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A B S T R A C T

Stem cells in the bone marrow differentiate to ultimately become mature, functioning blood cells through a tightly regulated process (hematopoiesis) including
a stem cell niche interaction and feedback through the immune system. Mutations in a hematopoietic stem cell can create a cancer stem cell leading to a less
controlled production of malfunctioning cells in the hematopoietic system. This was mathematically modelled by Andersen et al. (2017) including the dynamic
variables: healthy and cancer stem cells and mature cells, dead cells and an immune system response. Here, we apply a quasi steady state approximation to
this model to construct a two dimensional model with four algebraic equations denoted the simple cancitis model. The two dynamic variables are the clinically
available quantities JAK2V617F allele burden and the number of white blood cells. The simple cancitis model represents the original model very well. Complete
phase space analysis of the simple cancitis model is performed, including proving the existence and location of globally attracting steady states. Hence, parameter
values from compartments of stem cells, mature cells and immune cells are directly linked to disease and treatment prognosis, showing the crucial importance of
early intervention. The simple cancitis model allows for a complete analysis of the long term evolution of trajectories. In particular, the value of the self renewal
of the hematopoietic stem cells divided by the self renewal of the cancer stem cells is found to be an important diagnostic marker and perturbing this parameter
value at intervention allows the model to reproduce clinical data. Treatment at low cancer cell numbers allows returning to healthy blood production while the
same intervention at a later disease stage can lead to eradication of healthy blood producing cells.

Assuming the total number of white blood cells is constant in the early cancer phase while the allele burden increases, a one dimensional model is suggested
and explicitly solved, including parameters from all original compartments. The solution explicitly shows that exogenous inflammation promotes blood cancer
when cancer stem cells reproduce more efficiently than hematopoietic stem cells.

1. Introduction

Production of blood cells is denoted hematopoiesis. In the bone
marrow reside the hematopoietic stem cells (HSC) that differentiate
through multiple cell divisions into mature cells (MC) such as neu-
trophils, platelets, and red blood cells [1]. The number of human HSC
has been estimated to be of the order of 104–105 each dividing every
25th to 50th week [2,3]. An order of magnitude of 1011 mature blood
cells are produced daily [4], corresponding to millions per second,
equivalent to 10 kg per year [5]. Clearly, a tight regulation of blood
cell production is crucial and disturbances to this regulation may be
severe.

Mathematical modelling has a prominent role in the study of
hematopoiesis and its disorders and may be addressed from vari-
ous areas of applied mathematics such as ordinary differential equa-
tions (ODE) [6–10], partial differential equations (PDE) [11–13], delay
differential equations [5,14] or stochastic models [15–18]. Böttcher
et al. [19] investigate the replicative capacity of progenitors and differ-
entiated cells and use an ODE-model to investigate the cellular ageing
based on data for telomere lengths and discuss implications for chronic
myeloid leukemia. This approach relies on a discrete age structure,

∗ Corresponding author.
E-mail address: moan@ruc.dk (M. Andersen).

whereas for example Doumic et al. [20] consider a continuous age
structure including stem cell dynamics, naturally leading to a PDE-
formulation. Ashcroft et al. [21] focus on stem cell dynamics and use
stochastic modelling to investigate wild type and mutant stem cells
migrating back and forth to the blood stream and calibrate the model
based on murine data.

Mutations in the DNA of the stem cells may be uncritical for
hematopoiesis (neutral/passenger mutations) or they may be criti-
cally disturbing (driver mutations), giving rise to blood cancer char-
acterized by an overproduction of malfunctioning mature cells — so-
called transformed cells, which increase the risk of thrombosis [22].
Of special interest is the BCR-ABL1 kinase translocation (the Philadel-
phia chromosome) as a driver for chronic myeloid leukemia, which
has been studied using mathematical modelling [23–34]. However,
the focus of the present paper is the type of blood cancers denoted
Philadelphia-negative myeloprofilerative neoplasms (MPNs) including
essential thrombocytosis, polycythemia vera and primary myelofibro-
sis. These are stem cell disorders evolving on a time scale of years
characterized by few acquired driver mutations, where JAK2V617F
(JAK2) is the most common [35].
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Few previous studies have addressed mathematical modelling of
human MPNs. Zhang et al. [36] recently investigated a model of MPNs
with inflammation as a fixed, constant input. Andersen et al. [37]
proposed a more comprehensive model of human MPN development
that is the starting point for the present paper. JAK2 mutated cells are
explicitly included at stem cell and mature cell level. As dynamical
variables we include hematopoietic and cancer stem cells that battle
through a stem cell niche interaction, hematopoietic and cancer mature
cells, dead cells and inflammation level. This allows for investigation of
several intricate couplings: How does the population of hematopoietic
and cancer stem cells evolve and interact and how does this depend on
the remaining part of the system? Is cancer development aligned with
development of increasing inflammation and vice versa, is increasing
inflammation positively or negatively affecting cancer progression?
Which mechanisms should be altered to stop further disease progression
or ultimately cure the patient? The long term behaviour of trajectories
is investigated by a thorough analysis of attractors of the system
elucidating conditions and intervention strategies for cancer escape,
elimination, or equilibrium. In [38] the model is extended with T-
cell response. Here, we disregard this extension to allow for analytical
investigation.

Section 2 presents the basic Cancitis model originally proposed
in [37]. A useful quasi-steady state approximation appears in Sec-
tion 2.1. In Section 2.2 the system is transformed into the clinically
relevant variables and the equations are scaled and a comprehensive
analysis of the topology of the dynamics is presented. The model is com-
pared to data and discussed in Section 3 along with various intervention
strategies derived from the analysis of the model. The structure of the
transformed equations suggests that early cancer dynamics, with and
without treatment, can be captured by an explicit solution controlled
by a single, lumped parameter.

2. Mathematical model of coupled blood production, blood cancer
and inflammation

Fig. 1 illustrates how hematopoiesis can be maintained on a sys-
temic level. Hematopoietic stem cells, 𝑥0, can self renew where a non-
linear inhibitory feedback accounts for limited niche space, resources,
and cytokine feedback. Stem cells may also differentiate through multi-
ple steps (represented by amplification factor, 𝐴) to mature blood cells,
𝑥1, here being exemplified by the white blood cells (neutrophils). Both
cell types may die, and debris of the dead cells, 𝑎, is eliminated or
recycled by the immune system, here lumped together in one compart-
ment, 𝑠, typically represented by cytokines associated with the immune
system activity such as IL-1𝛽, IL-1Ra. Il-2R, IL-8, Il-10,IL-12 and C-
reactive protein. Excess of dead cells leads to increased clearance by
immune cells (red arrow). A need for extra or fewer mature blood cells
is thus mediated through the immune system [37–39].

In case of a stem cell mutation such as JAK2, Fig. 1 may be
expanded with a stem cell compartment of cancer stem cells, CSC (𝑦0),
as well as mutated mature blood cells (𝑦1) which is seen in Fig. 2,
with corresponding equations (1), introduced by Andersen et al. [37]
inspired by the models of chronic myeloid leukemia by Dingli and
Michor [40] and by Stiehl et al. [41].

The introduction of mutated cells implies a competition at stem cell
level where the HSC and CSC compete for space and nutrients in the
bone marrow niche. Hematopoietic stem cells are characterized by a
self renewal rate, 𝑟𝑥, death rate, 𝑑𝑥0, and differentiation into progeny,
𝑎𝑥. An inhibitory feedback, 𝜙𝑥(𝑥0, 𝑦0), from the stem cell niche takes
into account the limited space and nutrient supply and the competition
between HSC and CSC. Inflammation stimulates self renewal of stem
cells [42] which is motivated by death of mature healthy cells and
provides a demand for replacement by new ones. Hence, the effective
self renewal is chosen as 𝑟𝑥𝜙𝑥(𝑥0, 𝑦0)𝑠. Finally, HSC may mutate to
become CSC with rate 𝑟𝑚. The chance of mutation is believed to
increase with inflammation [36,43–53] justifying an effective mutation
rate being 𝑟𝑚𝑠.

Fig. 1. Blood production in a healthy individual is regulated by hematopoietic stem
cells (𝑥0) that self renew with rate 𝑟𝑥 regulated by a stem cell niche feedback, 𝜙(𝑥0)
and cytokine feedback (red arrow from 𝑠 compartment) or differentiate with rate 𝑎𝑥
in multiple steps (illustrated by amplification 𝐴) to ultimately becoming hematopoietic
mature cells (𝑥1). HSC die with rate 𝑑𝑥0 and mature blood cells die with rate 𝑑𝑥1.
Dead cells (𝑎) are engulfed by the immune system that here is pooled together in one
compartment (𝑠) that stimulates clearing of dead cells with rate 𝑒𝑎. Presence of dead
cells stimulates immune cells with rate 𝑟𝑠. Endotoxins, smoking and other environmental
factors may add to the inflammatory response, thus we add such a term (characterized
by the lightning symbol).

Proliferating stem cells go through a sequence of cell divisions to
ultimately become mature, differentiated cells. As we do not account
for all intermediate division steps, the growth rate of mature blood
cells is 𝑎𝑥 multiplied with amplification factor, 𝐴𝑥. The mature cells
undergo apoptosis with rate 𝑑𝑥1 . Differential equations for CSC and
cancer mature cells are described similar to their healthy counterparts.

The apoptosis compartment is a collection of all cells that have
undergone apoptosis and is therefore positively stimulated by cells from
other compartments with this destiny and negatively affected by clear-
ing by the immune cells, which is happening through a second order
mechanism — dead cells encountering immune cells are eliminated
with a second order rate 𝑒𝑎.

The immune system activity level is exemplified by cytokines such
as IL 6 or IL 8 that are inflammation markers related to hematological
malignancies [46]. The complexity of the immune system is assumed to
be simplified due to a fast immune response compared to the remaining
dynamics resulting in a single, dynamical variable, 𝑠.

The immune level activity is stimulated by the presence of dead
cells and has a self elimination proportional to the population size.
Further, an exogenous immune stimulation is possible through 𝐼(𝑡) such
as microbial infection and inflammation (e.g. smoking and pollution).
The resulting differential equations are shown in (1).

