nterferon- α also affects other parts of the cancer-immune system

n a constructive synergistic way, which may make the treatment

ven more effective. A full discussion of how various treatments
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ffect blood cancer and treatment optimization will be addressed

n subsequent papers. 

ppendix A. Dimensionless form of six dimensional model 

Formulating equations on dimensionless form may reduce the

umber of free parameters by grouping the original parameters

nto clusters of parameters, the dimensionless parameters. Simul-

aneously the dimensionless form may suggest a model reduction

sing Fenichel theory from geometric singular perturbation theory

 Kuehn, 2015 ). 

All variables in Eqs. (1) and (2) are scaled by a constant hav-

ng the unit of the variable, if any, and it is denoted with same

ymbol as the variable, but with a bar above. Likewise, the corre-

ponding dimensionless variable is denoted with the correspond-

ng capital letter and with index as the original symbol. Thus we

ut x 0 = x 0 X 0 , x 1 = x 1 X 1 , y 0 = y 0 Y 0 , y 1 = y 1 Y 1 , a = a A, s = s S, and

 = t T , with X 0 , X 1 , Y 0 , Y 1 , A, S , and T , the dimensionless variables

nd x 0 , x 1 , y 0 , y 1 , a , s , and t the scaling constants carrying the di-

ensions. Hence the extended model of the differential system in

1) and (2) in the new dimensionless variables reads, 

 0 
′ = t 

(
s r x 

S 

1 + (c xx x 0 X 0 + c xy y 0 Y 0 ) 
− d x 0 − a x 

)
X 0 (A.1a) 

 1 
′ = t 

(
x 0 
x 1 

a x A x X 0 − d x 1 X 1 

)
(A.1b) 

 0 
′ = t 

(
s r y 

S 

1 + (c yx x 0 X 0 + c yy y 0 Y 0 ) 
− d y 0 (Y 0 ) − a y 

)
Y 0 (A.1c) 

 1 
′ = t 

(
y 0 
y 1 

a y A y Y 0 − d y 1 Y 1 

)
(A.1d) 

 

′ = t 

(
d x 0 

x 0 
a 

X 0 + d y 0 (Y 0 ) 
y 0 
a 

Y 0 + d x 1 
x 1 
a 

X 1 + d y 1 
y 1 
a 

Y 1 − e a s AS 

)
(A.1e) 

 

′ = t 

(
r s 

a 

s 
A − e s S + 

I 

s 

)
(A.1f) 

utting the mutation rate r m 

to zero and where d y 0 (Y 0 ) = 

ˆ d y 0 +
˜ 
 y 0 y 0 · Y 0 . Here prime denote the derivative with respect to the di-

ensionless time variable T . To simplify the hematopoietic steady

tate E H+ in Eq. (3) , as much as we can, we choose 

 = 

d x 0 + a x 

r x 
∼ 1 (A.2a) 

 = 

e s 

r s 
s ∼ 10 

4 (A.2b) 

 0 = 

1 

c xx 
∼ 10 

4 (A.2c) 

 1 = 

a x A x 

c xx d x 1 
∼ 10 

11 (A.2d) 

 0 = 

1 

c yy 
∼ 10 

4 (A.2e) 

 1 = 

a y A y 

c yy d y 1 
∼ 10 

11 (A.2f) 

 = 

1 

d x + a x 
∼ 10 

3 day (A.2g) 

0 w
here the order is stated after the ∼ symbol based on the default

arameter values in Table 1 . These values are in accordance with

hose reported in the literature where they are estimated to obtain

bserved cell counts, see ( Gentry and Jackson, 2013; Haeno et al.,

009a; Stiehl et al., 2015 ). In addition, we have used 700 as a nor-

al number of dead cells. For further details see ( Andersen et al.,

017 ). Hence, system (A.1) becomes 

X 0 
′ = 

( 

S 

1 + (X 0 + 

c xy 

c yy 
Y 0 ) 

− 1 

) 

X 0 (A.3) 

Y 0 
′ = 

(
r y 

r x 

S 

1 + ( 
c yx 

c xx 
X 0 + Y 0 ) 

− d y 0 (Y 0 ) + a y 

d x 0 + a x 

)
Y 0 (A.4) 

ε1 X 1 
′ = ( X 0 − X 1 ) (A.5) 

