We are a group of mathematicians from the Department of Science and Environment at Roskilde University, Denmark.

Our work deals with mathematical modelling of blood cancers, in particularly the myeloproliferative neoplasms (MPNs).

On this page you can read about our group, our work and our publications.

RUC Research Profile.

RUC Research Profile.

RUC Research Profile.

RUC Research Profile.

DOI: 10.1371/journal.pone.0183620

Morten Andersen, Zamra Sajid, Rasmus K. Pedersen, Johanne Gudmand-Hoeyer, Christina Ellervik, Vibe Skov, Lasse Kjær, Niels Pallisgaard, Torben A. Kruse, Mads Thomassen, Jesper Troelsen, Hans Carl Hasselbalch, Johnny T. Ottesen

View ArticleDOI: 10.1016/j.jtbi.2019.01.001

More info and additional figuresJohnny T. Ottesen, Rasmus K. Pedersen, Zamra Sajid, Johanne Gudmand-Høyer, Katrine O. Bangsgaard, Vibe Skov, Lasse Kjær, Trine A. Knudsen, Niels Pallisgaard, Hans C. Hasselbalch, and Morten Andersen

View ArticleDOI: 10.3934/mbe.2019418

Zamra Sajid, Morten Andersen and Johnny T. Ottesen

View ArticleSpeakers: Rasmus Kristoffer Pedersen (Roskilde University), Thomas Stiehl (Heidelberg University), Jesper Troelsen (Roskilde University) and Peter Ashcroft (ETH Zurich)

Morten Andersen

Zamra Sajid

Rasmus Kristoffer Pedersen

Johnny T. Ottesen

Morten Andersen

Zamra Sajid

Rasmus Kristoffer Pedersen

Collection of various material, intended for use in danish high-school in collaboration with Roskilde University.

View moreVideo (In danish)

Danish radio feature about mathematical modelling and blood cancers.

View moreBjørn Dan Orfang Nielsen, Frederik Vedel Gantzel, Karl Skovfoged Nordentoft, Kenny Haslund Andersen, Max Thrane Nielsen and Poul Thrane

Daniel Vestma Norén, Emely Overby, Kimmie Schäfferling Britoft, Mads Jens Køie Nielsen, Mette Michelle Unterborg Alempiew and Michelle Vigant Nielsen

Mathis Brette Mortensen, Natalia Stati, Irida Gkouzou and Magnus Skjold Frederiksen

Jeannie Bøg Rasmussen, Maria Nørr and Mehmet Temizsoy

Mikkel Zielinski Ajslev, Hasan M. M. Osman and Stefan Bisgaard

Our main work concerns the Cancitis Model, as introduced in our 2017 PLOS One paper. Below is a schematic overview of the compartments of the model.

The corresponding system of ordinary differential equations is given as:

$$ \begin{align} \frac{dx_0}{dt} &= (r_x \phi_x s- a_x - d_{x0}) x_0 - r_m s x_0 \\
\frac{dx_1}{dt} &= a_x A_x x_0 - d_{x1} x_1 \\ \frac{dy_0}{dt} &= (r_y \phi_y - a_y - d_{y0}) y_0 + r_m s x_0 \\
\frac{dy_1}{dt} &= a_y A_y y_0 - d_{y1} y_1 \\
\frac{da}{dt} &= d_{x0} x_0 + d_{y0} y_0 + d_{x1} x_1 + d_{y1} y_1 -e_a a s\\
\frac{ds}{dt} &= r_s a - e_s s + I
\end{align} $$

where \( \phi_x (x_0,y_0) = \frac{1}{1+c_{xx}x_0 + c_{xy}y_0} \) and \( \phi_y (x_0,y_0) = \frac{1}{1+c_{yx}x_0 + c_{yy}y_0} \)