𝑥′0 =
(

𝑟𝑥𝜙𝑥𝑠 − 𝑑𝑥0 − 𝑎𝑥
)

𝑥0 − 𝑟𝑚𝑠𝑥0 (1a)

𝑥′1 = 𝑎𝑥𝐴𝑥𝑥0 − 𝑑𝑥1𝑥1 (1b)

𝑦′0 =
(

𝑟𝑦𝜙𝑦𝑠 − 𝑑𝑦0 − 𝑎𝑦
)

𝑦0 + 𝑟𝑚𝑠𝑥0 (1c)

𝑦′1 = 𝑎𝑦𝐴𝑦𝑦0 − 𝑑𝑦1𝑦1 (1d)

𝑎′ = 𝑑𝑥0𝑥0 + 𝑑𝑦0𝑦0 + 𝑑𝑥1𝑥1 + 𝑑𝑦1𝑦1 − 𝑒𝑎𝑎𝑠 (1e)

𝑠′ = 𝑟𝑠𝑎 − 𝑒𝑠𝑠 + 𝐼(𝑡) (1f)

2
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Fig. 2. The hematopoiesis-cancer-inflammation model consists of six cell populations;
the hematopoietic stem cells (HSC), the hematopoietic mature cells (HMC), the cancer
stem cells (CSC), and the cancer mature cells (CMC), dead cells and cytokines. The
mechanisms described in Fig. 1 are included also for cancer cells. HSC mutates with
rate 𝑟𝑚 to become CSC. The stem cell niche feedbacks, 𝜙𝑥 and 𝜙𝑦 now depend on both
CSC and HSC to comply with the competition for space and growth signals.

𝜙𝑥 = 𝜙𝑥(𝑥0, 𝑦0) =
1

1 +
(

𝑐𝑥𝑥𝑥0 + 𝑐𝑥𝑦𝑦0
)2

(1g)

𝜙𝑦 = 𝜙𝑥(𝑥0, 𝑦0) =
1

1 +
(

𝑐𝑦𝑥𝑥0 + 𝑐𝑦𝑦𝑦0
)2

. (1h)

As the model is inspired by Dingli and Michor [40], the default
parameter values should be comparable to theirs. The cell numbers are
chosen as typical numbers for a human. Prior to the first cancer stem
cell, the model should be in steady state with 1010 mature blood cells
(the neutrophil count, similar approach as in [41]), and 104 HSC which
is a compromise between different reported values [40,41,54–56]. For
a lifetime of one week in tissue, we chose 𝑑𝑥1 = 0.1 per day [57]. The
effective self renewal of stem cells 𝑟𝑥𝜙𝑥𝑠 is chosen to match cell division
once per year.

The inflammatory level, 𝑠, is an abstract, scalable quantity whose
progression which correlate with the inflammation markers IL-1𝛽, IL-
1Ra. Il-2R, IL-8, Il-10, IL-12 and C-reactive protein. Production of dead
cells is correlated with plasma lactic dehydrogenase, see [37] including
supplementary material for further details.

We expect 𝑟𝑦 > 𝑟𝑥 for a blood cancer to develop, typically of
measurable size after 5–10 years. For simplicity, we let unknown cancer
cell parameter values equal their healthy counterpart. To satisfy the
above conditions, the default parameter values in Table 1 are obtained.
For further details on parameter estimation for this model, see [37].

The mutant rate is set to default value 2 ⋅ 10−8 such that expansion
of CSC is driven by mutations for CSC-values less than 1 and the CSC
expansion is dominated by self renewal for CSC larger than 1. As the
mutation rate increases with inflammation [58,59] the effective muta-
tion rate is included as 𝑟𝑚𝑠. In the further analysis we both investigate
the effect of a continuous mutation corresponding to 𝑟𝑚 > 0 and to a
single event mutation corresponding to initializing the model with a
single cancer cell but letting 𝑟𝑚 = 0.

2.1. The simple cancitis model

The dynamics of cytokine regulation is fast compared to blood
production [25]. Furthermore, white blood cells in the blood stream
have a lifetime of six hours [60] to a week [57], while hematopoietic
stem cells divide about once per year [61]. Therefore, we insist on

Table 1
Default parameter values of model (1) given as total cells per human (a male of weight
70 kg).

Parameter Value Unit Parameter Value Unit

𝑟𝑥 8.7 ⋅ 10−4 day−1 𝑟𝑦 1.3 ⋅ 10−3 day−1

𝑎𝑥 1.1 ⋅ 10−5 day−1 𝑎𝑦 1.1 ⋅ 10−5 day−1

𝐴𝑥 3.7 ⋅ 1010 – 𝐴𝑦 3.7 ⋅ 1010 –
𝑑𝑥0 2 ⋅ 10−3 day−1 𝑑𝑦0 2 ⋅ 10−3 day−1

𝑑𝑥1 0.1 day−1 𝑑𝑦1 0.1 day−1

𝑐𝑥𝑥 7.5 ⋅ 10−5 – 𝑐𝑦𝑦 7.5 ⋅ 10−5 –
𝑐𝑥𝑦 𝑐𝑥𝑥 – 𝑐𝑦𝑥 𝑐𝑦𝑦 –
𝑒𝑠 2 day−1 𝑟𝑠 3 ⋅ 10−4 day−1

𝑒𝑎 1.6 ⋅ 106 day−1 𝐼 7 day−1

𝑟𝑚 0 or 2 ⋅ 10−8 day−1

Fig. 3. Comparison of the full model (1) and the simple model (3) using default
parameter values. Blue curve is the number of hematopoietic stem cells, red curve
is number of cancer stem cells using the full model. Grey curves are the corresponding
quantities in the reduced model.

mature cells and immune cells to be quickly equilibrated with the stem
cell dynamics leading to the quasi steady state assumption

𝑥′1 = 𝑦′1 = 𝑎′ = 𝑠′ = 0 , (2)

and with constant 𝐼 making the system autonomous.
This leads to a two dimensional coupled ode-system, the simple

Cancitis model (see the Appendix for detailed derivation)

𝑥′0 =
(

𝑟𝑥𝜙𝑥𝑠 − 𝑑𝑥0 − 𝑎𝑥
)

𝑥0 − 𝑟𝑚𝑠𝑥0 (3a)

𝑦′0 =
(

𝑟𝑦𝜙𝑦𝑠 − 𝑑𝑦0 − 𝑎𝑦
)

𝑦0 + 𝑟𝑚𝑠𝑥0 (3b)

𝑥1 =
𝑎𝑥𝐴𝑥
𝑑𝑥1

𝑥0 (3c)

𝑦1 =
𝑎𝑦𝐴𝑦

𝑑𝑦1
𝑦0 (3d)

𝑠 = 𝐼
2𝑒𝑠

+

√

(

𝐼
2𝑒𝑠

)2
+

𝑟𝑠
(

𝑎𝑥𝐴𝑥 + 𝑑𝑥0
)

𝑒𝑎𝑒𝑠

(

𝑥0 +
𝑎𝑦𝐴𝑦 + 𝑑𝑦0
𝑎𝑥𝐴𝑥 + 𝑑𝑥0

𝑦0

)

(3e)

𝑎 = − 𝐼
2𝑟𝑠

+
𝑒𝑠
𝑟𝑠

√

(

𝐼
2𝑒𝑠

)2
+

𝑟𝑠
(

𝑎𝑥𝐴𝑥 + 𝑑𝑥0
)

𝑒𝑎𝑒𝑠

(

𝑥0 +
𝑎𝑦𝐴𝑦 + 𝑑𝑦0
𝑎𝑥𝐴𝑥 + 𝑑𝑥0

𝑦0

)

(3f)

𝜙𝑥 = 𝜙𝑥(𝑥0, 𝑦0) =
1

1 +
(

𝑐𝑥𝑥𝑥0 + 𝑐𝑥𝑦𝑦0
)2

(3g)

𝜙𝑦 = 𝜙𝑥(𝑥0, 𝑦0) =
1

1 +
(

𝑐𝑦𝑥𝑥0 + 𝑐𝑦𝑦𝑦0
)2

. (3h)

Allowed initial values of (𝑥0, 𝑦0) belong to 1 = R+ ∪ {0} × R+ ∪ {0}.
The parameter values are non negative so 1 is invariant to the flow
defined by Eq. (3).

Using default parameter values, system (3) is an excellent approxi-
mation to system (1) — see Fig. 3. To test the robustness, parameter
values and initial conditions are varied and 100 simulations were
performed. All initial conditions and parameters (except 𝑟𝑥, 𝑑𝑥1, 𝐴𝑥, 𝑒𝑠)
are chosen from a normal distribution with mean given by the default
value and standard deviation being 25% of the default value. If a

3
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negative value is sampled, then the value is discarded and a new sample
is taken. The parameters 𝑟𝑥, 𝑑𝑥1, 𝐴𝑥, 𝑒𝑠 are then chosen such that the
system is initiated at the hematopoietic steady state for mutation rate
𝑟𝑚 = 0 and no initial cancer cells present. The full model and the simple
model are evaluated daily for 80 years. The difference for each variable,
𝑥0, 𝑥1, 𝑦0, 𝑦1, 𝑎, 𝑠 is computed and normalized by the initial value except
𝑦0 and 𝑦1 which are normalized by their hematopoietic counterpart.
The maximum distance is then computed as the maximum deviation
i.e. using the 𝐿∞ norm. Due to the normalization, the distance is a
dimension free number. The distance is less than 0.004 for all variables
for all simulations, which means there is no visual difference in plots
such as observed in Fig. 3. Hence, the difference between the full and
simple model scaled by the baseline value is at any point in time less
than one percent so the reduced model is a good approximation to the
full model in all investigated cases.

2.2. Reformulating the simple model using the total white blood cells and
JAK2 allele burden

The simple model can be formulated as a closed system of 𝑥1 and
𝑦1 using the proportionality between 𝑥0 and 𝑥1 and between 𝑦0 and 𝑦1.
Excluding (𝑥1, 𝑦1) = (0, 0) we can define the coordinate transformation
1 ⧵ {(0, 0)} → R+ × [0, 1], (𝑥1, 𝑦1) → (𝑧1, 𝑧2) where 𝑧1 ∈ R+ is the
total number of white blood cells and 𝑧2 ∈ [0, 1] is the JAK2 allele
burden. Thus we exclude the trivial possibility of having no mature
cells corresponding to 𝑧1 = 0.

𝑧1 = 𝑥1 + 𝑦1 (4a)

𝑧2 =
𝑦1

𝑥1 + 𝑦1
(4b)

with inverse mapping

𝑥1 = 𝑧1(1 − 𝑧2) (5a)

𝑦1 = 𝑧1𝑧2 . (5b)

This means that the clinically, measurable quantities are explicitly
modelled as the only dynamic variables. Some parameters are difficult
to assess, so for simplicity some parameters of the healthy cells and the
cancer cells are chosen to be equal. Following [37] we investigate the
case with the constraints

𝑎𝑥 = 𝑎𝑦 (6a)

𝐴𝑥 = 𝐴𝑦 (6b)

𝑑𝑥0 = 𝑑𝑦0 (6c)

𝑑𝑥1 = 𝑑𝑦1 (6d)

𝑐𝑥𝑥 = 𝑐𝑦𝑦 . (6e)

An analysis relaxing Eq. (6) is omitted here due to the parsimonious
principle and lack of data.