ε1 Y 1 
′ = 

d y 1 
d x 1 

( Y 0 − Y 1 ) (A.6) 

ε2 S 
′ = 

(
A − S + 

I 

e s s 

)
(A.7) 

ε2 ε3 A 

′ = ( b x 0 X 0 + b y 0 (Y 0 ) Y 0 + b x 1 X 1 + b y 1 Y 1 − AS ) (A.8) 

where ε1 = 

r x 
d x 1 

s ∼ 10 −5 , ε2 = 

r x 
e s 

s ∼ 10 −3 ε3 = 

e s 
e a s 

∼ 10 −10 ,

 x 0 = d x 0 
x 0 t 
s a 

d x 0 + a x 
e a 

∼ 10 −13 , b x 1 = d x 1 
x 1 t 
s a 

d x 0 + a x 
e a 

∼ 10 −1 , b y 0 =
( ̂  d y 0 + 

˜ d y 0 y 0 ) 
y 0 t 
s a 

d x 0 + a x 
e a 

∼ 10 −13 , and b y 1 = d y 1 
y 1 t 
s a 

d x 0 + a x 
e a 

∼ 10 −1 .

n addition 

d y 1 
d x 1 

∼ 1 , 
c xy 

c yy 
∼ 1 , 

r y 
r x 

∼ 1 , 
d y 0 + a y 
d x 0 + a x 

∼ 1 , and 

1 
e s s 

∼ 1 −1 . 

We emphasize that the dimensionless variable X 0 , X 1 , Y 0 , Y 1 , S

nd A are all of the same order, since each are normalized by their

maximal carying capacity’. 

1. The reduced extended model - the reduced Cancitis model 

The system is initially close to the unstable hematopoietic

teady state and the development of MPNs is slow, thus we are

nterested in the reduced system. A naive QSSA may be performed

ut since several time scales are involved one should be careful.

y Fenichel theory the Eqs. (A .3 –A .8) involving small epsilon terms

ay be studied in the limit of vanishing left hand sides, whereby

e obtain the reduced Cancitis model, i.e. the slow manifold ap-

roximation. Thus from Eq. (A .5 –A .6) we obtain the algebraic rela-

ions, 

 1 = X 0 , (A.9a) 

 1 = Y 0 . (A.9b) 

Using this in Eq. (A.8) gives 

4 A 

′ = ( 2 B x X 0 + 2 B y Y 0 − AS ) (A.10a) 

ith ε4 = ε2 ε3 ∼ 10 −13 , 2 B x = b x 0 + b x 1 ≈ b x 1 ∼ 10 −1 , and 2 B y =
 y 0 + b y 1 ≈ b y 1 ∼ 10 −1 . Thus we will consider B y to be independent

f Y 0 in what follows. 

Thus, from Eq. (A.7) and (A.10a) , 

 = J ±
√ 

J 2 + 2 B x X 0 + 2 B y Y 0 ≡ S ± (A.11) 

here only S + is non-negative allowing us to disregard the possi-

ility of S = S − in what follows and thus by substituting S + from

q. (A.11) into the right hand side of Eq. (A.7) and putting this

qual to zero we get, 

 = 

√ 

J 2 + 2 B x X 0 + 2 B y Y 0 (A.12) 

hich is always non-negative and where J = 

I 
2 e s s 

. 
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Hence, the reduced Cancitis model becomes a closed system in

X 0 and Y 0 , 

X 0 
′ = 

( 

J + 

√ 

J 2 + 2 B x X 0 + 2 B y Y 0 

1 + X 0 + C y Y 0 
− 1 

) 

X 0 (A.13a)

 0 
′ = 

( 

R 

J + 

√ 

J 2 + 2 B x X 0 + 2 B y Y 0 

1 + C x X 0 + Y 0 
− D 0 − D 1 Y 0 

) 

Y 0 (A.13b)

where R = 

r y 
r x 

, D 0 = 

ˆ d y 0 + a y 
d x 0 + a x 

, D 1 = 

˜ d y 0 y 0 
d x 0 + a x 

, C x = 

c yx 

c xx 
, and C y = 

c xy 

c yy 
. The

default dimensionless parameter values are listed in Table 2 and

we note that all values are of order one. Note, the reduced model

involves 8 parameters (including J ) where D 1 describe the strength

of the Y 0 dependent elimination term in dimensionless form. We

emphasize the local existence and uniqueness of solution in the

non-negative octahedron. Subsequently we will focus on the im-

pact of the dimensionless inflammatory stimuli J . 

Appendix B. Derivations of admissible Steady states 

From Eq. (10a) the hematopoietic steady state F H = (X 0 , 0) ex-

ist if and only if 

J + 

√ 

J 2 + 2 B x X 0 = 1 + X 0 , (B.1)

i.e. if and only if √ 

J 2 + 2 B x X 0 = X 0 + 1 − J. (B.2)

Disregarding the possibility of double roots a solution exist if and

only if J < X 0 + 1 (which have to be checked subsequently) given

by, 

X 

2 
0 − 2(J + B x − 1) X 0 − (2 J − 1) = 0 , (B.3)

i.e. 

X 0 = (J + B x − 1) ±
√ 

(J + B x − 1) 2 + (2 J − 1) (B.4a)

= (J + B x − 1) ±
√ 

(J + B x ) 2 − 2 B x . (B.4b)

These roots are real if and only if J ≥ −B x + 

√ 

2 B x , a trivial

statement for B x > 2 or J > 

1 
2 , which is not the case for the default

parameters. 

Putting J H, 1 = 

1 
2 and J H, 2 = 1 − B x we may rewrite Eq. (B.3) as, 

X 

2 
0 − 2(J − J 2 ) X 0 − 2(J − J 1 ) = 0 , (B.5a)

Applying Descartes’ rule of signs gives that X 0+ > 0 if and only

if J > min { J 1 , J 2 } ( = 

1 
2 for default parameter values) and X 0 − > 0 if

and only if J 2 < J < J 1 , requiring B x > 

1 
2 (which is not the default

case). 

The earlier condition J < X 0 + 1 may be examined and is equiv-

alent to requiring, 

∓
√ 

(J + B x ) 2 − 2 B x < B x , (B.6a)

which is trivially fulfilled for X 0+ . For X 0 −, this gives 

J < J 0 ≡ −B x + 

√ 

B 

2 
x + 2 B x , (B.7)

since J is restricted to be positive for physiological reasons. 

Hence, F H+ is admissible if and only if J > min { J 1 , J 2 } ( = 

1 
2 for

default parameter values) while F H− is admissible if and only if 

−B x + 

√ 

2 B x < J < −B x + 

√ 

B 

2 
x + 2 B x (B.8a)

and 

1 − B x < J < 

1 

(B.9a)

2 i  
.e. if and only if 

B x + 

√ 

2 B x < J < 

1 

2 

and B x > 

1 

2 

, (B.10a)

hich is not in accordance with the default parameter values,

eaning that in realistic cases only F H+ may be admissible. 

The Purely leukemic steady states are the solutions of

(Y 0 , J) = 0 with 

(Y 0 , J) = R 

J + 

√ 

J 2 + 2 B y Y 0 

1 + Y 0 
− D 0 − D 1 Y 0 , (B.11)

here g is increasing with J . Inserting Y 0 = 0 give 

 crit = 

1 

2 

D 0 

R 

. (B.12)

s g ( y, J ) is increasing in J, g (0, J ) > 0 for J > J crit . For any fixed J, g ( y,

 ) < 0 for y sufficiently large. Since g is continuous, the intermediate

alue theorem ensures that for any fixed J > J crit there exists a y

atisfying g(y, J) = 0 i.e. a solution exists to (B.11) . 

Solutions of (B.11) are roots in the fourth order polynomial 

1 Y 
4 

0 + α2 Y 
3 

0 + α3 Y 
2 

0 + α4 Y 0 + α5 = 0 , (B.13)

ith the constraint 

D 0 

R 

+ 

D 1 

R 

Y 0 

)
(Y 0 + 1) > J, (B.14)

here 

1 = 

(
D 1 

R 

)2 

(B.15a)

2 = 2 

D 1 

R 

(
D 1 

R 

+ 

D 0 

R 

)
(B.15b)

3 = 

(
D 0 

R 

)2 

+ 

(
D 1 

R 

)2 

+ 2 

D 1 

R 

(
2 

D 0 

R 

− J 

)
(B.15c)

4 = 2 

((
D 0 

R 

− J 

)(
D 0 

R 

+ 

D 1 

R 

)
− B y 

)
(B.15d)

5 = 

D 0 

R 

(
D 0 

R 

− 2 J 

)
. (B.15e)

Note that α1 > 0, α2 > 0. For large J, α3 , α4 , α5 are all negative

o by Descartes’ rule of sign there is exactly one positive root to

he polynomial in this case showing that a leukemic steady state

s inevitable for large inflammatory stimuli J . 