The equations of total number of white blood cells and allele burden
from Eqs. (3) and (4a) then simplify to

𝑧′1 = 𝑧1
((

𝑟𝑥 + 𝑧2
(

𝑟𝑦 − 𝑟𝑥
))

�̃��̃� − 𝑑𝑥0 − 𝑎𝑥
)

(7a)

𝑧′2 =
(

1 − 𝑧2
) (

𝑧2
(

𝑟𝑦 − 𝑟𝑥
)

�̃� + 𝑟𝑚
)

�̃� (7b)

�̃� = 1

1 +
(

𝑐𝑥𝑥
𝑑𝑥1
𝑎𝑥𝐴𝑥

)2
𝑧21

(7c)

�̃� = 𝐼
2𝑒𝑠

+

√

(

𝐼
2𝑒𝑠

)2
+

𝑑𝑥1
𝑎𝑥𝐴𝑥

𝑟𝑠
(

𝑎𝑥𝐴𝑥 + 𝑑𝑥0
)

𝑒𝑎𝑒𝑠
𝑧1 . (7d)

Then hypotheses based on clinical data can be directly investigated in
the model and vice versa that features in the model may give rise to
hypotheses that may be tested from appropriate clinical data. We will
study system (7) with 𝑧1 ≥ 0 and 0 ≤ 𝑧2 ≤ 1. In particular, we will
allow 𝑧1 = 0 in the subsequent analysis even though the coordinate

transformation (𝑥1, 𝑦1) ↔ (𝑧1, 𝑧2) is not defined here. The differential
equations (7) can easily be defined for 𝑧1 = 0, and the stability of fixed
points on the line 𝑧1 = 0 provides information on phase space for 𝑧1 > 0
where the coordinate transformation is well defined.

For 𝑧2(0) ∈ [0; 1], 𝑧2(𝑡) stays within this interval as (1−𝑧2) is a factor
in 𝑧′2 and for 𝑧2 = 0, 𝑧′2 ≥ 0. From Eq. (7a) we see that �̃��̃� is going to 0
for 𝑧1 approaching infinity implying there exists a number 𝑀 such that
for 𝑧1 > 𝑀 then �̇�1 < 0. For non negative initial conditions, 𝑧1(𝑡) stays
non negative (as 𝑧1 = 0 is a 𝑧1 null cline). Therefore, the compact set
[0,𝑀] × [0, 1] is an attracting trapping region for the system.

2.3. Scaled equations

A scaled form of Eq. (7) is now formulated to facilitate further
analysis. We introduce a constant �̄� (value to be determined) and a
variable, 𝑍1, such that

𝑧1 = �̄�𝑍1 . (8)

Similarly, we introduce the dimensionless time 𝜏 by

𝑡 = 𝑡𝜏 , (9)

where 𝑡 is a constant to be determined. Then, differential equations of
𝑍1 and 𝑧2 can be formulated from Eqs. (8), (9) and (7) with the notation
�̇� = 𝑑𝑧

𝑑𝜏 . From the chain rule and Eq. (8)

�̇�1 =
𝑡
�̄�
𝑧′1 . (10)

Inserting the expression for 𝑧′1 from Eq. (7a) along with Eq. (8) we
obtain

�̇�1 = 𝑡𝑍1
((

𝑟𝑥 + 𝑧2
(

𝑟𝑦 − 𝑟𝑥
))

�̃��̃� − 𝑑𝑥0 − 𝑎𝑥
)

(11)

with

�̃��̃� = 𝐼
2𝑒𝑠

1 +
√

1 + 4𝑒𝑠𝑑𝑥1𝑟𝑠
𝑎𝑥𝐴𝑥+𝑑𝑥0
𝐼2𝑎𝑥𝐴𝑥𝑒𝑎

�̄�𝑍1

1 +
(

𝑐𝑥𝑥𝑑𝑥1
𝑎𝑥𝐴𝑥

)2
�̄�2𝑍2

1

(12)

To simplify the denominator, we choose

�̄� =
𝑎𝑥𝐴𝑥
𝑐𝑥𝑥𝑑𝑥1

(13)

denoting the lumped parameter expression in the numerator by 𝛽1,

𝛽1 = 4
𝑒𝑠𝑟𝑠

𝑐𝑥𝑥𝑒𝑎𝐼2
(

𝑎𝑥𝐴𝑥 + 𝑑𝑥0
)

, (14)

Eq. (11) becomes

�̇�1 = 𝑡𝑍1

(

𝑟𝑥
𝐼
2𝑒𝑠

(

1 + 𝑧2

( 𝑟𝑦
𝑟𝑥

− 1
)) 1 +

√

1 + 𝛽1𝑍1

1 +𝑍2
1

− 𝑑𝑥0 − 𝑎𝑥

)

. (15)

By choosing

𝑡 =
2𝑒𝑠
𝑟𝑥𝐼

, (16)

the first term is simplified, and we may conveniently introduce two
lumped parameters, 𝛽2 and 𝛽3 by

𝛽2 =
𝑟𝑦
𝑟𝑥

− 1 (17a)

𝛽3 = 2
𝑒𝑠
𝑟𝑥𝐼

(

𝑑𝑥0 + 𝑎𝑥
)

. (17b)

For �̇�2 the equation then becomes

�̇�2 = 𝑡𝑧′2 =
(

1 − 𝑧2
) 1 +

√

1 + 𝛽1𝑍1

1 +𝑍2
1

(

𝛽2𝑧2 +
𝑟𝑚
𝑟𝑥

(

1 +𝑍2
1
)

)

(18)

which suggests a fourth lumped parameters as

𝛽4 =
𝑟𝑚
𝑟𝑥

. (19)

4
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Table 2
Default parameter values of system (21).
𝛽1 𝛽2 𝛽3 𝛽4
0.16 0.48 1.32 2.3 ⋅ 10−5

In summary, we obtain the system

�̇�1 = 𝑍1

(

(

1 + 𝛽2𝑧2
) 1 +

√

1 + 𝛽1𝑍1

1 +𝑍2
1

− 𝛽3

)

(20a)

�̇�2 =
(

1 − 𝑧2
) 1 +

√

1 + 𝛽1𝑍1

1 +𝑍2
1

(

𝛽2𝑧2 + 𝛽4
(

1 +𝑍2
1
))

, (20b)

with new parameters given by relations to the old ones

𝛽1 = 4
𝑒𝑠𝑟𝑠

𝑐𝑥𝑥𝑒𝑎𝐼2
(

𝑎𝑥𝐴𝑥 + 𝑑𝑥0
)

(21a)

𝛽2 =
𝑟𝑦
𝑟𝑥

− 1 (21b)

𝛽3 = 2
𝑒𝑠
𝑟𝑥𝐼

(

𝑑𝑥0 + 𝑎𝑥
)

(21c)

𝛽4 =
𝑟𝑚
𝑟𝑥

. (21d)

Eqs. (20) describe the mature cells (𝑍1) in reduced units (Eq. (8))
and allele burden (𝑧2) progression over time, with parameters related
to stem cell, mature cell and immune system mechanisms. Parameters
are constrained by 𝛽1, 𝛽3 > 0 and 𝛽4 ≥ 0 and 𝛽2 ≥ −1, with default
parameter values in Table 2 computed from the default parameters
of the full model, Table 1. The parameter 𝛽2 is related solely to the
stem cell compartments, with negative values if 𝑟𝑥 > 𝑟𝑦 and positive
values if 𝑟𝑥 < 𝑟𝑦. The parameter 𝛽4 is the mutation rate relative to the
hematopoietic self renewal rate. The value of this parameter will also
be investigated when equal to zero, to allow for a one hit mutation (by
setting the initial condition to one cancer cell) instead of considering a
continuous mutation rate. The parameters 𝛽1 and 𝛽3 provide nontrivial
connections between original system parameters related to the immune
cells, dead cells, stem cells and mature cells. 𝛽3 is the product of two
lumped parameters that are important for cell exhaustion namely a
loss versus production term on stem cell level, 𝑎𝑥+𝑑0

𝑟𝑥
, and a loss versus

production term at immune cell level, 𝑒𝑠
𝐼 .

Regarding 𝛽1, the presence of 𝑎𝑥𝐴𝑥 implies that an increase in
proliferation signal increase the 𝛽1-value. An increased strength of the
niche feedback (increasing 𝑐𝑥𝑥) leads to a decreased 𝛽1. Except for 𝑐𝑥𝑥,
the original parameters entering 𝛽1 relates to the value of apoptotic
cells and immune cells for a given number of stem cells — see Eqs. (3e)
and (3f), as a ratio between effects that increase 𝑎 and 𝑠 levels namely
𝑟𝑠
𝑒𝑎𝑒𝑠

(

𝑎𝑥𝐴𝑥 + 𝑑𝑥0
)

and
(

𝐼
𝑒𝑠

)2
.

2.4. Phase space analysis

The reduction from six differential equations to two has several
useful implications. The order of the phase space is reduced from
six to two allowing visualizations using the phase plane giving an
overview of trajectories for many initial conditions simultaneously. The
two-dimensional dynamics is quite restricted since trajectories cannot
cross as the existence and uniqueness theorem applies. In the reduced
model, the parameters of the full system are grouped in the param-
eters 𝛽1,… , 𝛽4 showing the minimum number of parameters giving a
functional dependence on the original parameters that otherwise would
have shown up as correlated. The simplicity of system (20) implies that
significant analysis can be conducted which is the focus of the current
section. To categorize the steady states satisfying �̇�1 = �̇�2 = 0 we
employ the following vocabulary:

• A hematopoietic steady state is defined as having 𝑧2 = 0.
• A cancer steady state is defined as having 𝑧2 = 1.
• A co-existing steady state is defined as having 0 < 𝑧2 < 1.

A cancer steady state always exists with value (𝑍1, 𝑧2) = (0, 1). For
𝛽4 = 0 also (𝑍1, 𝑧2) = (0, 0) is a trivial steady state solution.