Consider now B y < 

1 
2 

D 0 
R 

(
D 0 
R + 

D 1 
R 

)
. The coefficients α3 , α4 , α5 

hange sign once with increasing J . The root J L , 5 of α5 ( J ) being
1 
2 

D 0 
R , is smaller than the root J L , 4 of α4 ( J ), which again is smaller

han the root J L , 3 of α3 ( J ). This implies that as α5 crosses zero a

nique leukemic steady state is generated and it persists for any

arger J values as there is exactly one sign change in the coef-

cients of the polynomial for any J > 

1 
2 

D 0 
R . Solving α5 = 0 gives

B.12) . Thus the leukemic steady state emerges at Y 0 = 0 for J = J crit .

For B y > 

1 
2 

D 0 
R 

(
D 0 
R + 

D 1 
R 

)
, then α3 remains positive for J > J L , 4 

hile α4 and α5 behave like in the previous case. Contrary to the

revious case there exists a J between J L , 4 and J L , 5 such that α4 < 0

nd α5 > 0. Hence, there are two sign changes in the coefficients of

he polynomial, which indicate 0 or 2 roots. As J is increased such

hat α5 < 0 there is one sign change in the coefficients for all larger

alues of J . 

The criterion α5 > 0 thus guarantees a unique, positive root to

B.13) . Since at least one solution to (B.11) exists in this case, the

oot of the polynomial must satisfy (B.11) . 

As the polynomial on the left hand side of (B.13) is decreasing

n J and the unique root for J > 

1 D 0 occurs with a positive slope,
2 R 
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n increase in J must increase the value of the root i.e. Y 0 L ( J ) is

ncreasing for any J > 

1 
2 

D 0 
R . 

Notice, putting g = 0 in Eq. (B.11) is equivalent to Eq. (B.18) with

 0 = 0 . Thus the leukemic steady state and the co-existing steady

tate are equal for X 0 = 0 . By implicit function theorem it follows

hat for Y 0 ≥ Y 0 L the derivative of X 0 = X 0 (Y 0 ) with respect to Y 0 is

ositive corresponding to an increasing steady state trajectory in J .

From Eq. (10) co-existing steady states F C = (X 0 , Y 0 ) having

ositive components exist if and only if 

 + 

√ 

J 2 + 2 B x X 0 + 2 B y Y 0 = 1 + X 0 + C y Y 0 (B.16)

nd 

 + 

√ 

J 2 + 2 B x X 0 + 2 B y Y 0 = (1 + C x X 0 + Y 0 ) 
(

D 0 

R 

+ 

D 1 

R 

Y 0 

)
. (B.17)

ssuming solutions exist the equations are equivalent to, 

 + X 0 + C y Y 0 = 

(
D 0 

R 

+ 

D 1 

R 

Y 0 

)
(1 + C x X 0 + Y 0 ) (B.18)

nd 

 

J 2 + 2 B x X 0 + 2 B y Y 0 = 1 + X 0 + C y Y 0 − J. (B.19)

isregarding the possibility of double roots a solution exist if and

nly if 

 + X 0 + C y Y 0 > J, (B.20)

nd 

(1 + C x X 0 + Y 0 ) 
(

D 0 

R 

+ 

D 1 

R 

Y 0 

)
> J, (B.21)

hich have to be checked subsequently. 

Isolating X 0 in (B.18) 

 0 = 

( 1 + Y 0 ) 
(

D 0 
R 

+ 

D 1 
R 

Y 0 
)

− C y Y 0 − 1 

1 − C x 
(

D 0 
R 

+ 

D 1 
R 

Y 0 
) (B.22) 

or non-vanishing denominator and substituting it into (B.19) gives

he fourth order polynomium in Y 0 , 

η0 Y 
4 

0 + η1 (J − J C, 1 ) Y 
3 

0 + η2 (J − J C, 2 ) Y 
2 

0 

+ η3 (J − J C, 3 ) Y 0 + η4 (J − J C, 4 ) = 0 . (B.23) 

here 

η0 = −
(

D 1 

R 

)2 

(C x C y − 1) 2 (B.24) 

η1 = −2 

D 1 

R 

(
C x 

D 1 

R 

− C 2 x C y 
D 1 

R 

)
(B.25) 

η2 = 

(
(4 

D 0 D 1 

R 

2 
C y + 2 

D 

2 
1 

R 

2 
) C 2 x 

+(−2 

D 

2 
1 

R 

2 
− 2 

D 1 

R 

C y − 4 

D 0 D 1 

R 

2 
) C x + 2 

D 1 

R 

)
(B.26) 

η3 = 

(
(2 C y 

D 

2 
0 

R 

2 
+ 4 

D 0 D 1 

R 

2 
) C 2 x + (−2 C y 

D 0 

R 

− 2 

D 

2 
0 

R 

2 
− 4 

D 0 D 1 

R 

2 
) C x 

+(−2 

D 1 

R 

) C x + 2 

(
D 0 

R 

+ 

D 1 

R 

))
(B.27) 

η4 = 

(
(2 

D 

2 
0 ) C 2 + (−2 

D 

2 
0 − 2 

D 0 
) C x + 2 

D 0 

)
(B.28) 
R 

2 x R 

2 R R 
nd 

J C, 1 = 

1 

η1 

((
−2 C 2 y 

(
D 0 

R 

)
+ B y 

(
D 1 

R 

)
− 2 C y 

(
D 1 

R 

))
C 2 x 

+ 

(
2 

(
D 1 

R 

)
+ 2(2 D 0 + D 1 ) 

C y 

R 

− B x 
D 1 

R 

)
C x + 

2 

R 

(D 0 + D 1 ) 
)

(B.29) 

J C, 2 = 

1 

η2 

(
(C 2 y 

(
D 0 

R 

)2 

+ 2 

D 0 D 1 

R 

2 
(2 C y − B y ) + 

D 

2 
1 

R 

2 
) C 2 x 

+ 

(
D 

2 
1 

R 

2 
(B x − 2) − 2 C y 

D 

2 
0 

R 

2 
− D 1 

R 

(C y B x − 2 B y ) 

)
C x 

)

+ 

1 

η2 

(
D 0 D 1 

R 

2 
(2 B x −4 C y −4) C x −D 1 

R 

B x + 4 

D 0 D 1 

R 

2 
+ 

1 

R 

2 
(D 

2 
0 + D 

2 
1 ) 

)
(B.30) 

J C, 3 = 

1 

η3 

(
D 

2 
0 

R 2 
(2 C y − B y ) + 2 

D 0 D 1 

R 2 

)
C 2 x 

+ 

(
D 0 

R 
(−B x C y + 2 B y ) −

D 

2 
0 

R 2 
(−B x + 2 C y + 2) − D 0 D 1 

R 2 
(−2 B x + 4) 

)
C x 

− 1 

η3 

((
D 1 

R 
B x 

)
C x −

(
D 0 

R 
+ 

D 1 

R 

)
B x + B x C y −B y + 2 

D 0 

R 2 
(D 0 + D 1 ) 

)
, 

(B.31) 

J C, 4 = 

1 

η4 

(
D 

2 
0 

R 2 
C 2 x −

(
2 

D 

2 
0 

R 2 
+ 

D 0 

R 
B x − B x 

D 

2 
0 

R 2 

)
C x − D 0 

R 
B x + B x + 

D 

2 
0 

R 2 

)
. 

(B.32) 

For default values of parameters, Eq. (B.23) becomes 

8 . 72 · 10 

−6 Y 4 0 − 3 . 68 · 10 

−3 (J + 0 . 61) Y 3 0 

+4 . 39 · 10 

−2 ( J + 1 . 06) Y 2 0 + ( J − 0 . 71) Y 0 − 4( J − 0 . 27) = 0 . 

(B.33) 

From the default parameters it follows that

 C , 2 < J C , 1 < 0 < J C , 4 < J C , 3 < J and by Descartes’ rule of sign there

xists one or three positive and real root if and only if J > J C 4 . From

umeric considerations it follows that the number of positive

 0 -roots are three. However, two of these cause X 0 to be negative

n accordance with Eq. (B.20 –B.21) . Thus exactly one co-existing

teady state exist. 
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