2.4.1. Analytic bound on trapping region
The existence of a trapping region is already established. An analytic

expression of an upper bound of 𝑍1 at the trapping region boundary is
formulated. Consider Eq. (20a) for 𝑍1 ≥ 1 implying 0 < 𝑍−1

1 ≤ 1,

(

1 + 𝛽2𝑧2
) 1 +

√

1 + 𝛽1𝑍1

1 +𝑍2
1

− 𝛽3 ≤
(

1 + |𝛽2|
)

𝑍−1
1 +

√

𝑍−2
1 + 𝛽1𝑍−1

1

𝑍−1
1 +𝑍1

− 𝛽3

≤
(

1 + |𝛽2|
) 1 +

√

1 + 𝛽1
𝑍1

− 𝛽3 . (22)

Solving for 𝑍1 requiring the latter expression being negative, an upper
bound on the trapping region in the 𝑍1 direction is obtained,

𝑀1 = max{1,
(

1 + |𝛽2|
) 1 +

√

1 + 𝛽1
𝛽3

} =
(

1 + |𝛽2|
) 1 +

√

1 + 𝛽1
𝛽3

, (23)

For 𝛽2 < 0, |1 + 𝛽2𝑧2| ≤ 1, providing the smaller bound

𝑀2 = max{1,
1 +

√

1 + 𝛽1
𝛽3

} . (24)

Hence, an attractive trapping region is 𝑀1 × [0, 1] for 𝛽2 > 0 and
𝑀2 × [0, 1] for 𝛽2 < 0. This implies that solutions initially located
outside the trapping region are attracted to it, and any solution once
in the trapping region will stay there. A consequence of this is that the
trajectories exist globally in forward time [62].

The possible dynamics in bounded, two-dimensional flow is very
limited as the only attractors are fixed points or limit cycles. We restate
the Poincaré–Bendixon theorem as stated in for example [63].

Theorem 1 (Poincaré–Bendixon). Given a system of ordinary differential
equations 𝑑𝑥

𝑑𝑡 = 𝐹 (𝑥), where 𝑥 is two dimensional, let 𝑥(𝑡) represent
a solution trajectory of the system which is bounded. Then either 𝑥(𝑡)
converges as 𝑡 → ∞ to an equilibrium point of the system, or it converges to
a periodic cycle.

Remark 1. Due to index theory [64], any periodic solution in a
two-dimensional phase space must have at least one fixed point in its
interior. Therefore, if no coexistence steady states exist, then no limit
cycles can exist. From monotonicity properties of Eq. (20b), 𝑧2 = 0
only allows for coexistence points and limit cycles if 𝛽2 < 0 and 𝛽4 > 0
i.e. if HSC self renewal dominates CSC self renewal and new CSC are
continuously produced by mutations.

All steady state solutions are roots of a polynomial of at most fifth
order which easily can be solved numerically using standard software.
As an example, consider the nontrivial cancer steady state satisfying
𝑧2 = 1 and 𝑍1 being the solution of

0 =

(

(

1 + 𝛽2
) 1 +

√

1 + 𝛽1𝑍1

1 +𝑍2
1

− 𝛽3

)

(25)

corresponding to
√

1 + 𝛽1𝑍1 =
𝛽3

1 + 𝛽2

(

1 +𝑍2
1
)

. (26)

Squaring this expression gives a fourth order polynomial.

0 =
(

𝛽3
1 + 𝛽2

)2
𝑍4

1 + 2
(

𝛽3
1 + 𝛽2

)2
𝑍2

1 − 𝛽1𝑍1 +
(

𝛽3
1 + 𝛽2

)2
− 1 . (27)

All roots can then easily be computed numerically for a given set of
parameter values. Then, the relevant, physiological solutions must be
real, satisfy 𝑍1 > 0 and fulfil equation (26). This approach implies
that all critical points can be numerically computed. The local stability
of a steady state can then be computed by evaluating the eigenvalues
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Fig. 4. Phase space of Eq. (20) for 𝛽2 > 0. Open blue circles are unstable steady states with both eigenvalues having positive real part, green open circles are saddles, closed circles
are stable steady states, grey curves are null clines of �̇�1, red curves are null clines of �̇�2. Default parameters are used in (a) where a cancer steady state attracts all trajectories
with 𝑍1(0) > 0, satisfying Lemma 1. In (b), default parameter values are used except 𝛽4 = 0, so Lemma 2 applies showing a cancer steady state attracts trajectories with initial
conditions 𝑍1(0) > 0 and 0 < 𝑧2(0) < 1.

of the Jacobian at the steady state, provided that the steady state is
hyperbolic. Some phase planes corresponding to different parameter
values are shown in Fig. 4. The following analysis addresses the typical
phase plane topologies depending on the parameter values.

2.4.2. Hematopoiesis
We first consider hematopoiesis (Fig. 1) by expecting a stable,

positive equilibrium of

�̇�1 = 𝑍1

(

1 +
√

1 + 𝛽1𝑍1

1 +𝑍2
1

− 𝛽3

)

. (28)

Defining

𝐹 (𝑍1) =
1 +

√

1 + 𝛽1𝑍1

1 +𝑍2
1

, (29)

a fixed point of �̇�1 for non zero 𝑍1 then requires 𝐹 (𝑍1) − 𝛽3 = 0. The
monotonicity properties of 𝐹 are important for the further analysis.
𝐹 is an increasing function of 𝑍1 for small, positive values, then it
has a unique maximum at 𝑍1 = �̃�1, and is decreasing for 𝑍1 > �̃�1.
𝐹 (0) = 2, and 𝐹 goes to 0 for large 𝑍1. This implies that for 𝛽3 < 2, a
unique, positive solution exists to 𝐹 (𝑍1) − 𝛽3 = 0. Since 𝐹 (0) − 𝛽3 > 0,
then 𝐹 (𝑍1) − 𝛽3 cross zero with negative slope so the steady state is
stable [64].

For 2 < 𝛽3 < 𝐹 (�̃�1) exactly two steady state positive solutions exist.
The first steady state occurs where 𝐹 (𝑍1)−𝛽3 has positive slope, causing
the steady state to be unstable, while the steady state with largest 𝑍1
value occurs where 𝐹 (𝑍1) − 𝛽3 has negative slope, causing the steady
state to be stable. For 𝛽3 > 𝐹 (�̃�1) no steady state solutions exist. A
sufficient criterion for this is 𝛽3 > 1 +

√

1 + 𝛽21 . The parameter region
allowing for two hematopoietic steady states is small. Biologically,
an upper bound on 𝛽3 is meaningful for hematopoiesis as stem cell
exhaustion is expected for large parameters related to removal of cells,
(𝑑𝑥0 + 𝑎𝑥)𝑒𝑠 and small parameters related to production of cells, 𝑟𝑥𝐼 .
For the remaining part of the paper, we will focus on 𝛽3 < 2 as this
guarantees existence of a stable fixed point of Eq. (28). For the default
parameter values this criterion is fulfilled. For 𝛽3 < 2 the unique,
positive root of 𝐹 (𝑍1) − 𝛽3 = 0 is denoted �̄�1, which has value 0.75 for
default parameter values. An increase in 𝛽1 shifts the equilibrium blood
cell count to higher values and an increase in 𝛽3 shifts the equilibrium
blood cell to lower values as 𝛽3 acts as an effective death rate of mature
cells. In terms of original parameters this means that an increase in 𝑟𝑠
or 𝐴𝑥 increases the equilibrium blood cell number, while an increase
in 𝑐𝑥𝑥 or 𝑒𝑎 decreases the equilibrium blood cell number.

As �̇�1 < 0 for 𝑍1 > �̄�1, [0; �̄�1] × [0, 1] is a trapping region. We now
systematically investigate the phase plane topologies of Eq. (20). When
possible, the results are summarized in lemmas and phase plane figures,
which may be conducted for a fast overview of the possible dynamics
of the model.

2.4.3. The case 𝛽2 > 0
Consider the case 𝛽2 > 0 corresponding to 𝑟𝑦 > 𝑟𝑥. First, we assume

𝛽4 > 0, which prevents hematopoietic steady states since 𝑧2 > 0 for
𝑧2 = 0. In this case, the only zero of �̇�2 is for 𝑧2 = 1 i.e. a cancer steady
state, hence neither hematopoietic steady states nor coexistence points
are possible for 𝛽2 > 0, 𝛽4 > 0. The criterion �̇�1 = 0 with 𝑍1 ≠ 0 and
𝑧2 = 1 is

0 = 𝐹 (𝑍1) −
𝛽3

1 + 𝛽2
, (30)

which has a unique solution for 𝛽3 < 2 by similar arguments as for the
hematopoiesis investigation. Solutions to Eq. (30) solve

0 =
(

𝛽3
1 + 𝛽2

)2
𝑍4

1 + 2
𝛽3

1 + 𝛽2

(

𝛽3
1 + 𝛽2

− 1
)

𝑍2
1 − 𝛽1𝑍1

+
𝛽3

1 + 𝛽2

(

𝛽3
1 + 𝛽2

− 2
)

.
(31)

The first coefficient is positive and the third is negative. Hence, re-
gardless of the sign of the second coefficient, there is one sign change
from the first to the third coefficient. As 𝛽2 ≥ 0, 0 < 𝛽3 < 2 then
𝛽3

1+𝛽2
− 2 ≤ 𝛽3 − 2 < 0, hence the last term is negative, and the sequence

of coefficients in Eq. (31) has one sign change for 𝛽2 ≥ 0 and 𝛽3 < 2, so
there is a unique solution to �̇�1 = 0 for 𝑍1 > 0 in this case. Denote this
value by 𝑍∗

1 . In summary, for 𝛽2 ≥ 0, 𝛽4 > 0 and 0 < 𝛽3 < 2 there are
two fixed points: (0, 1) and (𝑍∗

1 , 1).
Consider Eq. (20a) for any 𝑧2 ∈ [0; 1]:

lim
𝑍1→0+

�̇�1
𝑍1

= 2
(

1 + 𝛽2𝑧2
)

− 𝛽3 ≥ 2 − 𝛽3 > 0 . (32)

This implies that the fixed point (0, 1) is unstable and that we may
choose any small 𝜖 > 0 such that for 𝑍1 = 𝜖 then �̇�1 > 0 for any
𝑧2 ∈ [0; 1]. The trapping region

𝑇1 = [𝜖;𝑀1] × [0; 1] (33)

only contains one fixed point, namely (𝑍∗
1 , 1). As there can be no limit

cycles, we have proved the following lemma.

Lemma 1. For 𝛽2 ≥ 0, 𝛽4 > 0 and 𝛽3 < 2 there are two fixed points of
Eq. (20), (0, 1) and (𝑍∗

1 , 1). (𝑍
∗
1 , 1) attracts all solutions with 𝑍1(0) > 0.

For 𝛽2 > 0 and 𝛽4 = 0 there are additional two critical points,
at (0, 0) and the hematopoietic steady state (�̄�1, 0). As �̇�2 > 0 for any
0 < 𝑧2 < 1 these two critical points are unstable. No coexistence points
are possible. For any small 𝜖 > 0 we define the set

𝑇2 = [𝜖;𝑀1] × [𝜖; 1] , (34)

which is a trapping region. (𝑍∗
1 , 1) is the only attractor in 𝑇2 and hence

globally stable within 𝑇2.
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The line 𝑧2 = 0 is invariant to the flow, and trajectories on this line
are attracted to (�̃�1, 0) by similar reasoning as in Section 2.4.2.

Lemma 2. For 𝛽2 > 0, 𝛽4 = 0 and 𝛽3 < 2 there are four fixed points of
Eq. (20), (0, 0), (0, 1), (𝑍∗

1 , 1), and (�̄�1, 0). The cancer steady state (𝑍∗
1 , 1)

attracts all solutions with 𝑍1(0) > 0, 𝑧2(0) > 0. (�̄�1, 0) attracts trajectories
satisfying 𝑧2(0) = 0 and 𝑍1(0) > 0.

2.4.4. The case 𝛽2 = 0 and 𝛽4 = 0
Consider the case 𝛽2 = 𝛽4 = 0, 𝛽3 < 2. The dynamics is very simple

as �̇�2 = 0 i.e. the allele burden does not vary with time. The dynamics
of 𝑍1 then follows similar dynamics as for hematopoiesis, Section 2.4.2
i.e. there are two zeros of �̇�1, 𝑍1 = 0 and 𝑍1 = �̄�1. For any 𝑍1(0) > 0,
𝑍1 approaches �̄�1.

Disease progression occurs with 𝛽2 > 0 leading to a measurable
JAK2 allele burden which may be altered by a targeted drug leading
to 𝛽2 = 0 i.e. similar HSC and CSC self renewal. In this case, the mature
blood cell count will be maintained at a healthy value, with a constant
proportion of JAK2 cells.

2.4.5. The case 𝛽2 = 0 and 𝛽4 > 0
In this case �̇�2 is only zero for 𝑧2 = 1, and is increasing for 𝑧2 ∈ [0, 1).

There are two steady states, (0, 1) is unstable and (�̄�1, 1) is stable and
attracts all solutions with 𝑍1(0) > 0. This corresponds to the cancer
stem cells dominate due to mutational supply from the hematopoietic
stem cells.

2.4.6. The case −1 < 𝛽2 < 0 and 𝛽4 = 0
We investigate the case −1 < 𝛽2 < 0 corresponding to 𝑟𝑥 > 𝑟𝑦

and 𝛽4 = 0 i.e no continuous mutation rate. Steady states are located
at (0, 1), (�̄�1, 0), (0, 1) and there may be additional two cancer steady
states, related to the monotony properties of 𝐹 . If 𝛽3

1+𝛽2
< 2 or 𝛽3

1+𝛽2
=

𝐹 (�̃�) there are two cancer steady states. If 2 < 𝛽3
1+𝛽2

< 𝐹 (�̃�) there are
three cancer steady states. If 𝛽3

1+𝛽2
> 𝐹 (�̃�) there is only the trivial cancer

steady state, (0, 1), see Fig. 5.
The former case is symmetric to the case 𝛽2 > 0, 𝛽4 = 0. For any

small 𝜖 > 0 the set [𝜖;𝑀1] × [0; 1 − 𝜖] is a trapping region, that only
contains one steady state, which is on the boundary of the set.

In the remaining cases, [0;𝑀1]×[0; 1−𝜖] is a trapping region i.e. the
flow is repelled from the cancer steady states. The trivial steady state
(0, 0) is a saddle, with stable manifold along the 𝑧2 axis, which is also
invariant to the flow. Hence, also in this case does (�̃�, 0) attract initial
conditions in [𝜖;𝑀1] × [0; 1 − 𝜖].

Lemma 3. For −1 < 𝛽2 < 0, 𝛽4 = 0 and 𝛽3 < 2 the hematopoietic steady
state (�̄�1, 0) attracts all trajectories with 𝑍1(0) > 0, 𝑧2(0) < 1. Unstable
steady states are (0, 0), (0, 1) and if 2 < 𝛽3

1+𝛽2
< 𝐹 (�̃�) there are additional

two unstable cancer steady states.

2.4.7. The case −1 < 𝛽2 < 0 and 𝛽4 > 0
In this case there are no hematopoietic steady states, as �̇�2 > 0 for

𝑧2 = 0. There may be zero, one or two cancer steady states, satisfying
Eq. (30). Zeros of �̇�2 are 𝑧2 = 1 or 𝑧2 = 𝑓1(𝑍1) with

𝑓1(𝑍1) = −
𝛽4
𝛽2

(

1 +𝑍2
1
)

. (35)

As 𝑓1 is increasing with 𝑍1, we may use Eq. (24) to get an upper bound
on this null cline within the 𝑍1 values of the trapping region. Then, 𝑓1

has values in [− 𝛽4
𝛽2
; − 𝛽4

𝛽2

(

1 +
(

1+
√

1+𝛽1
𝛽3

)2
)

] within the 𝑍1 values of the

trapping region.
The null clines of �̇�1 are 𝑍1 = 0 or 𝑧2 = 𝑓2(𝑍1) with

𝑓2(𝑍1) =
1

−𝛽2

(

1 −
𝛽3

𝐹 (𝑍1)

)

. (36)

For admissible 𝑧2 values 1 > −𝛽2 > 𝛽4 > 0 is needed. The Jacobian
evaluated at the steady state (0,− 𝛽4

𝛽2
) is then

𝐽
(

0,−
𝛽4
𝛽2

)

=

[

2
(

1 − 𝛽4
)

− 𝛽3 0
0 2𝛽2

(

1 + 𝛽4
𝛽2

)

]

, (37)

The second eigenvalue is always negative, with corresponding eigen
direction being the 𝑧2 axis. The sign of first eigenvalue 2

(

1 − 𝛽4
)

− 𝛽3
then determines the stability properties. By direct calculation, it is
easily seen that the steady state is stable if 𝑓1(0) > 𝑓2(0) and a saddle
if 𝑓1(0) < 𝑓2(0) thus proving the following remark.

Remark 2. A necessary condition for any coexistence steady state is
1 > −𝛽2 > 𝛽4 > 0. This condition is also sufficient for a coexistence point
located at the boundary of the trapping region (0,− 𝛽4

𝛽2
). This steady state

is a saddle with stable eigenvector along the 𝑧2-axis if 2(1− 𝛽4) − 𝛽3 > 0
(corresponding to 𝑓1(0) < 𝑓2(0)), and a stable node if 2(1 − 𝛽4) − 𝛽3 < 0
(corresponding to 𝑓1(0) > 𝑓2(0)).

A cancer steady state (𝑍∗
1 , 1) with positive 𝑍∗

1 must satisfy 𝑓2(𝑍∗
1 ) =

1 which is equivalent to 𝐹 (𝑍∗
1 ) =

𝛽3
1+𝛽2

. Linear stability analysis provides
knowledge of the type of steady state based on 𝑓1 and 𝑓2 in the generic
cases.

Lemma 4. Let −1 < 𝛽2 < 0, 𝛽4 > 0, 0 < 𝛽3 < 2. If a cancer steady state
exists with 𝑓2(𝑍∗

1 ) = 1 it is

• a saddle if 𝑓 ′
2(𝑍

∗
1 ) > 0 ∧ 𝑓1(𝑍∗

1 ) > 1 or 𝑓 ′
2(𝑍

∗
1 ) < 0 ∧ 𝑓1(𝑍∗

1 ) < 1.
• an unstable node or focus if 𝑓 ′

2(𝑍
∗
1 ) > 0 ∧ 𝑓1(𝑍∗

1 ) < 1.
• a stable node or focus if 𝑓 ′

2(𝑍
∗
1 ) < 0 ∧ 𝑓1(𝑍∗

1 ) > 1.

Proof. The proof is based on direct computation of the trace and
determinant of the Jacobian evaluated at the steady state, providing
knowledge of the eigenvalues. If the determinant is negative, the steady
state is a saddle. If the determinant is positive and the trace is positive,
the steady state is an unstable node or focus. If the determinant is
positive and the trace is negative, the steady state is a stable node or
focus.

det
(

𝐽
(

𝑍∗
1 , 1

))

= −𝛽2𝑍∗
1
(

1 + 𝛽2
)

𝐹 ′(𝑍∗
1 )𝐹 (𝑍∗

1 )
(

1 − 𝑓1(𝑍∗
1 )
)

(38a)

𝑡𝑟
(

𝐽
(

𝑍∗
1 , 1

))

= 𝑍∗
1
(

1 + 𝛽2
)

𝐹 ′ (𝑍∗
1
)

− 𝛽2𝐹
(

𝑍∗
1
) (

1 − 𝑓1
(

𝑍∗
1
))

(38b)

As sign(𝐹 ′(𝑍∗
1 )) = sign(𝑓 ′

2(𝑍
∗
1 )) the lemma follows directly. □

The cases not covered by the lemma require a nonlinear analysis
and will not be pursued further.

A coexistence steady state is a point (�̂�1, �̂�2) satisfying 0 < 𝑓1(�̂�1) =
𝑓2(�̂�1) < 1.

Lemma 5. If a coexistence point (�̂�1, �̂�2) exists, then it is a saddle if
𝑓 ′
1(�̂�1) < 𝑓 ′

2(�̂�1) and stable focus or a stable node if 𝑓 ′
1(�̂�1) > 𝑓 ′

2(�̂�1) and
𝑓 ′
2(�̂�1) < 0.

Proof. The proof is straight forward computation by evaluating the
trace and determinant of the Jacobian evaluated at the steady state.
Negative determinant implies a saddle, while a positive determinant
together with negative trace implies both eigenvalues have negative
real part meaning that the steady state is a stable node or a stable
focus.

det
(

𝐽
(

(�̂�1, �̂�2)
))

= −𝛽2�̂�1
(

1 − �̂�2
)

𝐹
(

�̂�1
)

(

2𝛽4�̂�1𝐹
(

�̂�1
)

−
𝛽3𝐹 ′ (�̂�1

)

𝐹
(

�̂�1
)

)

.

(39)

Then, notice that

𝑓 ′
1
(

�̂�1
)

< 𝑓 ′
2
(

�̂�1
)

⇔ 2𝛽4�̂�1𝐹
(

�̂�1
)

−
𝛽3𝐹 ′ (�̂�1

)

𝐹
(

�̂�1
)

< 0 (40)

proving that if (�̂�1, �̂�2) exists, then it is a saddle if 𝑓 ′
1(�̂�1) < 𝑓 ′

2(�̂�1).
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Fig. 5. Phase space for −1 < 𝛽2 < 0, 𝛽4 = 0. In all cases (�̄�1 , 0) attracts all trajectories excluding initial condition 𝑍1(0) = 0 or 𝑧2(0) = 1.

Similarly, det
(

𝐽
(

(�̂�1, �̂�2)
))

> 0 if 𝑓 ′
1(�̂�1) > 𝑓 ′

2(�̂�1), hence eliminat-
ing saddle type fixed point. As

𝑡𝑟
(

(�̂�1, �̂�2)
)

= 𝛽3�̂�1
𝐹 ′ (�̂�1

)

𝐹
(

�̂�1
)
+ 𝛽2

(

1 − �̂�2
)

𝐹
(

�̂�1
)

, (41)

the trace is guaranteed to be negative if 𝐹 ′ (�̂�1
)

< 0. Since

𝑓 ′
2(𝑍1) =

𝛽3
−𝛽2

𝐹 ′(𝑍1)
𝐹 (𝑍1)2

, (42)

then a sufficient criterion for negative trace is 𝑓 ′
2
(

�̂�1
)

< 0 proving the
second part of the lemma. □

A case not covered in the lemma is 𝑓 ′
1(�̂�1) > 𝑓 ′

2(�̂�1) ∧ 𝑓 ′
2(�̂�1) > 0.

We can rule out a saddle point, but the sign of the trace is not known.
Perturbing a parameter such that the trace changes sign while 𝑓 ′

1(�̂�1) >
𝑓 ′
2(�̂�1) prior and after perturbation implies that the real part of both

eigenvalues shift sign at the same parameter value, suggesting a Hopf-
bifurcation. This is indeed possible to observe in simulations though
this requires an unrealistically large 𝛽4 value, see Fig. 10.

Lemma 6. If 𝑓2(�̃�1) > 𝑓1(�̄�1) and 𝑓1(�̄�1) < 1 then there exists a stable
coexistence point (�̂�1, �̂�2) with �̃�1 < �̂�1 < �̄�1 and �̂�2 < 𝑓1(�̄�1) and there
are no closed orbits enclosing (�̂�1, �̂�2).

Proof. Recall that 𝑓2 is strictly decreasing for 𝑍1 > �̃�1 and 𝑓2(�̄�1) = 0
and 𝑓1 is strictly increasing. Hence, a unique intersection,

(

�̂�1, 𝑓1(�̂�1)
)

,
between 𝑓1 and 𝑓2 exists for a �̂�1 bounded above by �̄�1 and below
by �̃�1. As 0 < 𝑓1(𝑍1) < 1 for 0 < 𝑍1 < �̄�1, then 𝑓1(�̂�1) = �̂�2
∈ (0, 1). As 𝑓 ′

2(�̂�1) < 0 and 𝑓 ′
1(�̂�1) > 0 then (�̂�1, �̂�2) is a stable steady

state by Lemma 5. To show there can be no closed orbits encircling
(�̂�1, �̂�2), consider Fig. 6. The argument is based on showing existence
of a continuum of invariant regions containing the steady state point.
Notice that for �̃� < 𝑍1 ≤ �̄� then 𝑓2 is monotone and hence 𝑓−1

2 is well
defined.

Any closed orbit encircling (�̂�1, �̂�2) must have an intersection 𝑃 =
(𝑝1, 𝑝2) with 𝑧2 = 𝑓2(𝑍1) for 𝑍1 ∈ (�̂�1; �̄�1]. Choosing a sufficiently small
𝛿 > 0 we construct the box with corners (𝑝1+𝛿, 𝑝2), (𝑝1+𝛿, 𝑓2(𝑝1+𝛿)+𝛿),
(𝑓−1

2 (𝑓2(𝑝1 + 𝛿) + 𝛿) − 𝛿, 𝑓2(𝑝1 + 𝛿) + 𝛿), (𝑓−1
2 (𝑓2(𝑝1 + 𝛿) + 𝛿) − 𝛿, 𝑝2). Let

the normal vector to the box be pointing outwards. Consider the line
segment of the box spanned by (𝑝1 + 𝛿, 𝑝2), (𝑝1 + 𝛿, 𝑓2(𝑝1 + 𝛿) + 𝛿). As
this line segment is to the right of the null cline of �̇�1, then �̇�1 < 0
everywhere on this line segment. As the outward normal of the box
is (1, 0) everywhere on this line segment, then (�̇�1, �̇�2) ⋅ (1, 0) < 0
showing the flow is pointing inwards to the box. By similar arguments,
the flow is pointing inwards on the remaining three sides of the box,
i.e the box is an invariant set. By existence and uniqueness at 𝑃 the
proposed closed orbit contains points both inside and outside the box
region. However, any trajectory once in the box region cannot escape to
reconnect at 𝑃 from outside the box. Hence, there are no closed orbits
encircling (�̂�1, �̂�2). □

Fig. 6. Illustration of no limit cycle when the conditions of Lemma 6 are fulfilled. The
red curve is the null cline of �̇�2, grey curve is the null cline of 𝑍1. Any limit cycle must
enclose a critical point and for the parameter constraints considered, there is exactly
one coexistence steady state (blue dot). Therefore, any limit cycle must intersect the
null cline of 𝑍1, denote such a point 𝑃 . Construct a rectangular box as shown. At 𝑃 the
flow is along the 𝑧2-axis hence pointing into the box. As the existence and uniqueness
theorem applies, the trajectory through 𝑃 consists of points both inside and outside of
the box. However, the box is a trapping region as seen by inspection of the null clines
and that �̇�1 and �̇�2 are continuous in 𝑍1 and 𝑧2. Therefore, the trajectory through 𝑃
entering the box cannot escape it to reconnect with 𝑃 from outside the box. Hence,
there can be no limit cycle through 𝑃 , and hence no limit cycle at all.

Remark 3. If 𝑓2(0) > 𝑓1(�̄�) and 𝑓1(�̄�) < 1 then Lemma 6 is fulfilled
and there is a unique coexistence point with positive 𝑍1 value. This out
rules period solutions globally. A sufficient criterion for this is

1
2
(

2 − 𝛽3
)

> 𝛽4
⎛

⎜

⎜

⎝

1 +

(

1 +
√

1 + 𝛽1
𝛽3

)2
⎞

⎟

⎟

⎠

(43)

together with

1 > 𝛽4
⎛

⎜

⎜

⎝

1 +

(

1 +
√

1 + 𝛽1
𝛽3

)2
⎞

⎟

⎟

⎠

. (44)

If inequalities (43) and (44) are met then for sufficiently small 𝜖 > 0
the set

𝑇3 = [𝜖;𝑀1] × [0; 1 − 𝜖] (45)

is invariant to the flow, and the only steady state in 𝑇3 is the coexistence
steady state. By the Poincaré–Bendixon Theorem this point is then
attracting all trajectories in 𝑇3 i.e. the following lemma is proved

Lemma 7. For 𝛽2 < 0, 𝛽3 < 2, 𝛽4 > 0, 1
2

(

2 − 𝛽3
)

> 𝛽4

(

1 +
(

1+
√

1+𝛽1
𝛽3

)2
)

,

1 > 𝛽4

(

1 +
(

1+
√

1+𝛽1
𝛽3

)2
)

a unique, positive, coexistence steady state of

Eq. (20) exists which attracts all trajectories with 𝑍1(0) > 0, 𝑧2(0) < 1.

Remark 4. If there is one steady state satisfying Lemma 6, and
any other coexistence steady state with positive 𝑍1 value is a saddle,

8
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Fig. 7. Phase space for 𝛽2 < 0 small with increasing numerical value, all other parameters at default values. In (a) 𝛽2 = −2 ⋅ 10−5, in (b) 𝛽2 = −3 ⋅ 10−5, and in (c) 𝛽2 = −8 ⋅ 10−5.
As the two null clines cross, a stable coexistence steady state is created, changing the stability of the cancer steady state from stable to unstable. For increasing |𝛽2| the stable
equilibrium has decreasing 𝑧2 value. The dynamics is a fast attraction to the stable 𝑍1 null cline and the slower attraction to the stable coexistence steady state/cancer steady
state. As Eq. (47) is independent of 𝛽2, the inner coexistence point (when it exists) moves parallel to the 𝑧2-axis as 𝛽2 is varied.

then there are no closed orbits. This is due to index theory [64] that
disallows a closed orbit solely enclosing one or more saddles.

Considering again the necessary condition for a coexistence point
𝑓1(𝑍1) = 𝑓2(𝑍1) which implies

√

1 + 𝛽1𝑍1
(

1 − 𝛽4
(

1 +𝑍2
1
))

=
(

𝛽3 + 𝛽4
) (

1 +𝑍2
1
)

− 1 . (46)

Squaring this expression and collection terms of same order, the 𝑍1-
value at the coexistence point must satisfy a fifth order polynomial

0 = − 𝛼2𝛼5
2𝑍1

5 +
(

𝛼4
2 + 2 𝛼4𝛼5

)

𝑍1
4 +

(

−2 𝛼2𝛼52 + 2 𝛼2𝛼5
)

𝑍1
3

+
(

2 𝛼42 + 4 𝛼4𝛼5 − 2 𝛼4
)

𝑍1
2 +

(

−𝛼2𝛼52 + 2 𝛼2𝛼5 − 𝛼2
)

𝑍1 + 𝛼4
2

+ 2 𝛼4𝛼5 − 2 𝛼4 , (47)

with the constraint that Eq. (46) must be valid. Then, the 𝑧2 value at
the coexistence point can be computed from Eq. (35). Notice that Eq.
(47) is independent of 𝛽2 while Eq. (35) is not. Therefore, perturbing 𝛽2
the coexistence point moves parallel to the 𝑧2 axis, see Fig. 7. Hence,
increasing the self renewal of CSC compared to HSC increase the allele
burden but not the total blood cell count in this case. The polynomial
formulation of the steady state is easily implemented in e.g. Matlab for
numerical implementation.

Possible phase planes for −1 < 𝛽2 < 0, 𝛽4 > 0, 0 < 𝛽3 < 2 are shown
in Fig. 8. The different cases are found by investigating the existence
and order of 𝑧2 = 𝑓1(𝑍1) and 𝑧2 = 𝑓2(𝑍1) crossing each other and the
boundaries. We have found no more than two coexistence steady states
with positive 𝑍1 value, for a given parameter set of parameter values.

2.4.8. The case 𝛽2 = −1, 𝛽4 > 0
This case is similar to 0 > 𝛽2 > −1 except there can be no cancer

steady states and hence will not be elaborated further. The possible
topologies are shown in Fig. 9.

3. Discussion

A two dimensional model is presented to investigate the dynamics
of cancer and hematopoietic stem cells and mature cells, immune
system activity, and clearing of dead cells, including a nonlinear niche
feedback with competition between the two stem cell types. In the
model the self renewal rates for HSC and CSC are allowed to differ
while some other parameters being assumed equal for the HSC and
CSC dynamics. For a wide range of parameter values, analytical insight
in the global dynamics is obtained revealing that the competition at
stem cell level, 𝛽2, is crucial for whether hematopoiesis is maintained
or MPN dominates. In particular, 𝛽2 > 0 is a signature of cancer growth
out competing healthy hematopoietic cells, while 𝛽2 < 0 is needed for
stable hematopoiesis or a sustained, low cancer burden.

3.1. Elevated JAK2 in patients without MPN diagnosis

Blood samples from non MPN diagnosed patients have been anal-
ysed by Xu et al. [65] who found that about 1% of the 3935 investigated
subjects were JAK2 positive, with 70% of these having low allele
burdens i.e. less than 5%. A general population study found that 0.2%
of the population harbours the JAK2 mutation [66]. In a large Swedish
study [22], the number of patients with MPN is found as 3035 during
the years 2001 to 2008. With a population size of 9 millions this implies
a prevalence of 0.03%.

How can the role of JAK2 mutation as a driver for cancer de-
velopment for MPN patients be consistent with many carrying the
JAK2 mutation do not have an MPN diagnosis? One explanation could
of course be, that a large number of subjects were in an early, yet
undiagnosed state of MPNs.

Traulsen et al. [17] suggest another reason, namely that the JAK2
mutation found in the study of [65] is not occurring at the stem
cell level but further down the proliferation chain hence not affecting
hematopoiesis so severely. This would imply that after some time,
the JAK2 positive cells are depleted. However, a small, stable JAK2
fraction can be maintained for years [67]. Our analysis suggests an
alternative answer; the non MPN diagnosed subjects are characterized
by parameter values rendering a stable, coexistence point with low
allele burden corresponding to Fig. 8(f), (g), (n). Alternatively, the MPN
fraction of cells may be slowly increasing corresponding to HSC and
CSC selfrenewal being of comparable size. This may be more feasible
than multiple JAK2 mutations in the same individual [68]. Another
interesting explanation is the active immune window where malignant
cells need to reach a critical level before the immune system is activated
to keep a low disease level. This has proven a fruitful explanation for
describing clinical data of patients with chronic myeloid leukemia [69].

3.2. Intervention strategies

From the previous analysis it is clear that the sign of 𝛽2 is important
for treatment outcome. Intervention at stem cell level is important
to ensure cure or minimal residual disease which is relevant also
for chronic myeloid leukemia [40]. In Fig. 11 a model simulation
with default parameter values is shown along with median data of
two sets of patients with polycythemera vera treated with pegylated
interferon-𝛼-2a [70,71]. Altering 𝛽2 by decreasing 𝑟𝑦 and increasing 𝑟𝑥
corresponds to a mechanism of the drug where the malignant clone is
targeted [70,72] and HSC are activated [73]. Only the initial conditions
vary, corresponding to a different initial allele burden for each group
of study. Hence, by altering 𝛽2 to the value −0.9, two clinical data sets
can be reproduced using a single parameter set in the model.

The phase plane dynamics with 𝛽2 having small, negative values are
shown in Fig. 7 showing how a stable cancer steady state bifurcates
to a stable coexistence steady state when perturbing 𝛽2. In Fig. 12,
two treatment scenarios are shown based on changing 𝛽2 from positive
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Fig. 8. Phase plane, (𝑍1 , 𝑧2), for −1 < 𝛽2 < 0, 𝛽4 > 0. Corresponding parameter values are listed in Tables 3 and 4. In all cases except (i) and (o), there can be no period orbits,
hence the steady states are the only possible attractors. Unhealthy attractors are located on the lines 𝑍1 = 0 and 𝑧2 = 1, while a coexistence steady state with positive 𝑍1 value
may be unhealthy or healthy, for example (f), (g), (n) may be considered healthy conditions for most initial conditions.

Table 3
Parameter values for Fig. 8 (a)–(h).

(a) (b) (c) (d) (e) (f) (g) (h)

𝛽1 5 4 4 2 5 2 2 5
𝛽2 −.2793 −.2793 −.1676 −.1676 −.2793 −.1676 −.1676 −.1816
𝛽3 1.3 1.95 1.95 1.2 1.3 1.74 1.8 1.73
𝛽4 .3313 .1988 .2916 .106 .1 .0133 .0133 .8469

Table 4
Parameter values for Fig. 8 (i)–(o).

(i) (j) (k) (l) (m) (n) (o)

𝛽1 20 6 6 8 2 4 20
𝛽2 −.9107 −.1536 −.2000 −.2933 −.2933 −.6984 −.9079
𝛽3 0.3 1.92 1.95 1.85 1.85 1.95 .3
𝛽4 .8469 .1233 .1 .2770 .1325 .0795 .8747

to negative values. Starting treatment at a high allele burden can
ultimately lead to reversal to a healthy, hematopoietic steady state or
a coexistence steady state with low allele burden. An effective drug
(high dose) may have the negative impact that the total number of
white blood cells have critically low values in the transition from a
high allele burden to a healthy state as can be seen by considering
the trajectories in Fig. 12. This suggests that maintaining a low dose
or slowly increasing dose during treatment may be important, or that
treatment should also address other parameters.

Intervention at an early cancer stage is preferred for several reasons
for example reducing the risk of thrombosis or hemorrhage. Our phase
plane analysis suggests further that an early intervention can lead to a
coexistence steady state with low tumour load while late intervention
may lead to out competition of healthy cells even though the self
renewal of HSC is larger than that of CSC. This may occur when there
are three coexistence steady states, for initial conditions with large
allele burdens are in the basin of attraction of the stable steady state
causing extinction of healthy cells — see Fig. 13. Furthermore, for
initial conditions in the basin of attraction of the relatively healthy
coexistence steady state, a high initial allele burden implies a transient
with a low 𝑍1 value compared to the steady state. Hence, late treatment
start may imply more serious adverse events which advocates for early
treatment. The separatrix (black curve) provides a threshold for initial
conditions that will maintain homeostasis versus eradicate healthy
cells. A similar approach has proven useful for studying the dynamics
of Hepatitis C Virus and immune suppression [74].

3.3. Comparison of the simple and full model

The simple model is a good representation of the full model for
cancer progression. An important reason for this is the assumption
that cancer initiation is a perturbation to a hematopoietic steady state
i.e. initially 𝑦′0 = 𝑦′1 = 𝑎′ = 𝑠′ = 0 which implies that no transients are
observed for the trajectories of the full model to be close to the simple
model. Initiating a treatment may be interpreted as a fast change in
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Fig. 9. Phase space for 𝛽2 = −1. (a) and (b) are unhealthy conditions while (c) and (d) are healthy for most initial conditions.

Fig. 10. In (a) there are two stable steady states and two saddles. Selected trajectories are shown in green, blue and black curves. Parameter values are 𝛽1 = 20, 𝛽2 = −.93, 𝛽3 =
.3, 𝛽4 = .8747. In (b) 𝛽2 = −.92 with the remaining parameter values being the same as in (a). A Hopf-bifurcation has occurred for some 𝛽2 ∈ (−.92; −.93) such that a stable
coexistence steady state has turned unstable and a stable limit cycle has appeared.

one or more parameter values. In Fig. 14 the simple and the full model
are evolved with default parameter values until an allele burden of
50% is obtained. Then, a parameter value is abruptly changed, and the
resulting trajectories of stem cells and mature blood cells are shown for
the full and simple model. The simple model is a good approximation
to the full model when altering a stem cell parameter value such as
𝑟𝑥 or 𝑟𝑦 as seen in Fig. 14(a) which supports the use of the simple
model in Fig. 11. Changing a parameter value of the mature cells such
as 𝑑𝑥1 leads to a discontinuity in the simple model and a fast transient
in the full model, hence for a short time the full model and the reduced
model do not match — see 14(b). This discontinuity is expected in the
simple model from Eq. (3c); a jump in 𝑑𝑥1 leads to a jump in 𝑥1. Hence,
for treatments mainly affecting mature cells, a fast transient between
the full and the reduced model may be observed. The full model and
the simple model have exactly the same steady states. However, the
stability steady states in a quasi steady state model and a full model
may differ. In Fig. 15 a bifurcation diagram is shown for the reduced
model by computing steady states and their stability at 500 times 250
grid points. Likewise, the corresponding steady state of the full model
can be investigated by fixing all full model parameters at default values
except 𝑟𝑚, 𝑟𝑦, 𝑒𝑠 and 𝑟𝑠 that can be computed from the values of 𝛽1, 𝛽2, 𝛽3

and 𝛽4 by inverting Eq. (21). Then, the stability of the full model is
assessed by the dominant eigenvalue of the six by six dimensional
Jacobian. The stability of the full model and simple model are found
to be identical everywhere.

3.4. Early MPN phase

One hit mutation
Assuming little change in 𝑍1 in the early cancer phase, we may

derive expressions for cancer growth for a one hit mutation, i.e. 𝛽4 = 0.
In that case

�̇�2 = 𝑘1𝛽2
(

1 − 𝑧2
)

𝑧2 , (48)

with 𝑘1 = 1+
√

1+𝛽1�̄�1
1+�̄�2

1
and with the initial condition being a positive,

small allele burden, 𝑧20 at time equal to zero. This equation may be
solved providing the well known expression for logistic growth. Such an
expression is well known in cancer descriptions. However, the approach
here with the logistic growth as an asymptotic case of a more elaborate
model allows for inferring mechanisms to the parameters of the one
dimensional model Eq. (48). Thus, in the early cancer phase, if the
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Fig. 11. Grey stipulated curve is cancer growth using the default parameter values in
the simple model shifted in time such that the JAK2 allele burden is 45% at 𝑡 = 0. Dots
are median values from two independent clinical studies of patients with polycythemia
vera treated with pegylated interferon-𝛼-2a. Red dots are from [70] (43 patients), black
dots are from [71] (40 patients). Full grey curves are output of the simple model,
with 𝛽2 = −.9, which is obtained by a doubling in 𝑟𝑥 as interferon increases stem cell
activity [73] and a reduction in 𝑟𝑦. Remaining parameters set to default values. The
only difference between the two grey curves is the initial conditions. Hence, the simple
model with a unique set of parameter values can reproduce several clinical reports on
PV patients with the explained effect being related to increased HSC function compared
to CSC during treatment.

Fig. 12. Phase space with default parameter values where the full blown MPN cancer is
the stable steady state. A typical trajectory (black curve) is shown with initial condition
in the black square. A successful treatment must change the sign of 𝛽2 from positive to
negative. At the triangle, two different treatments are initiated (magenta), for the full
curves 𝛽2 = −0.9 and for the dashed 𝛽2 = −0.1. The temporary, small value of 𝑍1 at
the full, magenta curve suggests that an effective treatment may reduce the number of
white blood cells too severely. However, a more gradual change of 𝛽2 corresponding
to a slowly increasing dose of an effective drug does not have the same shortcoming.

Fig. 13. Possible phase plane for 𝛽2 < 0, 𝛽4 > 0. Blue curves are specific trajectories.
Black curves are the stable manifolds of the saddle point (green circle) dividing the
phase space in two bassins of attraction. In the right region the stable, coexistence
point is a relatively healthy state while the left region implies extinction of healthy
cells for any initial condition. The case showed here may be a result of intervention
with 𝛽2 > 0 prior to intervention and 𝛽2 < 0 after intervention. Early intervention leads
to an initial condition in the lower right part of the phase space which corresponds
to a non expanding malignant cell count i.e. a relatively healthy condition. The thick
blue curve shows that the same intervention at large, initial malignant cell counts can
lead to eradication of healthy cells.

disease is diagnosed and treatment is conducted, which change the sign
of 𝛽2 from positive to negative with new value denoted 𝛽2, then, disease
progression is changed from logistic growth to logistic decay. However,
the dose–response relation may be unknown. Comparing the growth
curve at allele burden, 𝑧2 before treatment to allele burden �̂�2 after
treatment using the lab time 𝑡 we observe

𝑧′2
�̂�′2

=
𝛽2

(

1 − 𝑧2
)

𝑧2
𝛽2

(

1 − �̂�2
)

�̂�2
. (49)

This means that the change in stem cell parameters, 𝛽2
𝛽2

can be
directly computed from considering the slope of allele burden of mature
cells prior to and after treatment without use of sophisticated param-
eter estimation techniques. In this way, mathematical modelling and
reasoning give a window to investigate the hardly accessible stem cell
dynamics by mechanistic modelling and measurements of the mature
cells.

Solving (48) with a change of 𝛽2 value to another value 𝛽2 at time
𝜏 = 𝑇 gives

𝑧2(𝜏) =
𝑧20𝑒𝛽2𝑘1𝜏

𝑧20
(

𝑒𝛽2𝑘1𝜏 − 1
)

+ 1
, for 0 ≤ 𝜏 ≤ 𝑇 (50a)

Fig. 14. Initial conditions correspond to integrating the full or simple model with default parameter values until equal amounts of hematopoietic and cancer stem cells. Then, an
abrupt change in a parameter value is applied, representing a potential treatment. In (a) 𝛽2 is changed to −.9 by reducing 𝑟𝑦 and doubling 𝑟𝑥 which correspond to the suggested
effect of pegylated interferon-𝛼-2a in Fig. 11. Left panel is stem cell numbers, right panel is mature cell numbers. Blue curves are hematopoietic cells, red are blood cancer cells.
Grey curves are the corresponding trajectories from the simple model. For an abrupt change in stem cell parameters, the simple model, (3) remains a good approximation to the
full model (1). In (b) the value of 𝑑𝑦1 is increased by a factor 10 with the remaining parameters at default value. Here, the mature cancer cell count drops immediately in the
simple model while the full model has a fast transient before good agreement again is observed between the full model and the two dimensional model. Though an increased
death rate of mature, cancer cells implies an immediate reduction of mature cancer cells, the mature hematopoietic cells are not restored by this intervention and in the long run,
the mature cancer cells again dominate the mature hematopoietic cells i.e. this intervention does not provide a cure.
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Fig. 15. Bifurcation diagram, with 𝛽1 = 2, 𝛽3 = 1.74 and varying 𝛽2 and 𝛽4. The letters
on the figure correspond to the topologies in Fig. 8, hence showing possible transitions
between the topologies as parameters are perturbed. In regions 𝑔, 𝑓 , 𝑒 the stable steady
state is a coexistence steady state, while in regions 𝑑 and 𝑎 a cancer steady state is
the only stable steady state.

Fig. 16. Red, thick curve is allele burden growth using the simple, reduced model
with default parameters. At year 10, a treatment intervention changes the 𝛽2 value to
−0.9 showed by the thin red, solid line. Grey curves are the corresponding analytic
approximation given by Eq. (50) with 𝑧2(0) = 0.01 corresponding to the sensitivity of
the best assays.

�̂�2(𝜏) =
𝑧2(𝑇 )𝑒𝛽2𝑘1(𝜏−𝑇 )

𝑧2(𝑇 )
(

𝑒𝛽2𝑘1(𝜏−𝑇 ) − 1
)

+ 1
, for 𝜏 > 𝑇 (50b)

A comparison of this formula to the simple, reduced model is seen
in Fig. 16 providing a good approximation within the measurable, low
allele burden regime.

3.5. Role of exogenous inflammation stimuli

We reformulate Eq. (50) in terms of the original parameters

𝑧2(𝑡) =
𝑧20𝑒𝛾𝑡

𝑧20 (𝑒𝛾𝑡 − 1) + 1
, for 0 ≤ 𝑡 ≤ �̂� (51a)

𝑧2(𝑡) =
𝑧2(�̂� )𝑒�̂�

(

𝑡−�̂�
)

𝑧2(�̂� )
(

𝑒�̂�
(

𝑡−�̂�
)

− 1
)

+ 1
, for 𝑡 > �̂� (51b)

with

𝛾 =
𝑟𝑦 − 𝑟𝑥

2𝑒𝑠
(

1 + �̄�2
1
)

⎛

⎜

⎜

⎝

𝐼 +

√

𝐼2 +
(

4
𝑒𝑠𝑟𝑠
𝑐𝑥𝑥𝑒𝑎

(

𝑎𝑥𝐴𝑥 + 𝑑𝑥0
)

)

�̄�1

⎞

⎟

⎟

⎠

. (52)

This implies |𝛾| increases with 𝐼 , i.e. disease progression is accelerated
for a large endogenous inflammatory stimuli, when 𝑟𝑦 > 𝑟𝑥. Surpris-
ingly, in case an intervention happens, such that 𝑟𝑦 > 𝑟𝑥 prior to
treatment but 𝑟𝑥 > 𝑟𝑦 after treatment, then inflammation acts as a
disease driver prior to treatment but after treatment inflammation acts
like a health promoter. Similarly, one may predict the behaviour of
perturbing the original parameters 𝑒𝑠, 𝑟𝑠, 𝑐𝑥𝑥, 𝑒𝑎, 𝑎𝑥, 𝐴𝑥, 𝑑𝑥0.
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Appendix. Derivation of the simple cancitis model

Model (1) is written here again for convenience

𝑥′0 =
(

𝑟𝑥𝜙𝑥𝑠 − 𝑑𝑥0 − 𝑎𝑥
)

𝑥0 − 𝑟𝑚𝑠𝑥0 (53a)

𝑥′1 = 𝑎𝑥𝐴𝑥𝑥0 − 𝑑𝑥1𝑥1 (53b)

𝑦′0 =
(

𝑟𝑦𝜙𝑦𝑠 − 𝑑𝑦0 − 𝑎𝑦
)

𝑦0 + 𝑟𝑚𝑠𝑥0 (53c)

𝑦′1 = 𝑎𝑦𝐴𝑦𝑦0 − 𝑑𝑦1𝑦1 (53d)

𝑎′ = 𝑑𝑥0𝑥0 + 𝑑𝑦0𝑦0 + 𝑑𝑥1𝑥1 + 𝑑𝑦1𝑦1 − 𝑒𝑎𝑎𝑠 (53e)

𝑠′ = 𝑟𝑠𝑎 − 𝑒𝑠𝑠 + 𝐼(𝑡) (53f)

𝜙𝑥 = 𝜙𝑥(𝑥0, 𝑦0) =
1

1 +
(

𝑐𝑥𝑥𝑥0 + 𝑐𝑥𝑦𝑦0
)2

(53g)

𝜙𝑦 = 𝜙𝑥(𝑥0, 𝑦0) =
1

1 +
(

𝑐𝑦𝑥𝑥0 + 𝑐𝑦𝑦𝑦0
)2

(53h)

These equations are subject to a quasi steady state assumption of all
compartments except the stem cells

𝑥′1 = 𝑦′1 = 𝑎′ = 𝑠′ = 0 , (54)

and with constant 𝐼 . From 𝑥′1 = 0, 𝑥1 is easily expressed as

𝑥1 =
𝑎𝑥𝐴𝑥
𝑑𝑥1

𝑥0 , (55)

and similarly 𝑦′1 = 0 implies

𝑦1 =
𝑎𝑦𝐴𝑦

𝑑𝑦1
𝑦0 . (56)

From 𝑠′ = 0 we get

𝑎 =
𝑒𝑠
𝑟𝑠
𝑠 − 𝐼

𝑟𝑠
(57)

Inserting this in Eq. (53e) with 𝑎′ = 0 we arrive at

0 = 𝑑𝑥0𝑥0 + 𝑑𝑦0𝑦0 + 𝑑𝑥1𝑥1 + 𝑑𝑦1𝑦1 − 𝑒𝑎𝑠
(

𝑒𝑠
𝑟𝑠
𝑠 − 𝐼

𝑟𝑠

)

(58)

which may be considered a second order polynomial in 𝑠. Solving for
the roots we get

𝑠± = 𝐼
2𝑒𝑠

±

√

(

𝐼
2𝑒𝑠

)2
+

𝑟𝑠
𝑒𝑠𝑒𝑎

(

𝑑𝑥0𝑥0 + 𝑑𝑦0𝑦0 + 𝑑𝑥1𝑥1 + 𝑑𝑦1𝑦1
)

(59)

As we are only interested in non negative 𝑠 values, only 𝑠 = 𝑠+ is kept
and Eqs. (55) and (56) are inserted to give

𝑠 = 𝐼
2𝑒𝑠

+

√

(

𝐼
2𝑒𝑠

)2
+

𝑟𝑠
(

𝑎𝑥𝐴𝑥 + 𝑑𝑥0
)

𝑒𝑎𝑒𝑠

(

𝑥0 +
𝑎𝑦𝐴𝑦 + 𝑑𝑦0
𝑎𝑥𝐴𝑥 + 𝑑𝑥0

𝑦0

)

(60)

Inserting this expression for 𝑠 in Eq. (57) provides 𝑎 as a function
of 𝑥0 and 𝑦0

𝑎 = − 𝐼
2𝑟𝑠

+
𝑒𝑠
𝑟𝑠

√

(

𝐼
2𝑒𝑠

)2
+

𝑟𝑠
(

𝑎𝑥𝐴𝑥 + 𝑑𝑥0
)

𝑒𝑎𝑒𝑠

(

𝑥0 +
𝑎𝑦𝐴𝑦 + 𝑑𝑦0
𝑎𝑥𝐴𝑥 + 𝑑𝑥0

𝑦0

)

(61)

Differential equations (53a) and (53c) together with the algebraic
equations (55), (56), (59) and (61) constitute the simple cancitis model.
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